Properties

Label 275.3.c.e
Level $275$
Weight $3$
Character orbit 275.c
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,3,Mod(76,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.76");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-5}, \sqrt{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + x^{2} + 105 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_{3} q^{3} - q^{4} - \beta_1 q^{6} - 5 \beta_{2} q^{7} - 3 \beta_{2} q^{8} + 12 q^{9} + (\beta_1 - 4) q^{11} - \beta_{3} q^{12} + 4 \beta_{2} q^{13} - 25 q^{14} - 19 q^{16}+ \cdots + (12 \beta_1 - 48) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 48 q^{9} - 16 q^{11} - 100 q^{14} - 76 q^{16} + 80 q^{26} - 12 q^{31} + 140 q^{34} - 48 q^{36} + 16 q^{44} - 304 q^{49} - 300 q^{56} + 72 q^{59} - 164 q^{64} + 420 q^{66} + 504 q^{69} + 108 q^{71}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} + x^{2} + 105 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} - 3\nu^{2} + 21\nu - 10 ) / 41 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + 6\nu^{2} + 40\nu - 21 ) / 41 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 2\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -9\beta_{3} + 23\beta_{2} + 3\beta _1 + 1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
−1.79129 + 2.23607i
2.79129 + 2.23607i
−1.79129 2.23607i
2.79129 2.23607i
2.23607i −4.58258 −1.00000 0 10.2470i 11.1803i 6.70820i 12.0000 0
76.2 2.23607i 4.58258 −1.00000 0 10.2470i 11.1803i 6.70820i 12.0000 0
76.3 2.23607i −4.58258 −1.00000 0 10.2470i 11.1803i 6.70820i 12.0000 0
76.4 2.23607i 4.58258 −1.00000 0 10.2470i 11.1803i 6.70820i 12.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.3.c.e 4
5.b even 2 1 inner 275.3.c.e 4
5.c odd 4 2 55.3.d.d 4
11.b odd 2 1 inner 275.3.c.e 4
15.e even 4 2 495.3.h.d 4
20.e even 4 2 880.3.i.d 4
55.d odd 2 1 inner 275.3.c.e 4
55.e even 4 2 55.3.d.d 4
165.l odd 4 2 495.3.h.d 4
220.i odd 4 2 880.3.i.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.d.d 4 5.c odd 4 2
55.3.d.d 4 55.e even 4 2
275.3.c.e 4 1.a even 1 1 trivial
275.3.c.e 4 5.b even 2 1 inner
275.3.c.e 4 11.b odd 2 1 inner
275.3.c.e 4 55.d odd 2 1 inner
495.3.h.d 4 15.e even 4 2
495.3.h.d 4 165.l odd 4 2
880.3.i.d 4 20.e even 4 2
880.3.i.d 4 220.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(275, [\chi])\):

\( T_{2}^{2} + 5 \) Copy content Toggle raw display
\( T_{3}^{2} - 21 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 21)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 125)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 8 T + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 80)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 245)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 105)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 756)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 105)^{2} \) Copy content Toggle raw display
$31$ \( (T + 3)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 21)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 420)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 500)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 4116)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 21)^{2} \) Copy content Toggle raw display
$59$ \( (T - 18)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 5145)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 756)^{2} \) Copy content Toggle raw display
$71$ \( (T - 27)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 3380)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 3780)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 5120)^{2} \) Copy content Toggle raw display
$89$ \( (T + 37)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 14196)^{2} \) Copy content Toggle raw display
show more
show less