Properties

Label 275.3.d.c.274.9
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,3,Mod(274,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.274");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 54 x^{13} + 51 x^{12} - 118 x^{11} + 770 x^{10} - 1222 x^{9} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.9
Root \(-0.230520 + 0.230520i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.c.274.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46104 q^{2} -0.114554i q^{3} -1.86536 q^{4} -0.167368i q^{6} +4.56066 q^{7} -8.56953 q^{8} +8.98688 q^{9} +(5.89241 + 9.28868i) q^{11} +0.213685i q^{12} +16.5645 q^{13} +6.66330 q^{14} -5.05897 q^{16} +17.2939 q^{17} +13.1302 q^{18} -35.8838i q^{19} -0.522441i q^{21} +(8.60904 + 13.5711i) q^{22} +29.3902i q^{23} +0.981674i q^{24} +24.2014 q^{26} -2.06047i q^{27} -8.50728 q^{28} +8.51985i q^{29} -26.3476 q^{31} +26.8868 q^{32} +(1.06406 - 0.674999i) q^{33} +25.2670 q^{34} -16.7638 q^{36} +44.4227i q^{37} -52.4276i q^{38} -1.89753i q^{39} -52.2243i q^{41} -0.763308i q^{42} -6.77375 q^{43} +(-10.9915 - 17.3268i) q^{44} +42.9402i q^{46} +15.0434i q^{47} +0.579525i q^{48} -28.2004 q^{49} -1.98108i q^{51} -30.8989 q^{52} +33.1498i q^{53} -3.01043i q^{54} -39.0827 q^{56} -4.11063 q^{57} +12.4478i q^{58} -51.5447 q^{59} -23.1889i q^{61} -38.4948 q^{62} +40.9861 q^{63} +59.5185 q^{64} +(1.55463 - 0.986200i) q^{66} -113.668i q^{67} -32.2593 q^{68} +3.36676 q^{69} +8.00364 q^{71} -77.0133 q^{72} -32.5342 q^{73} +64.9034i q^{74} +66.9363i q^{76} +(26.8732 + 42.3625i) q^{77} -2.77237i q^{78} +52.0160i q^{79} +80.6459 q^{81} -76.3018i q^{82} +43.3699 q^{83} +0.974543i q^{84} -9.89672 q^{86} +0.975983 q^{87} +(-50.4951 - 79.5996i) q^{88} -73.8028 q^{89} +75.5451 q^{91} -54.8233i q^{92} +3.01822i q^{93} +21.9790i q^{94} -3.07999i q^{96} +22.0298i q^{97} -41.2019 q^{98} +(52.9543 + 83.4762i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{4} + 8 q^{9} + 16 q^{11} + 176 q^{16} - 200 q^{26} + 72 q^{31} - 160 q^{34} - 432 q^{36} - 24 q^{44} - 344 q^{49} - 160 q^{56} + 32 q^{59} + 1176 q^{64} + 360 q^{66} - 16 q^{69} + 552 q^{71}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46104 0.730520 0.365260 0.930906i \(-0.380980\pi\)
0.365260 + 0.930906i \(0.380980\pi\)
\(3\) 0.114554i 0.0381847i −0.999818 0.0190923i \(-0.993922\pi\)
0.999818 0.0190923i \(-0.00607765\pi\)
\(4\) −1.86536 −0.466341
\(5\) 0 0
\(6\) 0.167368i 0.0278947i
\(7\) 4.56066 0.651522 0.325761 0.945452i \(-0.394379\pi\)
0.325761 + 0.945452i \(0.394379\pi\)
\(8\) −8.56953 −1.07119
\(9\) 8.98688 0.998542
\(10\) 0 0
\(11\) 5.89241 + 9.28868i 0.535673 + 0.844425i
\(12\) 0.213685i 0.0178071i
\(13\) 16.5645 1.27420 0.637098 0.770783i \(-0.280135\pi\)
0.637098 + 0.770783i \(0.280135\pi\)
\(14\) 6.66330 0.475950
\(15\) 0 0
\(16\) −5.05897 −0.316185
\(17\) 17.2939 1.01729 0.508643 0.860978i \(-0.330147\pi\)
0.508643 + 0.860978i \(0.330147\pi\)
\(18\) 13.1302 0.729455
\(19\) 35.8838i 1.88862i −0.329057 0.944310i \(-0.606731\pi\)
0.329057 0.944310i \(-0.393269\pi\)
\(20\) 0 0
\(21\) 0.522441i 0.0248782i
\(22\) 8.60904 + 13.5711i 0.391320 + 0.616869i
\(23\) 29.3902i 1.27783i 0.769276 + 0.638917i \(0.220617\pi\)
−0.769276 + 0.638917i \(0.779383\pi\)
\(24\) 0.981674i 0.0409031i
\(25\) 0 0
\(26\) 24.2014 0.930825
\(27\) 2.06047i 0.0763137i
\(28\) −8.50728 −0.303831
\(29\) 8.51985i 0.293788i 0.989152 + 0.146894i \(0.0469276\pi\)
−0.989152 + 0.146894i \(0.953072\pi\)
\(30\) 0 0
\(31\) −26.3476 −0.849921 −0.424961 0.905212i \(-0.639712\pi\)
−0.424961 + 0.905212i \(0.639712\pi\)
\(32\) 26.8868 0.840211
\(33\) 1.06406 0.674999i 0.0322441 0.0204545i
\(34\) 25.2670 0.743147
\(35\) 0 0
\(36\) −16.7638 −0.465661
\(37\) 44.4227i 1.20061i 0.799769 + 0.600307i \(0.204955\pi\)
−0.799769 + 0.600307i \(0.795045\pi\)
\(38\) 52.4276i 1.37967i
\(39\) 1.89753i 0.0486547i
\(40\) 0 0
\(41\) 52.2243i 1.27376i −0.770961 0.636882i \(-0.780224\pi\)
0.770961 0.636882i \(-0.219776\pi\)
\(42\) 0.763308i 0.0181740i
\(43\) −6.77375 −0.157529 −0.0787646 0.996893i \(-0.525098\pi\)
−0.0787646 + 0.996893i \(0.525098\pi\)
\(44\) −10.9915 17.3268i −0.249806 0.393790i
\(45\) 0 0
\(46\) 42.9402i 0.933482i
\(47\) 15.0434i 0.320072i 0.987111 + 0.160036i \(0.0511611\pi\)
−0.987111 + 0.160036i \(0.948839\pi\)
\(48\) 0.579525i 0.0120734i
\(49\) −28.2004 −0.575519
\(50\) 0 0
\(51\) 1.98108i 0.0388447i
\(52\) −30.8989 −0.594209
\(53\) 33.1498i 0.625468i 0.949841 + 0.312734i \(0.101245\pi\)
−0.949841 + 0.312734i \(0.898755\pi\)
\(54\) 3.01043i 0.0557486i
\(55\) 0 0
\(56\) −39.0827 −0.697905
\(57\) −4.11063 −0.0721163
\(58\) 12.4478i 0.214618i
\(59\) −51.5447 −0.873639 −0.436819 0.899549i \(-0.643895\pi\)
−0.436819 + 0.899549i \(0.643895\pi\)
\(60\) 0 0
\(61\) 23.1889i 0.380146i −0.981770 0.190073i \(-0.939127\pi\)
0.981770 0.190073i \(-0.0608725\pi\)
\(62\) −38.4948 −0.620884
\(63\) 40.9861 0.650572
\(64\) 59.5185 0.929976
\(65\) 0 0
\(66\) 1.55463 0.986200i 0.0235550 0.0149424i
\(67\) 113.668i 1.69653i −0.529572 0.848265i \(-0.677647\pi\)
0.529572 0.848265i \(-0.322353\pi\)
\(68\) −32.2593 −0.474402
\(69\) 3.36676 0.0487936
\(70\) 0 0
\(71\) 8.00364 0.112727 0.0563637 0.998410i \(-0.482049\pi\)
0.0563637 + 0.998410i \(0.482049\pi\)
\(72\) −77.0133 −1.06963
\(73\) −32.5342 −0.445674 −0.222837 0.974856i \(-0.571532\pi\)
−0.222837 + 0.974856i \(0.571532\pi\)
\(74\) 64.9034i 0.877073i
\(75\) 0 0
\(76\) 66.9363i 0.880741i
\(77\) 26.8732 + 42.3625i 0.349003 + 0.550162i
\(78\) 2.77237i 0.0355432i
\(79\) 52.0160i 0.658431i 0.944255 + 0.329215i \(0.106784\pi\)
−0.944255 + 0.329215i \(0.893216\pi\)
\(80\) 0 0
\(81\) 80.6459 0.995628
\(82\) 76.3018i 0.930510i
\(83\) 43.3699 0.522529 0.261264 0.965267i \(-0.415861\pi\)
0.261264 + 0.965267i \(0.415861\pi\)
\(84\) 0.974543i 0.0116017i
\(85\) 0 0
\(86\) −9.89672 −0.115078
\(87\) 0.975983 0.0112182
\(88\) −50.4951 79.5996i −0.573808 0.904541i
\(89\) −73.8028 −0.829245 −0.414623 0.909993i \(-0.636086\pi\)
−0.414623 + 0.909993i \(0.636086\pi\)
\(90\) 0 0
\(91\) 75.5451 0.830166
\(92\) 54.8233i 0.595906i
\(93\) 3.01822i 0.0324540i
\(94\) 21.9790i 0.233819i
\(95\) 0 0
\(96\) 3.07999i 0.0320832i
\(97\) 22.0298i 0.227111i 0.993532 + 0.113556i \(0.0362240\pi\)
−0.993532 + 0.113556i \(0.963776\pi\)
\(98\) −41.2019 −0.420428
\(99\) 52.9543 + 83.4762i 0.534892 + 0.843194i
\(100\) 0 0
\(101\) 163.013i 1.61399i −0.590561 0.806993i \(-0.701094\pi\)
0.590561 0.806993i \(-0.298906\pi\)
\(102\) 2.89444i 0.0283768i
\(103\) 42.6423i 0.414003i −0.978341 0.207001i \(-0.933630\pi\)
0.978341 0.207001i \(-0.0663705\pi\)
\(104\) −141.950 −1.36491
\(105\) 0 0
\(106\) 48.4332i 0.456917i
\(107\) −131.098 −1.22522 −0.612608 0.790387i \(-0.709879\pi\)
−0.612608 + 0.790387i \(0.709879\pi\)
\(108\) 3.84352i 0.0355882i
\(109\) 54.5201i 0.500184i 0.968222 + 0.250092i \(0.0804609\pi\)
−0.968222 + 0.250092i \(0.919539\pi\)
\(110\) 0 0
\(111\) 5.08880 0.0458451
\(112\) −23.0722 −0.206002
\(113\) 117.985i 1.04412i 0.852910 + 0.522058i \(0.174836\pi\)
−0.852910 + 0.522058i \(0.825164\pi\)
\(114\) −6.00579 −0.0526824
\(115\) 0 0
\(116\) 15.8926i 0.137005i
\(117\) 148.863 1.27234
\(118\) −75.3088 −0.638210
\(119\) 78.8713 0.662784
\(120\) 0 0
\(121\) −51.5591 + 109.465i −0.426108 + 0.904672i
\(122\) 33.8799i 0.277704i
\(123\) −5.98251 −0.0486383
\(124\) 49.1478 0.396353
\(125\) 0 0
\(126\) 59.8822 0.475256
\(127\) −113.764 −0.895782 −0.447891 0.894088i \(-0.647825\pi\)
−0.447891 + 0.894088i \(0.647825\pi\)
\(128\) −20.5882 −0.160845
\(129\) 0.775961i 0.00601520i
\(130\) 0 0
\(131\) 115.599i 0.882435i 0.897400 + 0.441218i \(0.145453\pi\)
−0.897400 + 0.441218i \(0.854547\pi\)
\(132\) −1.98485 + 1.25912i −0.0150367 + 0.00953877i
\(133\) 163.654i 1.23048i
\(134\) 166.073i 1.23935i
\(135\) 0 0
\(136\) −148.200 −1.08971
\(137\) 216.355i 1.57924i −0.613598 0.789618i \(-0.710279\pi\)
0.613598 0.789618i \(-0.289721\pi\)
\(138\) 4.91897 0.0356447
\(139\) 5.08013i 0.0365477i −0.999833 0.0182738i \(-0.994183\pi\)
0.999833 0.0182738i \(-0.00581707\pi\)
\(140\) 0 0
\(141\) 1.72328 0.0122219
\(142\) 11.6936 0.0823495
\(143\) 97.6050 + 153.863i 0.682552 + 1.07596i
\(144\) −45.4643 −0.315724
\(145\) 0 0
\(146\) −47.5338 −0.325574
\(147\) 3.23047i 0.0219760i
\(148\) 82.8646i 0.559896i
\(149\) 187.947i 1.26139i −0.776030 0.630696i \(-0.782769\pi\)
0.776030 0.630696i \(-0.217231\pi\)
\(150\) 0 0
\(151\) 136.741i 0.905571i −0.891620 0.452785i \(-0.850430\pi\)
0.891620 0.452785i \(-0.149570\pi\)
\(152\) 307.507i 2.02307i
\(153\) 155.418 1.01580
\(154\) 39.2629 + 61.8932i 0.254954 + 0.401904i
\(155\) 0 0
\(156\) 3.53959i 0.0226897i
\(157\) 256.057i 1.63094i 0.578800 + 0.815470i \(0.303521\pi\)
−0.578800 + 0.815470i \(0.696479\pi\)
\(158\) 75.9975i 0.480997i
\(159\) 3.79744 0.0238833
\(160\) 0 0
\(161\) 134.038i 0.832537i
\(162\) 117.827 0.727326
\(163\) 25.1370i 0.154215i 0.997023 + 0.0771075i \(0.0245685\pi\)
−0.997023 + 0.0771075i \(0.975432\pi\)
\(164\) 97.4174i 0.594008i
\(165\) 0 0
\(166\) 63.3651 0.381718
\(167\) −4.21038 −0.0252119 −0.0126059 0.999921i \(-0.504013\pi\)
−0.0126059 + 0.999921i \(0.504013\pi\)
\(168\) 4.47708i 0.0266493i
\(169\) 105.384 0.623573
\(170\) 0 0
\(171\) 322.483i 1.88587i
\(172\) 12.6355 0.0734623
\(173\) 168.015 0.971185 0.485592 0.874185i \(-0.338604\pi\)
0.485592 + 0.874185i \(0.338604\pi\)
\(174\) 1.42595 0.00819511
\(175\) 0 0
\(176\) −29.8095 46.9911i −0.169372 0.266995i
\(177\) 5.90465i 0.0333596i
\(178\) −107.829 −0.605780
\(179\) 34.5542 0.193040 0.0965200 0.995331i \(-0.469229\pi\)
0.0965200 + 0.995331i \(0.469229\pi\)
\(180\) 0 0
\(181\) −107.349 −0.593091 −0.296545 0.955019i \(-0.595835\pi\)
−0.296545 + 0.955019i \(0.595835\pi\)
\(182\) 110.374 0.606453
\(183\) −2.65638 −0.0145158
\(184\) 251.860i 1.36880i
\(185\) 0 0
\(186\) 4.40974i 0.0237083i
\(187\) 101.902 + 160.637i 0.544933 + 0.859022i
\(188\) 28.0614i 0.149263i
\(189\) 9.39709i 0.0497200i
\(190\) 0 0
\(191\) −75.4470 −0.395011 −0.197505 0.980302i \(-0.563284\pi\)
−0.197505 + 0.980302i \(0.563284\pi\)
\(192\) 6.81808i 0.0355108i
\(193\) −167.064 −0.865617 −0.432809 0.901486i \(-0.642477\pi\)
−0.432809 + 0.901486i \(0.642477\pi\)
\(194\) 32.1864i 0.165909i
\(195\) 0 0
\(196\) 52.6040 0.268388
\(197\) 362.777 1.84151 0.920754 0.390145i \(-0.127575\pi\)
0.920754 + 0.390145i \(0.127575\pi\)
\(198\) 77.3684 + 121.962i 0.390749 + 0.615970i
\(199\) −337.735 −1.69716 −0.848580 0.529068i \(-0.822542\pi\)
−0.848580 + 0.529068i \(0.822542\pi\)
\(200\) 0 0
\(201\) −13.0211 −0.0647814
\(202\) 238.168i 1.17905i
\(203\) 38.8561i 0.191409i
\(204\) 3.69543i 0.0181149i
\(205\) 0 0
\(206\) 62.3021i 0.302437i
\(207\) 264.126i 1.27597i
\(208\) −83.7994 −0.402882
\(209\) 333.313 211.442i 1.59480 1.01168i
\(210\) 0 0
\(211\) 317.915i 1.50670i 0.657617 + 0.753352i \(0.271564\pi\)
−0.657617 + 0.753352i \(0.728436\pi\)
\(212\) 61.8364i 0.291681i
\(213\) 0.916849i 0.00430446i
\(214\) −191.539 −0.895044
\(215\) 0 0
\(216\) 17.6572i 0.0817465i
\(217\) −120.162 −0.553743
\(218\) 79.6560i 0.365395i
\(219\) 3.72692i 0.0170179i
\(220\) 0 0
\(221\) 286.465 1.29622
\(222\) 7.43494 0.0334907
\(223\) 292.643i 1.31230i −0.754630 0.656151i \(-0.772183\pi\)
0.754630 0.656151i \(-0.227817\pi\)
\(224\) 122.621 0.547416
\(225\) 0 0
\(226\) 172.381i 0.762747i
\(227\) 9.54908 0.0420664 0.0210332 0.999779i \(-0.493304\pi\)
0.0210332 + 0.999779i \(0.493304\pi\)
\(228\) 7.66782 0.0336308
\(229\) 355.912 1.55420 0.777100 0.629377i \(-0.216690\pi\)
0.777100 + 0.629377i \(0.216690\pi\)
\(230\) 0 0
\(231\) 4.85279 3.07844i 0.0210077 0.0133266i
\(232\) 73.0111i 0.314703i
\(233\) 270.961 1.16292 0.581462 0.813573i \(-0.302481\pi\)
0.581462 + 0.813573i \(0.302481\pi\)
\(234\) 217.495 0.929467
\(235\) 0 0
\(236\) 96.1496 0.407413
\(237\) 5.95864 0.0251420
\(238\) 115.234 0.484177
\(239\) 79.1374i 0.331119i 0.986200 + 0.165560i \(0.0529430\pi\)
−0.986200 + 0.165560i \(0.947057\pi\)
\(240\) 0 0
\(241\) 146.567i 0.608164i 0.952646 + 0.304082i \(0.0983496\pi\)
−0.952646 + 0.304082i \(0.901650\pi\)
\(242\) −75.3299 + 159.933i −0.311281 + 0.660881i
\(243\) 27.7825i 0.114331i
\(244\) 43.2558i 0.177278i
\(245\) 0 0
\(246\) −8.74068 −0.0355312
\(247\) 594.398i 2.40647i
\(248\) 225.786 0.910428
\(249\) 4.96819i 0.0199526i
\(250\) 0 0
\(251\) 52.7485 0.210154 0.105077 0.994464i \(-0.466491\pi\)
0.105077 + 0.994464i \(0.466491\pi\)
\(252\) −76.4539 −0.303388
\(253\) −272.996 + 173.179i −1.07903 + 0.684501i
\(254\) −166.214 −0.654386
\(255\) 0 0
\(256\) −268.154 −1.04748
\(257\) 41.8668i 0.162906i 0.996677 + 0.0814529i \(0.0259560\pi\)
−0.996677 + 0.0814529i \(0.974044\pi\)
\(258\) 1.13371i 0.00439422i
\(259\) 202.597i 0.782227i
\(260\) 0 0
\(261\) 76.5668i 0.293360i
\(262\) 168.895i 0.644636i
\(263\) −289.448 −1.10056 −0.550282 0.834979i \(-0.685480\pi\)
−0.550282 + 0.834979i \(0.685480\pi\)
\(264\) −9.11845 + 5.78442i −0.0345396 + 0.0219107i
\(265\) 0 0
\(266\) 239.104i 0.898888i
\(267\) 8.45441i 0.0316645i
\(268\) 212.031i 0.791161i
\(269\) −297.640 −1.10647 −0.553234 0.833026i \(-0.686607\pi\)
−0.553234 + 0.833026i \(0.686607\pi\)
\(270\) 0 0
\(271\) 277.488i 1.02394i −0.859003 0.511970i \(-0.828916\pi\)
0.859003 0.511970i \(-0.171084\pi\)
\(272\) −87.4890 −0.321651
\(273\) 8.65400i 0.0316996i
\(274\) 316.104i 1.15366i
\(275\) 0 0
\(276\) −6.28023 −0.0227545
\(277\) 22.6740 0.0818556 0.0409278 0.999162i \(-0.486969\pi\)
0.0409278 + 0.999162i \(0.486969\pi\)
\(278\) 7.42227i 0.0266988i
\(279\) −236.782 −0.848682
\(280\) 0 0
\(281\) 182.887i 0.650845i 0.945569 + 0.325422i \(0.105506\pi\)
−0.945569 + 0.325422i \(0.894494\pi\)
\(282\) 2.51778 0.00892831
\(283\) −367.233 −1.29764 −0.648821 0.760941i \(-0.724738\pi\)
−0.648821 + 0.760941i \(0.724738\pi\)
\(284\) −14.9297 −0.0525694
\(285\) 0 0
\(286\) 142.605 + 224.799i 0.498618 + 0.786012i
\(287\) 238.177i 0.829886i
\(288\) 241.628 0.838986
\(289\) 10.0774 0.0348699
\(290\) 0 0
\(291\) 2.52360 0.00867218
\(292\) 60.6881 0.207836
\(293\) 10.3180 0.0352150 0.0176075 0.999845i \(-0.494395\pi\)
0.0176075 + 0.999845i \(0.494395\pi\)
\(294\) 4.71985i 0.0160539i
\(295\) 0 0
\(296\) 380.682i 1.28609i
\(297\) 19.1390 12.1411i 0.0644412 0.0408792i
\(298\) 274.599i 0.921472i
\(299\) 486.834i 1.62821i
\(300\) 0 0
\(301\) −30.8928 −0.102634
\(302\) 199.784i 0.661537i
\(303\) −18.6737 −0.0616295
\(304\) 181.535i 0.597154i
\(305\) 0 0
\(306\) 227.071 0.742064
\(307\) −459.671 −1.49730 −0.748649 0.662966i \(-0.769297\pi\)
−0.748649 + 0.662966i \(0.769297\pi\)
\(308\) −50.1283 79.0214i −0.162754 0.256563i
\(309\) −4.88484 −0.0158086
\(310\) 0 0
\(311\) 101.131 0.325181 0.162590 0.986694i \(-0.448015\pi\)
0.162590 + 0.986694i \(0.448015\pi\)
\(312\) 16.2610i 0.0521185i
\(313\) 288.760i 0.922556i −0.887256 0.461278i \(-0.847391\pi\)
0.887256 0.461278i \(-0.152609\pi\)
\(314\) 374.110i 1.19143i
\(315\) 0 0
\(316\) 97.0288i 0.307053i
\(317\) 242.929i 0.766338i 0.923678 + 0.383169i \(0.125167\pi\)
−0.923678 + 0.383169i \(0.874833\pi\)
\(318\) 5.54821 0.0174472
\(319\) −79.1381 + 50.2024i −0.248082 + 0.157374i
\(320\) 0 0
\(321\) 15.0178i 0.0467845i
\(322\) 195.835i 0.608185i
\(323\) 620.569i 1.92127i
\(324\) −150.434 −0.464302
\(325\) 0 0
\(326\) 36.7262i 0.112657i
\(327\) 6.24550 0.0190994
\(328\) 447.538i 1.36445i
\(329\) 68.6078i 0.208534i
\(330\) 0 0
\(331\) −241.395 −0.729291 −0.364646 0.931146i \(-0.618810\pi\)
−0.364646 + 0.931146i \(0.618810\pi\)
\(332\) −80.9006 −0.243676
\(333\) 399.222i 1.19886i
\(334\) −6.15154 −0.0184178
\(335\) 0 0
\(336\) 2.64301i 0.00786611i
\(337\) −527.662 −1.56576 −0.782881 0.622171i \(-0.786251\pi\)
−0.782881 + 0.622171i \(0.786251\pi\)
\(338\) 153.970 0.455532
\(339\) 13.5157 0.0398692
\(340\) 0 0
\(341\) −155.251 244.734i −0.455280 0.717695i
\(342\) 471.161i 1.37766i
\(343\) −352.085 −1.02649
\(344\) 58.0479 0.168744
\(345\) 0 0
\(346\) 245.476 0.709470
\(347\) −214.531 −0.618244 −0.309122 0.951022i \(-0.600035\pi\)
−0.309122 + 0.951022i \(0.600035\pi\)
\(348\) −1.82056 −0.00523150
\(349\) 76.4945i 0.219182i 0.993977 + 0.109591i \(0.0349541\pi\)
−0.993977 + 0.109591i \(0.965046\pi\)
\(350\) 0 0
\(351\) 34.1307i 0.0972385i
\(352\) 158.428 + 249.743i 0.450079 + 0.709496i
\(353\) 176.689i 0.500535i 0.968177 + 0.250268i \(0.0805186\pi\)
−0.968177 + 0.250268i \(0.919481\pi\)
\(354\) 8.62693i 0.0243699i
\(355\) 0 0
\(356\) 137.669 0.386711
\(357\) 9.03503i 0.0253082i
\(358\) 50.4850 0.141020
\(359\) 357.810i 0.996686i −0.866980 0.498343i \(-0.833942\pi\)
0.866980 0.498343i \(-0.166058\pi\)
\(360\) 0 0
\(361\) −926.646 −2.56689
\(362\) −156.842 −0.433265
\(363\) 12.5397 + 5.90630i 0.0345446 + 0.0162708i
\(364\) −140.919 −0.387140
\(365\) 0 0
\(366\) −3.88108 −0.0106041
\(367\) 314.687i 0.857458i −0.903433 0.428729i \(-0.858962\pi\)
0.903433 0.428729i \(-0.141038\pi\)
\(368\) 148.684i 0.404032i
\(369\) 469.334i 1.27191i
\(370\) 0 0
\(371\) 151.185i 0.407506i
\(372\) 5.63007i 0.0151346i
\(373\) 420.645 1.12773 0.563867 0.825865i \(-0.309313\pi\)
0.563867 + 0.825865i \(0.309313\pi\)
\(374\) 148.883 + 234.697i 0.398084 + 0.627532i
\(375\) 0 0
\(376\) 128.915i 0.342859i
\(377\) 141.127i 0.374343i
\(378\) 13.7295i 0.0363215i
\(379\) −401.667 −1.05981 −0.529904 0.848058i \(-0.677772\pi\)
−0.529904 + 0.848058i \(0.677772\pi\)
\(380\) 0 0
\(381\) 13.0322i 0.0342051i
\(382\) −110.231 −0.288563
\(383\) 60.0864i 0.156884i −0.996919 0.0784418i \(-0.975006\pi\)
0.996919 0.0784418i \(-0.0249945\pi\)
\(384\) 2.35846i 0.00614182i
\(385\) 0 0
\(386\) −244.087 −0.632350
\(387\) −60.8749 −0.157299
\(388\) 41.0936i 0.105911i
\(389\) −411.464 −1.05775 −0.528874 0.848700i \(-0.677386\pi\)
−0.528874 + 0.848700i \(0.677386\pi\)
\(390\) 0 0
\(391\) 508.269i 1.29992i
\(392\) 241.664 0.616491
\(393\) 13.2423 0.0336955
\(394\) 530.031 1.34526
\(395\) 0 0
\(396\) −98.7791 155.713i −0.249442 0.393216i
\(397\) 237.517i 0.598279i −0.954209 0.299140i \(-0.903300\pi\)
0.954209 0.299140i \(-0.0966997\pi\)
\(398\) −493.444 −1.23981
\(399\) −18.7472 −0.0469854
\(400\) 0 0
\(401\) 101.501 0.253120 0.126560 0.991959i \(-0.459606\pi\)
0.126560 + 0.991959i \(0.459606\pi\)
\(402\) −19.0243 −0.0473241
\(403\) −436.435 −1.08297
\(404\) 304.078i 0.752667i
\(405\) 0 0
\(406\) 56.7703i 0.139828i
\(407\) −412.629 + 261.757i −1.01383 + 0.643137i
\(408\) 16.9769i 0.0416101i
\(409\) 694.176i 1.69725i −0.528993 0.848626i \(-0.677430\pi\)
0.528993 0.848626i \(-0.322570\pi\)
\(410\) 0 0
\(411\) −24.7844 −0.0603026
\(412\) 79.5433i 0.193066i
\(413\) −235.078 −0.569195
\(414\) 385.898i 0.932121i
\(415\) 0 0
\(416\) 445.367 1.07059
\(417\) −0.581949 −0.00139556
\(418\) 486.983 308.925i 1.16503 0.739055i
\(419\) 416.354 0.993686 0.496843 0.867841i \(-0.334493\pi\)
0.496843 + 0.867841i \(0.334493\pi\)
\(420\) 0 0
\(421\) 539.341 1.28110 0.640548 0.767918i \(-0.278707\pi\)
0.640548 + 0.767918i \(0.278707\pi\)
\(422\) 464.486i 1.10068i
\(423\) 135.193i 0.319606i
\(424\) 284.078i 0.669995i
\(425\) 0 0
\(426\) 1.33955i 0.00314449i
\(427\) 105.757i 0.247674i
\(428\) 244.546 0.571368
\(429\) 17.6256 11.1810i 0.0410853 0.0260630i
\(430\) 0 0
\(431\) 343.493i 0.796967i 0.917176 + 0.398483i \(0.130463\pi\)
−0.917176 + 0.398483i \(0.869537\pi\)
\(432\) 10.4238i 0.0241293i
\(433\) 18.0353i 0.0416520i −0.999783 0.0208260i \(-0.993370\pi\)
0.999783 0.0208260i \(-0.00662960\pi\)
\(434\) −175.562 −0.404520
\(435\) 0 0
\(436\) 101.700i 0.233256i
\(437\) 1054.63 2.41334
\(438\) 5.44518i 0.0124319i
\(439\) 693.839i 1.58050i 0.612786 + 0.790249i \(0.290049\pi\)
−0.612786 + 0.790249i \(0.709951\pi\)
\(440\) 0 0
\(441\) −253.434 −0.574680
\(442\) 418.536 0.946914
\(443\) 359.314i 0.811092i 0.914075 + 0.405546i \(0.132919\pi\)
−0.914075 + 0.405546i \(0.867081\pi\)
\(444\) −9.49247 −0.0213794
\(445\) 0 0
\(446\) 427.564i 0.958663i
\(447\) −21.5301 −0.0481658
\(448\) 271.443 0.605900
\(449\) 567.882 1.26477 0.632385 0.774654i \(-0.282076\pi\)
0.632385 + 0.774654i \(0.282076\pi\)
\(450\) 0 0
\(451\) 485.095 307.727i 1.07560 0.682322i
\(452\) 220.085i 0.486914i
\(453\) −15.6643 −0.0345789
\(454\) 13.9516 0.0307303
\(455\) 0 0
\(456\) 35.2262 0.0772504
\(457\) 797.218 1.74446 0.872230 0.489096i \(-0.162673\pi\)
0.872230 + 0.489096i \(0.162673\pi\)
\(458\) 520.001 1.13537
\(459\) 35.6335i 0.0776328i
\(460\) 0 0
\(461\) 87.9144i 0.190704i −0.995444 0.0953518i \(-0.969602\pi\)
0.995444 0.0953518i \(-0.0303976\pi\)
\(462\) 7.09012 4.49772i 0.0153466 0.00973532i
\(463\) 50.9282i 0.109996i 0.998486 + 0.0549981i \(0.0175153\pi\)
−0.998486 + 0.0549981i \(0.982485\pi\)
\(464\) 43.1016i 0.0928914i
\(465\) 0 0
\(466\) 395.885 0.849539
\(467\) 463.064i 0.991572i −0.868445 0.495786i \(-0.834880\pi\)
0.868445 0.495786i \(-0.165120\pi\)
\(468\) −277.684 −0.593343
\(469\) 518.398i 1.10533i
\(470\) 0 0
\(471\) 29.3324 0.0622769
\(472\) 441.714 0.935834
\(473\) −39.9137 62.9192i −0.0843841 0.133022i
\(474\) 8.70581 0.0183667
\(475\) 0 0
\(476\) −147.124 −0.309083
\(477\) 297.913i 0.624556i
\(478\) 115.623i 0.241889i
\(479\) 182.184i 0.380343i 0.981751 + 0.190171i \(0.0609044\pi\)
−0.981751 + 0.190171i \(0.939096\pi\)
\(480\) 0 0
\(481\) 735.842i 1.52982i
\(482\) 214.141i 0.444276i
\(483\) 15.3546 0.0317901
\(484\) 96.1765 204.193i 0.198712 0.421886i
\(485\) 0 0
\(486\) 40.5914i 0.0835213i
\(487\) 366.810i 0.753203i 0.926375 + 0.376602i \(0.122907\pi\)
−0.926375 + 0.376602i \(0.877093\pi\)
\(488\) 198.718i 0.407209i
\(489\) 2.87955 0.00588865
\(490\) 0 0
\(491\) 42.0181i 0.0855766i −0.999084 0.0427883i \(-0.986376\pi\)
0.999084 0.0427883i \(-0.0136241\pi\)
\(492\) 11.1596 0.0226820
\(493\) 147.341i 0.298866i
\(494\) 868.439i 1.75797i
\(495\) 0 0
\(496\) 133.291 0.268733
\(497\) 36.5018 0.0734444
\(498\) 7.25873i 0.0145758i
\(499\) 229.963 0.460848 0.230424 0.973090i \(-0.425989\pi\)
0.230424 + 0.973090i \(0.425989\pi\)
\(500\) 0 0
\(501\) 0.482316i 0.000962707i
\(502\) 77.0677 0.153521
\(503\) −9.38400 −0.0186561 −0.00932803 0.999956i \(-0.502969\pi\)
−0.00932803 + 0.999956i \(0.502969\pi\)
\(504\) −351.231 −0.696887
\(505\) 0 0
\(506\) −398.858 + 253.021i −0.788256 + 0.500042i
\(507\) 12.0721i 0.0238109i
\(508\) 212.212 0.417740
\(509\) 584.355 1.14804 0.574022 0.818840i \(-0.305382\pi\)
0.574022 + 0.818840i \(0.305382\pi\)
\(510\) 0 0
\(511\) −148.377 −0.290367
\(512\) −309.431 −0.604357
\(513\) −73.9374 −0.144128
\(514\) 61.1691i 0.119006i
\(515\) 0 0
\(516\) 1.44745i 0.00280513i
\(517\) −139.733 + 88.6418i −0.270277 + 0.171454i
\(518\) 296.002i 0.571432i
\(519\) 19.2468i 0.0370844i
\(520\) 0 0
\(521\) 121.060 0.232361 0.116180 0.993228i \(-0.462935\pi\)
0.116180 + 0.993228i \(0.462935\pi\)
\(522\) 111.867i 0.214305i
\(523\) 446.636 0.853988 0.426994 0.904254i \(-0.359572\pi\)
0.426994 + 0.904254i \(0.359572\pi\)
\(524\) 215.634i 0.411516i
\(525\) 0 0
\(526\) −422.896 −0.803984
\(527\) −455.651 −0.864613
\(528\) −5.38302 + 3.41480i −0.0101951 + 0.00646742i
\(529\) −334.782 −0.632858
\(530\) 0 0
\(531\) −463.226 −0.872365
\(532\) 305.273i 0.573822i
\(533\) 865.072i 1.62302i
\(534\) 12.3522i 0.0231315i
\(535\) 0 0
\(536\) 974.077i 1.81731i
\(537\) 3.95832i 0.00737117i
\(538\) −434.864 −0.808297
\(539\) −166.168 261.945i −0.308290 0.485983i
\(540\) 0 0
\(541\) 472.750i 0.873846i −0.899499 0.436923i \(-0.856068\pi\)
0.899499 0.436923i \(-0.143932\pi\)
\(542\) 405.421i 0.748009i
\(543\) 12.2973i 0.0226470i
\(544\) 464.976 0.854735
\(545\) 0 0
\(546\) 12.6438i 0.0231572i
\(547\) 24.2342 0.0443039 0.0221520 0.999755i \(-0.492948\pi\)
0.0221520 + 0.999755i \(0.492948\pi\)
\(548\) 403.582i 0.736463i
\(549\) 208.396i 0.379592i
\(550\) 0 0
\(551\) 305.724 0.554854
\(552\) −28.8516 −0.0522673
\(553\) 237.227i 0.428982i
\(554\) 33.1276 0.0597972
\(555\) 0 0
\(556\) 9.47629i 0.0170437i
\(557\) 597.483 1.07268 0.536340 0.844002i \(-0.319807\pi\)
0.536340 + 0.844002i \(0.319807\pi\)
\(558\) −345.948 −0.619979
\(559\) −112.204 −0.200723
\(560\) 0 0
\(561\) 18.4016 11.6733i 0.0328015 0.0208081i
\(562\) 267.206i 0.475455i
\(563\) 963.269 1.71096 0.855479 0.517838i \(-0.173263\pi\)
0.855479 + 0.517838i \(0.173263\pi\)
\(564\) −3.21455 −0.00569955
\(565\) 0 0
\(566\) −536.541 −0.947953
\(567\) 367.798 0.648674
\(568\) −68.5874 −0.120753
\(569\) 136.737i 0.240310i 0.992755 + 0.120155i \(0.0383392\pi\)
−0.992755 + 0.120155i \(0.961661\pi\)
\(570\) 0 0
\(571\) 829.845i 1.45332i −0.686998 0.726659i \(-0.741072\pi\)
0.686998 0.726659i \(-0.258928\pi\)
\(572\) −182.069 287.010i −0.318302 0.501765i
\(573\) 8.64276i 0.0150833i
\(574\) 347.986i 0.606248i
\(575\) 0 0
\(576\) 534.885 0.928620
\(577\) 636.305i 1.10278i 0.834247 + 0.551391i \(0.185903\pi\)
−0.834247 + 0.551391i \(0.814097\pi\)
\(578\) 14.7235 0.0254732
\(579\) 19.1379i 0.0330533i
\(580\) 0 0
\(581\) 197.795 0.340439
\(582\) 3.68708 0.00633520
\(583\) −307.918 + 195.332i −0.528161 + 0.335046i
\(584\) 278.803 0.477402
\(585\) 0 0
\(586\) 15.0750 0.0257253
\(587\) 455.242i 0.775540i −0.921756 0.387770i \(-0.873246\pi\)
0.921756 0.387770i \(-0.126754\pi\)
\(588\) 6.02600i 0.0102483i
\(589\) 945.450i 1.60518i
\(590\) 0 0
\(591\) 41.5576i 0.0703173i
\(592\) 224.733i 0.379617i
\(593\) −219.359 −0.369914 −0.184957 0.982747i \(-0.559215\pi\)
−0.184957 + 0.982747i \(0.559215\pi\)
\(594\) 27.9629 17.7387i 0.0470756 0.0298631i
\(595\) 0 0
\(596\) 350.590i 0.588239i
\(597\) 38.6889i 0.0648055i
\(598\) 711.284i 1.18944i
\(599\) 260.846 0.435470 0.217735 0.976008i \(-0.430133\pi\)
0.217735 + 0.976008i \(0.430133\pi\)
\(600\) 0 0
\(601\) 314.178i 0.522759i −0.965236 0.261379i \(-0.915823\pi\)
0.965236 0.261379i \(-0.0841773\pi\)
\(602\) −45.1355 −0.0749760
\(603\) 1021.52i 1.69406i
\(604\) 255.072i 0.422305i
\(605\) 0 0
\(606\) −27.2831 −0.0450216
\(607\) −423.627 −0.697903 −0.348951 0.937141i \(-0.613462\pi\)
−0.348951 + 0.937141i \(0.613462\pi\)
\(608\) 964.799i 1.58684i
\(609\) 4.45112 0.00730890
\(610\) 0 0
\(611\) 249.187i 0.407835i
\(612\) −289.911 −0.473710
\(613\) 144.866 0.236323 0.118162 0.992994i \(-0.462300\pi\)
0.118162 + 0.992994i \(0.462300\pi\)
\(614\) −671.597 −1.09381
\(615\) 0 0
\(616\) −230.291 363.026i −0.373849 0.589328i
\(617\) 988.195i 1.60161i 0.598923 + 0.800806i \(0.295595\pi\)
−0.598923 + 0.800806i \(0.704405\pi\)
\(618\) −7.13695 −0.0115485
\(619\) −822.930 −1.32945 −0.664725 0.747088i \(-0.731451\pi\)
−0.664725 + 0.747088i \(0.731451\pi\)
\(620\) 0 0
\(621\) 60.5575 0.0975161
\(622\) 147.757 0.237551
\(623\) −336.589 −0.540272
\(624\) 9.59956i 0.0153839i
\(625\) 0 0
\(626\) 421.890i 0.673946i
\(627\) −24.2215 38.1823i −0.0386308 0.0608969i
\(628\) 477.640i 0.760574i
\(629\) 768.240i 1.22137i
\(630\) 0 0
\(631\) −854.486 −1.35418 −0.677089 0.735902i \(-0.736759\pi\)
−0.677089 + 0.735902i \(0.736759\pi\)
\(632\) 445.753i 0.705305i
\(633\) 36.4184 0.0575330
\(634\) 354.929i 0.559825i
\(635\) 0 0
\(636\) −7.08361 −0.0111377
\(637\) −467.127 −0.733323
\(638\) −115.624 + 73.3477i −0.181229 + 0.114965i
\(639\) 71.9277 0.112563
\(640\) 0 0
\(641\) −70.2095 −0.109531 −0.0547656 0.998499i \(-0.517441\pi\)
−0.0547656 + 0.998499i \(0.517441\pi\)
\(642\) 21.9416i 0.0341770i
\(643\) 560.759i 0.872097i 0.899923 + 0.436049i \(0.143622\pi\)
−0.899923 + 0.436049i \(0.856378\pi\)
\(644\) 250.030i 0.388246i
\(645\) 0 0
\(646\) 906.676i 1.40352i
\(647\) 73.2119i 0.113156i 0.998398 + 0.0565780i \(0.0180189\pi\)
−0.998398 + 0.0565780i \(0.981981\pi\)
\(648\) −691.097 −1.06651
\(649\) −303.722 478.782i −0.467985 0.737723i
\(650\) 0 0
\(651\) 13.7651i 0.0211445i
\(652\) 46.8897i 0.0719167i
\(653\) 52.7951i 0.0808500i 0.999183 + 0.0404250i \(0.0128712\pi\)
−0.999183 + 0.0404250i \(0.987129\pi\)
\(654\) 9.12492 0.0139525
\(655\) 0 0
\(656\) 264.201i 0.402746i
\(657\) −292.381 −0.445024
\(658\) 100.239i 0.152338i
\(659\) 466.110i 0.707299i −0.935378 0.353649i \(-0.884941\pi\)
0.935378 0.353649i \(-0.115059\pi\)
\(660\) 0 0
\(661\) 759.575 1.14913 0.574565 0.818459i \(-0.305171\pi\)
0.574565 + 0.818459i \(0.305171\pi\)
\(662\) −352.688 −0.532762
\(663\) 32.8157i 0.0494957i
\(664\) −371.659 −0.559728
\(665\) 0 0
\(666\) 583.279i 0.875794i
\(667\) −250.400 −0.375412
\(668\) 7.85389 0.0117573
\(669\) −33.5235 −0.0501098
\(670\) 0 0
\(671\) 215.394 136.639i 0.321005 0.203634i
\(672\) 14.0468i 0.0209029i
\(673\) −608.412 −0.904030 −0.452015 0.892010i \(-0.649295\pi\)
−0.452015 + 0.892010i \(0.649295\pi\)
\(674\) −770.935 −1.14382
\(675\) 0 0
\(676\) −196.579 −0.290798
\(677\) −557.900 −0.824077 −0.412038 0.911166i \(-0.635183\pi\)
−0.412038 + 0.911166i \(0.635183\pi\)
\(678\) 19.7469 0.0291253
\(679\) 100.470i 0.147968i
\(680\) 0 0
\(681\) 1.09388i 0.00160629i
\(682\) −226.827 357.566i −0.332591 0.524290i
\(683\) 785.901i 1.15066i 0.817921 + 0.575330i \(0.195126\pi\)
−0.817921 + 0.575330i \(0.804874\pi\)
\(684\) 601.548i 0.879457i
\(685\) 0 0
\(686\) −514.409 −0.749868
\(687\) 40.7711i 0.0593466i
\(688\) 34.2682 0.0498084
\(689\) 549.111i 0.796968i
\(690\) 0 0
\(691\) 480.448 0.695293 0.347647 0.937626i \(-0.386981\pi\)
0.347647 + 0.937626i \(0.386981\pi\)
\(692\) −313.409 −0.452903
\(693\) 241.506 + 380.706i 0.348494 + 0.549360i
\(694\) −313.438 −0.451640
\(695\) 0 0
\(696\) −8.36371 −0.0120168
\(697\) 903.160i 1.29578i
\(698\) 111.762i 0.160117i
\(699\) 31.0397i 0.0444059i
\(700\) 0 0
\(701\) 284.947i 0.406486i −0.979128 0.203243i \(-0.934852\pi\)
0.979128 0.203243i \(-0.0651481\pi\)
\(702\) 49.8663i 0.0710346i
\(703\) 1594.06 2.26750
\(704\) 350.707 + 552.848i 0.498163 + 0.785296i
\(705\) 0 0
\(706\) 258.150i 0.365651i
\(707\) 743.444i 1.05155i
\(708\) 11.0143i 0.0155570i
\(709\) 313.418 0.442057 0.221028 0.975267i \(-0.429059\pi\)
0.221028 + 0.975267i \(0.429059\pi\)
\(710\) 0 0
\(711\) 467.462i 0.657471i
\(712\) 632.455 0.888280
\(713\) 774.359i 1.08606i
\(714\) 13.2005i 0.0184881i
\(715\) 0 0
\(716\) −64.4561 −0.0900224
\(717\) 9.06551 0.0126437
\(718\) 522.775i 0.728099i
\(719\) 1198.70 1.66718 0.833590 0.552384i \(-0.186282\pi\)
0.833590 + 0.552384i \(0.186282\pi\)
\(720\) 0 0
\(721\) 194.477i 0.269732i
\(722\) −1353.87 −1.87516
\(723\) 16.7899 0.0232225
\(724\) 200.246 0.276583
\(725\) 0 0
\(726\) 18.3210 + 8.62934i 0.0252355 + 0.0118861i
\(727\) 152.540i 0.209821i 0.994482 + 0.104910i \(0.0334555\pi\)
−0.994482 + 0.104910i \(0.966544\pi\)
\(728\) −647.386 −0.889267
\(729\) 722.630 0.991262
\(730\) 0 0
\(731\) −117.144 −0.160252
\(732\) 4.95512 0.00676929
\(733\) 1107.11 1.51039 0.755194 0.655501i \(-0.227543\pi\)
0.755194 + 0.655501i \(0.227543\pi\)
\(734\) 459.770i 0.626390i
\(735\) 0 0
\(736\) 790.206i 1.07365i
\(737\) 1055.82 669.775i 1.43259 0.908786i
\(738\) 685.715i 0.929153i
\(739\) 438.677i 0.593609i 0.954938 + 0.296805i \(0.0959210\pi\)
−0.954938 + 0.296805i \(0.904079\pi\)
\(740\) 0 0
\(741\) −68.0907 −0.0918903
\(742\) 220.887i 0.297691i
\(743\) −764.284 −1.02865 −0.514323 0.857597i \(-0.671957\pi\)
−0.514323 + 0.857597i \(0.671957\pi\)
\(744\) 25.8647i 0.0347644i
\(745\) 0 0
\(746\) 614.579 0.823832
\(747\) 389.760 0.521767
\(748\) −190.085 299.646i −0.254124 0.400597i
\(749\) −597.893 −0.798255
\(750\) 0 0
\(751\) 1224.32 1.63025 0.815126 0.579283i \(-0.196668\pi\)
0.815126 + 0.579283i \(0.196668\pi\)
\(752\) 76.1041i 0.101202i
\(753\) 6.04256i 0.00802464i
\(754\) 206.193i 0.273465i
\(755\) 0 0
\(756\) 17.5290i 0.0231865i
\(757\) 1346.79i 1.77911i −0.456828 0.889555i \(-0.651014\pi\)
0.456828 0.889555i \(-0.348986\pi\)
\(758\) −586.852 −0.774211
\(759\) 19.8383 + 31.2728i 0.0261374 + 0.0412026i
\(760\) 0 0
\(761\) 642.215i 0.843909i 0.906617 + 0.421954i \(0.138656\pi\)
−0.906617 + 0.421954i \(0.861344\pi\)
\(762\) 19.0405i 0.0249875i
\(763\) 248.647i 0.325881i
\(764\) 140.736 0.184210
\(765\) 0 0
\(766\) 87.7886i 0.114607i
\(767\) −853.814 −1.11319
\(768\) 30.7181i 0.0399976i
\(769\) 786.000i 1.02211i 0.859549 + 0.511053i \(0.170744\pi\)
−0.859549 + 0.511053i \(0.829256\pi\)
\(770\) 0 0
\(771\) 4.79601 0.00622051
\(772\) 311.635 0.403673
\(773\) 1311.57i 1.69672i 0.529419 + 0.848360i \(0.322410\pi\)
−0.529419 + 0.848360i \(0.677590\pi\)
\(774\) −88.9406 −0.114910
\(775\) 0 0
\(776\) 188.785i 0.243280i
\(777\) 23.2083 0.0298691
\(778\) −601.166 −0.772706
\(779\) −1874.01 −2.40566
\(780\) 0 0
\(781\) 47.1607 + 74.3432i 0.0603850 + 0.0951898i
\(782\) 742.601i 0.949618i
\(783\) 17.5549 0.0224200
\(784\) 142.665 0.181971
\(785\) 0 0
\(786\) 19.3476 0.0246152
\(787\) −658.660 −0.836925 −0.418462 0.908234i \(-0.637431\pi\)
−0.418462 + 0.908234i \(0.637431\pi\)
\(788\) −676.711 −0.858770
\(789\) 33.1575i 0.0420247i
\(790\) 0 0
\(791\) 538.089i 0.680265i
\(792\) −453.794 715.352i −0.572972 0.903222i
\(793\) 384.114i 0.484381i
\(794\) 347.022i 0.437055i
\(795\) 0 0
\(796\) 629.998 0.791455
\(797\) 1499.40i 1.88130i 0.339376 + 0.940651i \(0.389784\pi\)
−0.339376 + 0.940651i \(0.610216\pi\)
\(798\) −27.3904 −0.0343238
\(799\) 260.158i 0.325605i
\(800\) 0 0
\(801\) −663.257 −0.828036
\(802\) 148.297 0.184909
\(803\) −191.705 302.200i −0.238736 0.376339i
\(804\) 24.2890 0.0302102
\(805\) 0 0
\(806\) −637.649 −0.791128
\(807\) 34.0959i 0.0422501i
\(808\) 1396.94i 1.72889i
\(809\) 1400.12i 1.73068i −0.501186 0.865340i \(-0.667103\pi\)
0.501186 0.865340i \(-0.332897\pi\)
\(810\) 0 0
\(811\) 611.795i 0.754371i −0.926138 0.377186i \(-0.876892\pi\)
0.926138 0.377186i \(-0.123108\pi\)
\(812\) 72.4807i 0.0892620i
\(813\) −31.7873 −0.0390988
\(814\) −602.867 + 382.437i −0.740622 + 0.469824i
\(815\) 0 0
\(816\) 10.0222i 0.0122821i
\(817\) 243.068i 0.297513i
\(818\) 1014.22i 1.23988i
\(819\) 678.915 0.828956
\(820\) 0 0
\(821\) 1249.80i 1.52230i −0.648579 0.761148i \(-0.724636\pi\)
0.648579 0.761148i \(-0.275364\pi\)
\(822\) −36.2110 −0.0440523
\(823\) 899.845i 1.09337i −0.837338 0.546686i \(-0.815889\pi\)
0.837338 0.546686i \(-0.184111\pi\)
\(824\) 365.424i 0.443476i
\(825\) 0 0
\(826\) −343.458 −0.415808
\(827\) 1331.57 1.61012 0.805060 0.593193i \(-0.202133\pi\)
0.805060 + 0.593193i \(0.202133\pi\)
\(828\) 492.691i 0.595037i
\(829\) 578.195 0.697461 0.348730 0.937223i \(-0.386613\pi\)
0.348730 + 0.937223i \(0.386613\pi\)
\(830\) 0 0
\(831\) 2.59740i 0.00312563i
\(832\) 985.896 1.18497
\(833\) −487.694 −0.585467
\(834\) −0.850251 −0.00101949
\(835\) 0 0
\(836\) −621.750 + 394.416i −0.743720 + 0.471789i
\(837\) 54.2883i 0.0648606i
\(838\) 608.310 0.725907
\(839\) −779.704 −0.929325 −0.464663 0.885488i \(-0.653824\pi\)
−0.464663 + 0.885488i \(0.653824\pi\)
\(840\) 0 0
\(841\) 768.412 0.913689
\(842\) 787.999 0.935866
\(843\) 20.9505 0.0248523
\(844\) 593.026i 0.702638i
\(845\) 0 0
\(846\) 197.523i 0.233478i
\(847\) −235.143 + 499.234i −0.277619 + 0.589414i
\(848\) 167.704i 0.197764i
\(849\) 42.0680i 0.0495500i
\(850\) 0 0
\(851\) −1305.59 −1.53419
\(852\) 1.71026i 0.00200734i
\(853\) 1330.04 1.55925 0.779623 0.626250i \(-0.215411\pi\)
0.779623 + 0.626250i \(0.215411\pi\)
\(854\) 154.515i 0.180931i
\(855\) 0 0
\(856\) 1123.45 1.31244
\(857\) 223.662 0.260983 0.130491 0.991449i \(-0.458345\pi\)
0.130491 + 0.991449i \(0.458345\pi\)
\(858\) 25.7517 16.3359i 0.0300136 0.0190396i
\(859\) 1512.14 1.76035 0.880174 0.474651i \(-0.157426\pi\)
0.880174 + 0.474651i \(0.157426\pi\)
\(860\) 0 0
\(861\) −27.2842 −0.0316889
\(862\) 501.857i 0.582200i
\(863\) 815.242i 0.944661i 0.881422 + 0.472330i \(0.156587\pi\)
−0.881422 + 0.472330i \(0.843413\pi\)
\(864\) 55.3993i 0.0641196i
\(865\) 0 0
\(866\) 26.3503i 0.0304276i
\(867\) 1.15441i 0.00133150i
\(868\) 224.146 0.258233
\(869\) −483.160 + 306.500i −0.555996 + 0.352704i
\(870\) 0 0
\(871\) 1882.85i 2.16171i
\(872\) 467.211i 0.535793i
\(873\) 197.979i 0.226780i
\(874\) 1540.86 1.76299
\(875\) 0 0
\(876\) 6.95207i 0.00793615i
\(877\) −138.555 −0.157987 −0.0789935 0.996875i \(-0.525171\pi\)
−0.0789935 + 0.996875i \(0.525171\pi\)
\(878\) 1013.73i 1.15459i
\(879\) 1.18197i 0.00134467i
\(880\) 0 0
\(881\) 415.019 0.471077 0.235538 0.971865i \(-0.424315\pi\)
0.235538 + 0.971865i \(0.424315\pi\)
\(882\) −370.277 −0.419815
\(883\) 285.257i 0.323055i 0.986868 + 0.161527i \(0.0516420\pi\)
−0.986868 + 0.161527i \(0.948358\pi\)
\(884\) −534.361 −0.604480
\(885\) 0 0
\(886\) 524.972i 0.592519i
\(887\) 405.942 0.457657 0.228829 0.973467i \(-0.426510\pi\)
0.228829 + 0.973467i \(0.426510\pi\)
\(888\) −43.6086 −0.0491088
\(889\) −518.840 −0.583622
\(890\) 0 0
\(891\) 475.198 + 749.093i 0.533331 + 0.840733i
\(892\) 545.886i 0.611980i
\(893\) 539.814 0.604495
\(894\) −31.4564 −0.0351861
\(895\) 0 0
\(896\) −93.8956 −0.104794
\(897\) 55.7688 0.0621726
\(898\) 829.697 0.923939
\(899\) 224.477i 0.249697i
\(900\) 0 0
\(901\) 573.288i 0.636279i
\(902\) 708.743 449.601i 0.785746 0.498449i
\(903\) 3.53889i 0.00391903i
\(904\) 1011.08i 1.11845i
\(905\) 0 0
\(906\) −22.8861 −0.0252606
\(907\) 1577.64i 1.73940i 0.493581 + 0.869700i \(0.335688\pi\)
−0.493581 + 0.869700i \(0.664312\pi\)
\(908\) −17.8125 −0.0196173
\(909\) 1464.97i 1.61163i
\(910\) 0 0
\(911\) −574.512 −0.630639 −0.315319 0.948986i \(-0.602112\pi\)
−0.315319 + 0.948986i \(0.602112\pi\)
\(912\) 20.7955 0.0228021
\(913\) 255.553 + 402.849i 0.279905 + 0.441236i
\(914\) 1164.77 1.27436
\(915\) 0 0
\(916\) −663.905 −0.724787
\(917\) 527.207i 0.574926i
\(918\) 52.0619i 0.0567123i
\(919\) 354.240i 0.385462i 0.981252 + 0.192731i \(0.0617345\pi\)
−0.981252 + 0.192731i \(0.938266\pi\)
\(920\) 0 0
\(921\) 52.6571i 0.0571739i
\(922\) 128.446i 0.139313i
\(923\) 132.577 0.143637
\(924\) −9.05222 + 5.74240i −0.00979677 + 0.00621472i
\(925\) 0 0
\(926\) 74.4082i 0.0803544i
\(927\) 383.221i 0.413399i
\(928\) 229.071i 0.246844i
\(929\) 230.873 0.248518 0.124259 0.992250i \(-0.460345\pi\)
0.124259 + 0.992250i \(0.460345\pi\)
\(930\) 0 0
\(931\) 1011.94i 1.08694i
\(932\) −505.442 −0.542319
\(933\) 11.5850i 0.0124169i
\(934\) 676.555i 0.724363i
\(935\) 0 0
\(936\) −1275.69 −1.36292
\(937\) −414.814 −0.442704 −0.221352 0.975194i \(-0.571047\pi\)
−0.221352 + 0.975194i \(0.571047\pi\)
\(938\) 757.400i 0.807463i
\(939\) −33.0786 −0.0352275
\(940\) 0 0
\(941\) 1428.08i 1.51762i −0.651315 0.758808i \(-0.725782\pi\)
0.651315 0.758808i \(-0.274218\pi\)
\(942\) 42.8558 0.0454945
\(943\) 1534.88 1.62766
\(944\) 260.763 0.276232
\(945\) 0 0
\(946\) −58.3155 91.9275i −0.0616443 0.0971749i
\(947\) 976.020i 1.03064i 0.856997 + 0.515322i \(0.172328\pi\)
−0.856997 + 0.515322i \(0.827672\pi\)
\(948\) −11.1150 −0.0117247
\(949\) −538.914 −0.567876
\(950\) 0 0
\(951\) 27.8285 0.0292624
\(952\) −675.890 −0.709968
\(953\) −1273.90 −1.33673 −0.668364 0.743834i \(-0.733005\pi\)
−0.668364 + 0.743834i \(0.733005\pi\)
\(954\) 435.263i 0.456250i
\(955\) 0 0
\(956\) 147.620i 0.154414i
\(957\) 5.75089 + 9.06559i 0.00600929 + 0.00947293i
\(958\) 266.178i 0.277848i
\(959\) 986.723i 1.02891i
\(960\) 0 0
\(961\) −266.806 −0.277634
\(962\) 1075.09i 1.11756i
\(963\) −1178.16 −1.22343
\(964\) 273.402i 0.283612i
\(965\) 0 0
\(966\) 22.4337 0.0232233
\(967\) 1586.32 1.64045 0.820227 0.572038i \(-0.193847\pi\)
0.820227 + 0.572038i \(0.193847\pi\)
\(968\) 441.837 938.066i 0.456443 0.969077i
\(969\) −71.0887 −0.0733629
\(970\) 0 0
\(971\) 662.523 0.682310 0.341155 0.940007i \(-0.389182\pi\)
0.341155 + 0.940007i \(0.389182\pi\)
\(972\) 51.8245i 0.0533174i
\(973\) 23.1687i 0.0238116i
\(974\) 535.924i 0.550230i
\(975\) 0 0
\(976\) 117.312i 0.120197i
\(977\) 1552.47i 1.58902i −0.607254 0.794508i \(-0.707729\pi\)
0.607254 0.794508i \(-0.292271\pi\)
\(978\) 4.20713 0.00430177
\(979\) −434.876 685.531i −0.444204 0.700236i
\(980\) 0 0
\(981\) 489.965i 0.499455i
\(982\) 61.3901i 0.0625154i
\(983\) 862.208i 0.877119i −0.898702 0.438560i \(-0.855489\pi\)
0.898702 0.438560i \(-0.144511\pi\)
\(984\) 51.2673 0.0521009
\(985\) 0 0
\(986\) 215.271i 0.218328i
\(987\) 7.85930 0.00796281
\(988\) 1108.77i 1.12224i
\(989\) 199.082i 0.201296i
\(990\) 0 0
\(991\) −1075.74 −1.08551 −0.542755 0.839891i \(-0.682619\pi\)
−0.542755 + 0.839891i \(0.682619\pi\)
\(992\) −708.401 −0.714113
\(993\) 27.6528i 0.0278477i
\(994\) 53.3306 0.0536526
\(995\) 0 0
\(996\) 9.26749i 0.00930470i
\(997\) 872.880 0.875507 0.437753 0.899095i \(-0.355774\pi\)
0.437753 + 0.899095i \(0.355774\pi\)
\(998\) 335.985 0.336658
\(999\) 91.5317 0.0916233
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.c.274.9 16
5.2 odd 4 275.3.c.f.76.5 8
5.3 odd 4 55.3.c.a.21.4 8
5.4 even 2 inner 275.3.d.c.274.8 16
11.10 odd 2 inner 275.3.d.c.274.7 16
15.8 even 4 495.3.b.a.406.5 8
20.3 even 4 880.3.j.a.241.6 8
55.32 even 4 275.3.c.f.76.4 8
55.43 even 4 55.3.c.a.21.5 yes 8
55.54 odd 2 inner 275.3.d.c.274.10 16
165.98 odd 4 495.3.b.a.406.4 8
220.43 odd 4 880.3.j.a.241.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.4 8 5.3 odd 4
55.3.c.a.21.5 yes 8 55.43 even 4
275.3.c.f.76.4 8 55.32 even 4
275.3.c.f.76.5 8 5.2 odd 4
275.3.d.c.274.7 16 11.10 odd 2 inner
275.3.d.c.274.8 16 5.4 even 2 inner
275.3.d.c.274.9 16 1.1 even 1 trivial
275.3.d.c.274.10 16 55.54 odd 2 inner
495.3.b.a.406.4 8 165.98 odd 4
495.3.b.a.406.5 8 15.8 even 4
880.3.j.a.241.5 8 220.43 odd 4
880.3.j.a.241.6 8 20.3 even 4