Properties

Label 275.3.x.c
Level $275$
Weight $3$
Character orbit 275.x
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,3,Mod(51,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.51");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10} + 1) q^{2} + (2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} + \cdots - 2) q^{3} + (\zeta_{10}^{2} - 2 \zeta_{10} + 1) q^{4} + (6 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + \cdots - 4) q^{6} + ( - 10 \zeta_{10}^{3} + 6 \zeta_{10}^{2} + \cdots + 4) q^{7}+ \cdots + (66 \zeta_{10}^{3} - 33 \zeta_{10}^{2} + \cdots - 132) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 10 q^{3} + q^{4} - 10 q^{6} - 5 q^{7} + 5 q^{8} - 11 q^{9} + q^{11} - 20 q^{12} + 30 q^{13} + 20 q^{14} - 11 q^{16} + 35 q^{17} - 50 q^{19} - 15 q^{22} - 50 q^{23} + 30 q^{24} + 65 q^{26}+ \cdots - 319 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(\zeta_{10}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
−0.309017 0.951057i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i
0.690983 0.951057i −1.38197 + 4.25325i 0.809017 + 2.48990i 0 3.09017 + 4.25325i −7.39919 + 2.40414i 7.39919 + 2.40414i −8.89919 6.46564i 0
101.1 1.80902 + 0.587785i −3.61803 + 2.62866i −0.309017 0.224514i 0 −8.09017 + 2.62866i 4.89919 6.74315i −4.89919 6.74315i 3.39919 10.4616i 0
151.1 0.690983 + 0.951057i −1.38197 4.25325i 0.809017 2.48990i 0 3.09017 4.25325i −7.39919 2.40414i 7.39919 2.40414i −8.89919 + 6.46564i 0
226.1 1.80902 0.587785i −3.61803 2.62866i −0.309017 + 0.224514i 0 −8.09017 2.62866i 4.89919 + 6.74315i −4.89919 + 6.74315i 3.39919 + 10.4616i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.d odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.3.x.c yes 4
5.b even 2 1 275.3.x.b 4
5.c odd 4 2 275.3.q.b 8
11.d odd 10 1 inner 275.3.x.c yes 4
55.h odd 10 1 275.3.x.b 4
55.l even 20 2 275.3.q.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
275.3.q.b 8 5.c odd 4 2
275.3.q.b 8 55.l even 20 2
275.3.x.b 4 5.b even 2 1
275.3.x.b 4 55.h odd 10 1
275.3.x.c yes 4 1.a even 1 1 trivial
275.3.x.c yes 4 11.d odd 10 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(275, [\chi])\):

\( T_{2}^{4} - 5T_{2}^{3} + 10T_{2}^{2} - 10T_{2} + 5 \) Copy content Toggle raw display
\( T_{3}^{4} + 10T_{3}^{3} + 60T_{3}^{2} + 200T_{3} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$3$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 5 T^{3} + \cdots + 4205 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{4} - 30 T^{3} + \cdots + 15125 \) Copy content Toggle raw display
$17$ \( T^{4} - 35 T^{3} + \cdots + 12005 \) Copy content Toggle raw display
$19$ \( T^{4} + 50 T^{3} + \cdots + 67280 \) Copy content Toggle raw display
$23$ \( (T^{2} + 25 T - 205)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 60 T^{3} + \cdots + 17405 \) Copy content Toggle raw display
$31$ \( T^{4} + 43 T^{3} + \cdots + 1560001 \) Copy content Toggle raw display
$37$ \( T^{4} + 30 T^{3} + \cdots + 9954025 \) Copy content Toggle raw display
$41$ \( T^{4} - 95 T^{3} + \cdots + 3880805 \) Copy content Toggle raw display
$43$ \( T^{4} + 6130 T^{2} + 7925405 \) Copy content Toggle raw display
$47$ \( T^{4} - 35 T^{3} + \cdots + 42025 \) Copy content Toggle raw display
$53$ \( T^{4} - 10 T^{3} + \cdots + 9610000 \) Copy content Toggle raw display
$59$ \( T^{4} - 33 T^{3} + \cdots + 7921 \) Copy content Toggle raw display
$61$ \( T^{4} - 85 T^{3} + \cdots + 8179205 \) Copy content Toggle raw display
$67$ \( (T^{2} - 170 T + 7145)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 137 T^{3} + \cdots + 22005481 \) Copy content Toggle raw display
$73$ \( T^{4} + 110 T^{3} + \cdots + 3519605 \) Copy content Toggle raw display
$79$ \( T^{4} - 70 T^{3} + \cdots + 41789405 \) Copy content Toggle raw display
$83$ \( T^{4} + 115 T^{3} + \cdots + 4041005 \) Copy content Toggle raw display
$89$ \( (T^{2} + 159 T + 5659)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 155 T^{3} + \cdots + 29757025 \) Copy content Toggle raw display
show more
show less