Properties

Label 275.4.a.i.1.4
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 24x^{3} + 31x^{2} + 108x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.68861\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68861 q^{2} -5.92895 q^{3} -0.771363 q^{4} -15.9407 q^{6} +13.6511 q^{7} -23.5828 q^{8} +8.15246 q^{9} +11.0000 q^{11} +4.57337 q^{12} -5.37969 q^{13} +36.7026 q^{14} -57.2341 q^{16} +85.3345 q^{17} +21.9188 q^{18} +51.6873 q^{19} -80.9370 q^{21} +29.5747 q^{22} +163.144 q^{23} +139.821 q^{24} -14.4639 q^{26} +111.746 q^{27} -10.5300 q^{28} +16.5882 q^{29} +35.6828 q^{31} +34.7821 q^{32} -65.2185 q^{33} +229.431 q^{34} -6.28851 q^{36} +55.5336 q^{37} +138.967 q^{38} +31.8959 q^{39} +71.0253 q^{41} -217.608 q^{42} +296.317 q^{43} -8.48499 q^{44} +438.632 q^{46} -190.018 q^{47} +339.338 q^{48} -156.646 q^{49} -505.944 q^{51} +4.14969 q^{52} +623.984 q^{53} +300.442 q^{54} -321.932 q^{56} -306.451 q^{57} +44.5994 q^{58} -468.122 q^{59} -181.218 q^{61} +95.9373 q^{62} +111.290 q^{63} +551.388 q^{64} -175.347 q^{66} +682.370 q^{67} -65.8239 q^{68} -967.275 q^{69} -579.969 q^{71} -192.258 q^{72} +190.416 q^{73} +149.308 q^{74} -39.8696 q^{76} +150.163 q^{77} +85.7558 q^{78} -718.663 q^{79} -882.654 q^{81} +190.960 q^{82} -1503.91 q^{83} +62.4318 q^{84} +796.681 q^{86} -98.3509 q^{87} -259.411 q^{88} +756.827 q^{89} -73.4390 q^{91} -125.843 q^{92} -211.562 q^{93} -510.885 q^{94} -206.221 q^{96} +707.394 q^{97} -421.161 q^{98} +89.6771 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 12 q^{3} + 12 q^{4} + 8 q^{6} + 24 q^{7} + 27 q^{8} + 31 q^{9} + 55 q^{11} + 3 q^{12} + 111 q^{13} + 47 q^{14} - 56 q^{16} + 40 q^{17} + 217 q^{18} + 205 q^{19} - 94 q^{21} + 22 q^{22} + 287 q^{23}+ \cdots + 341 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68861 0.950568 0.475284 0.879832i \(-0.342345\pi\)
0.475284 + 0.879832i \(0.342345\pi\)
\(3\) −5.92895 −1.14103 −0.570514 0.821288i \(-0.693256\pi\)
−0.570514 + 0.821288i \(0.693256\pi\)
\(4\) −0.771363 −0.0964203
\(5\) 0 0
\(6\) −15.9407 −1.08462
\(7\) 13.6511 0.737092 0.368546 0.929609i \(-0.379856\pi\)
0.368546 + 0.929609i \(0.379856\pi\)
\(8\) −23.5828 −1.04222
\(9\) 8.15246 0.301943
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 4.57337 0.110018
\(13\) −5.37969 −0.114774 −0.0573869 0.998352i \(-0.518277\pi\)
−0.0573869 + 0.998352i \(0.518277\pi\)
\(14\) 36.7026 0.700657
\(15\) 0 0
\(16\) −57.2341 −0.894283
\(17\) 85.3345 1.21745 0.608725 0.793381i \(-0.291681\pi\)
0.608725 + 0.793381i \(0.291681\pi\)
\(18\) 21.9188 0.287017
\(19\) 51.6873 0.624099 0.312049 0.950066i \(-0.398985\pi\)
0.312049 + 0.950066i \(0.398985\pi\)
\(20\) 0 0
\(21\) −80.9370 −0.841043
\(22\) 29.5747 0.286607
\(23\) 163.144 1.47904 0.739520 0.673134i \(-0.235052\pi\)
0.739520 + 0.673134i \(0.235052\pi\)
\(24\) 139.821 1.18920
\(25\) 0 0
\(26\) −14.4639 −0.109100
\(27\) 111.746 0.796502
\(28\) −10.5300 −0.0710707
\(29\) 16.5882 0.106219 0.0531097 0.998589i \(-0.483087\pi\)
0.0531097 + 0.998589i \(0.483087\pi\)
\(30\) 0 0
\(31\) 35.6828 0.206736 0.103368 0.994643i \(-0.467038\pi\)
0.103368 + 0.994643i \(0.467038\pi\)
\(32\) 34.7821 0.192146
\(33\) −65.2185 −0.344033
\(34\) 229.431 1.15727
\(35\) 0 0
\(36\) −6.28851 −0.0291135
\(37\) 55.5336 0.246748 0.123374 0.992360i \(-0.460629\pi\)
0.123374 + 0.992360i \(0.460629\pi\)
\(38\) 138.967 0.593248
\(39\) 31.8959 0.130960
\(40\) 0 0
\(41\) 71.0253 0.270544 0.135272 0.990809i \(-0.456809\pi\)
0.135272 + 0.990809i \(0.456809\pi\)
\(42\) −217.608 −0.799468
\(43\) 296.317 1.05088 0.525440 0.850831i \(-0.323901\pi\)
0.525440 + 0.850831i \(0.323901\pi\)
\(44\) −8.48499 −0.0290718
\(45\) 0 0
\(46\) 438.632 1.40593
\(47\) −190.018 −0.589723 −0.294862 0.955540i \(-0.595274\pi\)
−0.294862 + 0.955540i \(0.595274\pi\)
\(48\) 339.338 1.02040
\(49\) −156.646 −0.456695
\(50\) 0 0
\(51\) −505.944 −1.38914
\(52\) 4.14969 0.0110665
\(53\) 623.984 1.61719 0.808593 0.588369i \(-0.200230\pi\)
0.808593 + 0.588369i \(0.200230\pi\)
\(54\) 300.442 0.757129
\(55\) 0 0
\(56\) −321.932 −0.768214
\(57\) −306.451 −0.712113
\(58\) 44.5994 0.100969
\(59\) −468.122 −1.03295 −0.516477 0.856301i \(-0.672757\pi\)
−0.516477 + 0.856301i \(0.672757\pi\)
\(60\) 0 0
\(61\) −181.218 −0.380371 −0.190186 0.981748i \(-0.560909\pi\)
−0.190186 + 0.981748i \(0.560909\pi\)
\(62\) 95.9373 0.196517
\(63\) 111.290 0.222560
\(64\) 551.388 1.07693
\(65\) 0 0
\(66\) −175.347 −0.327026
\(67\) 682.370 1.24425 0.622125 0.782918i \(-0.286270\pi\)
0.622125 + 0.782918i \(0.286270\pi\)
\(68\) −65.8239 −0.117387
\(69\) −967.275 −1.68763
\(70\) 0 0
\(71\) −579.969 −0.969432 −0.484716 0.874672i \(-0.661077\pi\)
−0.484716 + 0.874672i \(0.661077\pi\)
\(72\) −192.258 −0.314692
\(73\) 190.416 0.305295 0.152648 0.988281i \(-0.451220\pi\)
0.152648 + 0.988281i \(0.451220\pi\)
\(74\) 149.308 0.234551
\(75\) 0 0
\(76\) −39.8696 −0.0601758
\(77\) 150.163 0.222242
\(78\) 85.7558 0.124486
\(79\) −718.663 −1.02349 −0.511746 0.859137i \(-0.671001\pi\)
−0.511746 + 0.859137i \(0.671001\pi\)
\(80\) 0 0
\(81\) −882.654 −1.21077
\(82\) 190.960 0.257170
\(83\) −1503.91 −1.98886 −0.994428 0.105415i \(-0.966383\pi\)
−0.994428 + 0.105415i \(0.966383\pi\)
\(84\) 62.4318 0.0810936
\(85\) 0 0
\(86\) 796.681 0.998933
\(87\) −98.3509 −0.121199
\(88\) −259.411 −0.314242
\(89\) 756.827 0.901387 0.450694 0.892679i \(-0.351177\pi\)
0.450694 + 0.892679i \(0.351177\pi\)
\(90\) 0 0
\(91\) −73.4390 −0.0845988
\(92\) −125.843 −0.142610
\(93\) −211.562 −0.235892
\(94\) −510.885 −0.560572
\(95\) 0 0
\(96\) −206.221 −0.219243
\(97\) 707.394 0.740464 0.370232 0.928939i \(-0.379278\pi\)
0.370232 + 0.928939i \(0.379278\pi\)
\(98\) −421.161 −0.434119
\(99\) 89.6771 0.0910393
\(100\) 0 0
\(101\) 2001.84 1.97219 0.986094 0.166190i \(-0.0531464\pi\)
0.986094 + 0.166190i \(0.0531464\pi\)
\(102\) −1360.29 −1.32048
\(103\) −1107.75 −1.05971 −0.529853 0.848089i \(-0.677753\pi\)
−0.529853 + 0.848089i \(0.677753\pi\)
\(104\) 126.868 0.119620
\(105\) 0 0
\(106\) 1677.65 1.53724
\(107\) 59.1852 0.0534734 0.0267367 0.999643i \(-0.491488\pi\)
0.0267367 + 0.999643i \(0.491488\pi\)
\(108\) −86.1968 −0.0767990
\(109\) −466.505 −0.409937 −0.204968 0.978769i \(-0.565709\pi\)
−0.204968 + 0.978769i \(0.565709\pi\)
\(110\) 0 0
\(111\) −329.256 −0.281546
\(112\) −781.311 −0.659169
\(113\) 82.6677 0.0688205 0.0344103 0.999408i \(-0.489045\pi\)
0.0344103 + 0.999408i \(0.489045\pi\)
\(114\) −823.929 −0.676912
\(115\) 0 0
\(116\) −12.7956 −0.0102417
\(117\) −43.8578 −0.0346551
\(118\) −1258.60 −0.981893
\(119\) 1164.91 0.897374
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −487.226 −0.361569
\(123\) −421.106 −0.308698
\(124\) −27.5244 −0.0199336
\(125\) 0 0
\(126\) 299.217 0.211558
\(127\) 2761.92 1.92977 0.964883 0.262679i \(-0.0846060\pi\)
0.964883 + 0.262679i \(0.0846060\pi\)
\(128\) 1204.21 0.831550
\(129\) −1756.85 −1.19908
\(130\) 0 0
\(131\) 2472.38 1.64895 0.824475 0.565898i \(-0.191471\pi\)
0.824475 + 0.565898i \(0.191471\pi\)
\(132\) 50.3071 0.0331717
\(133\) 705.590 0.460018
\(134\) 1834.63 1.18274
\(135\) 0 0
\(136\) −2012.43 −1.26885
\(137\) −1282.29 −0.799663 −0.399831 0.916589i \(-0.630931\pi\)
−0.399831 + 0.916589i \(0.630931\pi\)
\(138\) −2600.63 −1.60420
\(139\) 2128.82 1.29902 0.649510 0.760353i \(-0.274974\pi\)
0.649510 + 0.760353i \(0.274974\pi\)
\(140\) 0 0
\(141\) 1126.61 0.672891
\(142\) −1559.31 −0.921511
\(143\) −59.1766 −0.0346056
\(144\) −466.599 −0.270023
\(145\) 0 0
\(146\) 511.956 0.290204
\(147\) 928.748 0.521101
\(148\) −42.8365 −0.0237915
\(149\) 1955.28 1.07505 0.537526 0.843247i \(-0.319359\pi\)
0.537526 + 0.843247i \(0.319359\pi\)
\(150\) 0 0
\(151\) 1381.37 0.744465 0.372233 0.928139i \(-0.378592\pi\)
0.372233 + 0.928139i \(0.378592\pi\)
\(152\) −1218.93 −0.650449
\(153\) 695.687 0.367601
\(154\) 403.729 0.211256
\(155\) 0 0
\(156\) −24.6033 −0.0126272
\(157\) 1039.78 0.528556 0.264278 0.964447i \(-0.414866\pi\)
0.264278 + 0.964447i \(0.414866\pi\)
\(158\) −1932.21 −0.972899
\(159\) −3699.57 −1.84525
\(160\) 0 0
\(161\) 2227.11 1.09019
\(162\) −2373.11 −1.15092
\(163\) −3323.13 −1.59686 −0.798429 0.602088i \(-0.794335\pi\)
−0.798429 + 0.602088i \(0.794335\pi\)
\(164\) −54.7863 −0.0260859
\(165\) 0 0
\(166\) −4043.42 −1.89054
\(167\) −94.5679 −0.0438196 −0.0219098 0.999760i \(-0.506975\pi\)
−0.0219098 + 0.999760i \(0.506975\pi\)
\(168\) 1908.72 0.876553
\(169\) −2168.06 −0.986827
\(170\) 0 0
\(171\) 421.379 0.188442
\(172\) −228.568 −0.101326
\(173\) 2167.07 0.952368 0.476184 0.879346i \(-0.342020\pi\)
0.476184 + 0.879346i \(0.342020\pi\)
\(174\) −264.427 −0.115208
\(175\) 0 0
\(176\) −629.575 −0.269636
\(177\) 2775.47 1.17863
\(178\) 2034.81 0.856830
\(179\) −947.375 −0.395587 −0.197794 0.980244i \(-0.563378\pi\)
−0.197794 + 0.980244i \(0.563378\pi\)
\(180\) 0 0
\(181\) 1927.25 0.791443 0.395722 0.918371i \(-0.370495\pi\)
0.395722 + 0.918371i \(0.370495\pi\)
\(182\) −197.449 −0.0804170
\(183\) 1074.44 0.434014
\(184\) −3847.40 −1.54149
\(185\) 0 0
\(186\) −568.808 −0.224231
\(187\) 938.680 0.367075
\(188\) 146.573 0.0568613
\(189\) 1525.46 0.587096
\(190\) 0 0
\(191\) −3448.79 −1.30652 −0.653260 0.757133i \(-0.726599\pi\)
−0.653260 + 0.757133i \(0.726599\pi\)
\(192\) −3269.15 −1.22881
\(193\) −3292.91 −1.22813 −0.614064 0.789256i \(-0.710466\pi\)
−0.614064 + 0.789256i \(0.710466\pi\)
\(194\) 1901.91 0.703861
\(195\) 0 0
\(196\) 120.831 0.0440347
\(197\) −2583.89 −0.934489 −0.467244 0.884128i \(-0.654753\pi\)
−0.467244 + 0.884128i \(0.654753\pi\)
\(198\) 241.107 0.0865390
\(199\) −3701.37 −1.31851 −0.659254 0.751921i \(-0.729128\pi\)
−0.659254 + 0.751921i \(0.729128\pi\)
\(200\) 0 0
\(201\) −4045.74 −1.41972
\(202\) 5382.18 1.87470
\(203\) 226.449 0.0782935
\(204\) 390.266 0.133942
\(205\) 0 0
\(206\) −2978.31 −1.00732
\(207\) 1330.03 0.446586
\(208\) 307.902 0.102640
\(209\) 568.560 0.188173
\(210\) 0 0
\(211\) −2345.86 −0.765382 −0.382691 0.923876i \(-0.625003\pi\)
−0.382691 + 0.923876i \(0.625003\pi\)
\(212\) −481.318 −0.155930
\(213\) 3438.61 1.10615
\(214\) 159.126 0.0508301
\(215\) 0 0
\(216\) −2635.29 −0.830132
\(217\) 487.111 0.152384
\(218\) −1254.25 −0.389673
\(219\) −1128.97 −0.348350
\(220\) 0 0
\(221\) −459.073 −0.139731
\(222\) −885.242 −0.267629
\(223\) 6393.37 1.91987 0.959937 0.280216i \(-0.0904061\pi\)
0.959937 + 0.280216i \(0.0904061\pi\)
\(224\) 474.815 0.141629
\(225\) 0 0
\(226\) 222.261 0.0654186
\(227\) 1060.41 0.310051 0.155026 0.987910i \(-0.450454\pi\)
0.155026 + 0.987910i \(0.450454\pi\)
\(228\) 236.385 0.0686622
\(229\) 6219.64 1.79478 0.897392 0.441234i \(-0.145459\pi\)
0.897392 + 0.441234i \(0.145459\pi\)
\(230\) 0 0
\(231\) −890.307 −0.253584
\(232\) −391.197 −0.110704
\(233\) 5816.62 1.63545 0.817724 0.575610i \(-0.195235\pi\)
0.817724 + 0.575610i \(0.195235\pi\)
\(234\) −117.917 −0.0329421
\(235\) 0 0
\(236\) 361.092 0.0995977
\(237\) 4260.92 1.16783
\(238\) 3132.00 0.853015
\(239\) −1682.36 −0.455326 −0.227663 0.973740i \(-0.573109\pi\)
−0.227663 + 0.973740i \(0.573109\pi\)
\(240\) 0 0
\(241\) 4905.91 1.31128 0.655638 0.755076i \(-0.272400\pi\)
0.655638 + 0.755076i \(0.272400\pi\)
\(242\) 325.322 0.0864153
\(243\) 2216.07 0.585024
\(244\) 139.785 0.0366755
\(245\) 0 0
\(246\) −1132.19 −0.293438
\(247\) −278.062 −0.0716301
\(248\) −841.501 −0.215465
\(249\) 8916.58 2.26934
\(250\) 0 0
\(251\) 5120.12 1.28757 0.643784 0.765208i \(-0.277364\pi\)
0.643784 + 0.765208i \(0.277364\pi\)
\(252\) −85.8453 −0.0214593
\(253\) 1794.59 0.445948
\(254\) 7425.72 1.83437
\(255\) 0 0
\(256\) −1173.44 −0.286485
\(257\) −6898.84 −1.67447 −0.837233 0.546846i \(-0.815828\pi\)
−0.837233 + 0.546846i \(0.815828\pi\)
\(258\) −4723.48 −1.13981
\(259\) 758.097 0.181876
\(260\) 0 0
\(261\) 135.235 0.0320722
\(262\) 6647.26 1.56744
\(263\) −4931.25 −1.15617 −0.578087 0.815975i \(-0.696201\pi\)
−0.578087 + 0.815975i \(0.696201\pi\)
\(264\) 1538.03 0.358558
\(265\) 0 0
\(266\) 1897.06 0.437279
\(267\) −4487.19 −1.02851
\(268\) −526.355 −0.119971
\(269\) −5426.92 −1.23006 −0.615028 0.788505i \(-0.710855\pi\)
−0.615028 + 0.788505i \(0.710855\pi\)
\(270\) 0 0
\(271\) 1514.61 0.339507 0.169753 0.985487i \(-0.445703\pi\)
0.169753 + 0.985487i \(0.445703\pi\)
\(272\) −4884.04 −1.08875
\(273\) 435.416 0.0965296
\(274\) −3447.59 −0.760134
\(275\) 0 0
\(276\) 746.120 0.162721
\(277\) 2872.72 0.623123 0.311562 0.950226i \(-0.399148\pi\)
0.311562 + 0.950226i \(0.399148\pi\)
\(278\) 5723.56 1.23481
\(279\) 290.903 0.0624226
\(280\) 0 0
\(281\) 3442.02 0.730724 0.365362 0.930866i \(-0.380945\pi\)
0.365362 + 0.930866i \(0.380945\pi\)
\(282\) 3029.01 0.639628
\(283\) 332.109 0.0697592 0.0348796 0.999392i \(-0.488895\pi\)
0.0348796 + 0.999392i \(0.488895\pi\)
\(284\) 447.367 0.0934730
\(285\) 0 0
\(286\) −159.103 −0.0328950
\(287\) 969.577 0.199416
\(288\) 283.559 0.0580170
\(289\) 2368.98 0.482186
\(290\) 0 0
\(291\) −4194.11 −0.844890
\(292\) −146.880 −0.0294367
\(293\) 2263.84 0.451381 0.225691 0.974199i \(-0.427536\pi\)
0.225691 + 0.974199i \(0.427536\pi\)
\(294\) 2497.04 0.495342
\(295\) 0 0
\(296\) −1309.64 −0.257166
\(297\) 1229.21 0.240154
\(298\) 5256.99 1.02191
\(299\) −877.666 −0.169755
\(300\) 0 0
\(301\) 4045.06 0.774596
\(302\) 3713.97 0.707665
\(303\) −11868.8 −2.25032
\(304\) −2958.27 −0.558121
\(305\) 0 0
\(306\) 1870.43 0.349430
\(307\) 1041.17 0.193560 0.0967800 0.995306i \(-0.469146\pi\)
0.0967800 + 0.995306i \(0.469146\pi\)
\(308\) −115.830 −0.0214286
\(309\) 6567.79 1.20915
\(310\) 0 0
\(311\) −6108.88 −1.11384 −0.556918 0.830567i \(-0.688016\pi\)
−0.556918 + 0.830567i \(0.688016\pi\)
\(312\) −752.195 −0.136489
\(313\) 2245.58 0.405519 0.202759 0.979229i \(-0.435009\pi\)
0.202759 + 0.979229i \(0.435009\pi\)
\(314\) 2795.56 0.502428
\(315\) 0 0
\(316\) 554.350 0.0986854
\(317\) −6799.45 −1.20472 −0.602359 0.798226i \(-0.705772\pi\)
−0.602359 + 0.798226i \(0.705772\pi\)
\(318\) −9946.72 −1.75404
\(319\) 182.471 0.0320263
\(320\) 0 0
\(321\) −350.906 −0.0610146
\(322\) 5987.83 1.03630
\(323\) 4410.71 0.759809
\(324\) 680.846 0.116743
\(325\) 0 0
\(326\) −8934.62 −1.51792
\(327\) 2765.89 0.467749
\(328\) −1674.98 −0.281967
\(329\) −2593.97 −0.434681
\(330\) 0 0
\(331\) −1415.47 −0.235048 −0.117524 0.993070i \(-0.537496\pi\)
−0.117524 + 0.993070i \(0.537496\pi\)
\(332\) 1160.06 0.191766
\(333\) 452.736 0.0745038
\(334\) −254.256 −0.0416536
\(335\) 0 0
\(336\) 4632.35 0.752130
\(337\) 7875.33 1.27299 0.636493 0.771282i \(-0.280384\pi\)
0.636493 + 0.771282i \(0.280384\pi\)
\(338\) −5829.07 −0.938046
\(339\) −490.133 −0.0785261
\(340\) 0 0
\(341\) 392.511 0.0623333
\(342\) 1132.92 0.179127
\(343\) −6820.74 −1.07372
\(344\) −6987.97 −1.09525
\(345\) 0 0
\(346\) 5826.42 0.905290
\(347\) −8168.93 −1.26378 −0.631890 0.775058i \(-0.717720\pi\)
−0.631890 + 0.775058i \(0.717720\pi\)
\(348\) 75.8642 0.0116861
\(349\) −7172.19 −1.10005 −0.550026 0.835147i \(-0.685382\pi\)
−0.550026 + 0.835147i \(0.685382\pi\)
\(350\) 0 0
\(351\) −601.160 −0.0914175
\(352\) 382.603 0.0579340
\(353\) 9429.78 1.42180 0.710901 0.703292i \(-0.248287\pi\)
0.710901 + 0.703292i \(0.248287\pi\)
\(354\) 7462.17 1.12037
\(355\) 0 0
\(356\) −583.788 −0.0869121
\(357\) −6906.72 −1.02393
\(358\) −2547.12 −0.376033
\(359\) −3466.68 −0.509651 −0.254825 0.966987i \(-0.582018\pi\)
−0.254825 + 0.966987i \(0.582018\pi\)
\(360\) 0 0
\(361\) −4187.43 −0.610501
\(362\) 5181.62 0.752321
\(363\) −717.403 −0.103730
\(364\) 56.6481 0.00815705
\(365\) 0 0
\(366\) 2888.74 0.412560
\(367\) −6298.17 −0.895808 −0.447904 0.894082i \(-0.647829\pi\)
−0.447904 + 0.894082i \(0.647829\pi\)
\(368\) −9337.42 −1.32268
\(369\) 579.031 0.0816888
\(370\) 0 0
\(371\) 8518.10 1.19202
\(372\) 163.191 0.0227448
\(373\) 4618.79 0.641158 0.320579 0.947222i \(-0.396122\pi\)
0.320579 + 0.947222i \(0.396122\pi\)
\(374\) 2523.75 0.348930
\(375\) 0 0
\(376\) 4481.16 0.614623
\(377\) −89.2397 −0.0121912
\(378\) 4101.38 0.558074
\(379\) −14287.9 −1.93646 −0.968231 0.250058i \(-0.919550\pi\)
−0.968231 + 0.250058i \(0.919550\pi\)
\(380\) 0 0
\(381\) −16375.3 −2.20192
\(382\) −9272.45 −1.24194
\(383\) −2577.57 −0.343885 −0.171942 0.985107i \(-0.555004\pi\)
−0.171942 + 0.985107i \(0.555004\pi\)
\(384\) −7139.72 −0.948821
\(385\) 0 0
\(386\) −8853.36 −1.16742
\(387\) 2415.71 0.317306
\(388\) −545.658 −0.0713958
\(389\) −3174.47 −0.413758 −0.206879 0.978367i \(-0.566331\pi\)
−0.206879 + 0.978367i \(0.566331\pi\)
\(390\) 0 0
\(391\) 13921.8 1.80066
\(392\) 3694.16 0.475977
\(393\) −14658.6 −1.88150
\(394\) −6947.07 −0.888295
\(395\) 0 0
\(396\) −69.1736 −0.00877804
\(397\) 4445.10 0.561947 0.280974 0.959716i \(-0.409343\pi\)
0.280974 + 0.959716i \(0.409343\pi\)
\(398\) −9951.54 −1.25333
\(399\) −4183.41 −0.524893
\(400\) 0 0
\(401\) 1203.58 0.149885 0.0749424 0.997188i \(-0.476123\pi\)
0.0749424 + 0.997188i \(0.476123\pi\)
\(402\) −10877.4 −1.34954
\(403\) −191.963 −0.0237279
\(404\) −1544.15 −0.190159
\(405\) 0 0
\(406\) 608.832 0.0744233
\(407\) 610.870 0.0743973
\(408\) 11931.6 1.44780
\(409\) −12734.1 −1.53951 −0.769757 0.638337i \(-0.779623\pi\)
−0.769757 + 0.638337i \(0.779623\pi\)
\(410\) 0 0
\(411\) 7602.66 0.912437
\(412\) 854.476 0.102177
\(413\) −6390.40 −0.761382
\(414\) 3575.93 0.424511
\(415\) 0 0
\(416\) −187.117 −0.0220533
\(417\) −12621.6 −1.48222
\(418\) 1528.64 0.178871
\(419\) 9678.32 1.12844 0.564220 0.825624i \(-0.309177\pi\)
0.564220 + 0.825624i \(0.309177\pi\)
\(420\) 0 0
\(421\) 1273.39 0.147414 0.0737069 0.997280i \(-0.476517\pi\)
0.0737069 + 0.997280i \(0.476517\pi\)
\(422\) −6307.10 −0.727547
\(423\) −1549.12 −0.178063
\(424\) −14715.3 −1.68547
\(425\) 0 0
\(426\) 9245.09 1.05147
\(427\) −2473.84 −0.280369
\(428\) −45.6533 −0.00515592
\(429\) 350.855 0.0394859
\(430\) 0 0
\(431\) −14802.4 −1.65431 −0.827153 0.561977i \(-0.810041\pi\)
−0.827153 + 0.561977i \(0.810041\pi\)
\(432\) −6395.69 −0.712298
\(433\) 9511.58 1.05565 0.527826 0.849352i \(-0.323007\pi\)
0.527826 + 0.849352i \(0.323007\pi\)
\(434\) 1309.65 0.144851
\(435\) 0 0
\(436\) 359.845 0.0395262
\(437\) 8432.48 0.923067
\(438\) −3035.36 −0.331131
\(439\) 3527.72 0.383529 0.191764 0.981441i \(-0.438579\pi\)
0.191764 + 0.981441i \(0.438579\pi\)
\(440\) 0 0
\(441\) −1277.05 −0.137896
\(442\) −1234.27 −0.132824
\(443\) −15306.6 −1.64162 −0.820809 0.571203i \(-0.806477\pi\)
−0.820809 + 0.571203i \(0.806477\pi\)
\(444\) 253.976 0.0271468
\(445\) 0 0
\(446\) 17189.3 1.82497
\(447\) −11592.8 −1.22666
\(448\) 7527.08 0.793797
\(449\) −1861.35 −0.195641 −0.0978204 0.995204i \(-0.531187\pi\)
−0.0978204 + 0.995204i \(0.531187\pi\)
\(450\) 0 0
\(451\) 781.278 0.0815720
\(452\) −63.7668 −0.00663570
\(453\) −8190.07 −0.849455
\(454\) 2851.02 0.294725
\(455\) 0 0
\(456\) 7226.98 0.742180
\(457\) 6359.77 0.650979 0.325489 0.945546i \(-0.394471\pi\)
0.325489 + 0.945546i \(0.394471\pi\)
\(458\) 16722.2 1.70606
\(459\) 9535.80 0.969702
\(460\) 0 0
\(461\) −7640.04 −0.771870 −0.385935 0.922526i \(-0.626121\pi\)
−0.385935 + 0.922526i \(0.626121\pi\)
\(462\) −2393.69 −0.241049
\(463\) 17220.5 1.72852 0.864259 0.503047i \(-0.167788\pi\)
0.864259 + 0.503047i \(0.167788\pi\)
\(464\) −949.413 −0.0949901
\(465\) 0 0
\(466\) 15638.6 1.55461
\(467\) −8990.52 −0.890860 −0.445430 0.895317i \(-0.646949\pi\)
−0.445430 + 0.895317i \(0.646949\pi\)
\(468\) 33.8302 0.00334146
\(469\) 9315.13 0.917127
\(470\) 0 0
\(471\) −6164.79 −0.603097
\(472\) 11039.6 1.07657
\(473\) 3259.48 0.316852
\(474\) 11456.0 1.11010
\(475\) 0 0
\(476\) −898.571 −0.0865251
\(477\) 5087.01 0.488298
\(478\) −4523.22 −0.432819
\(479\) −8495.45 −0.810369 −0.405185 0.914235i \(-0.632793\pi\)
−0.405185 + 0.914235i \(0.632793\pi\)
\(480\) 0 0
\(481\) −298.754 −0.0283202
\(482\) 13190.1 1.24646
\(483\) −13204.4 −1.24394
\(484\) −93.3349 −0.00876549
\(485\) 0 0
\(486\) 5958.14 0.556105
\(487\) 5415.27 0.503880 0.251940 0.967743i \(-0.418932\pi\)
0.251940 + 0.967743i \(0.418932\pi\)
\(488\) 4273.64 0.396431
\(489\) 19702.7 1.82206
\(490\) 0 0
\(491\) −2645.56 −0.243162 −0.121581 0.992582i \(-0.538796\pi\)
−0.121581 + 0.992582i \(0.538796\pi\)
\(492\) 324.825 0.0297647
\(493\) 1415.55 0.129317
\(494\) −747.600 −0.0680893
\(495\) 0 0
\(496\) −2042.27 −0.184881
\(497\) −7917.24 −0.714561
\(498\) 23973.2 2.15716
\(499\) 15415.5 1.38295 0.691475 0.722400i \(-0.256961\pi\)
0.691475 + 0.722400i \(0.256961\pi\)
\(500\) 0 0
\(501\) 560.688 0.0499994
\(502\) 13766.0 1.22392
\(503\) −16932.8 −1.50099 −0.750495 0.660876i \(-0.770185\pi\)
−0.750495 + 0.660876i \(0.770185\pi\)
\(504\) −2624.54 −0.231957
\(505\) 0 0
\(506\) 4824.95 0.423904
\(507\) 12854.3 1.12600
\(508\) −2130.44 −0.186069
\(509\) 16107.7 1.40267 0.701335 0.712832i \(-0.252588\pi\)
0.701335 + 0.712832i \(0.252588\pi\)
\(510\) 0 0
\(511\) 2599.40 0.225031
\(512\) −12788.6 −1.10387
\(513\) 5775.85 0.497096
\(514\) −18548.3 −1.59169
\(515\) 0 0
\(516\) 1355.17 0.115616
\(517\) −2090.20 −0.177808
\(518\) 2038.23 0.172885
\(519\) −12848.5 −1.08668
\(520\) 0 0
\(521\) −9416.19 −0.791806 −0.395903 0.918292i \(-0.629568\pi\)
−0.395903 + 0.918292i \(0.629568\pi\)
\(522\) 363.595 0.0304868
\(523\) −7246.02 −0.605825 −0.302912 0.953018i \(-0.597959\pi\)
−0.302912 + 0.953018i \(0.597959\pi\)
\(524\) −1907.10 −0.158992
\(525\) 0 0
\(526\) −13258.2 −1.09902
\(527\) 3044.98 0.251691
\(528\) 3732.72 0.307662
\(529\) 14449.1 1.18756
\(530\) 0 0
\(531\) −3816.35 −0.311893
\(532\) −544.266 −0.0443551
\(533\) −382.094 −0.0310513
\(534\) −12064.3 −0.977666
\(535\) 0 0
\(536\) −16092.2 −1.29679
\(537\) 5616.94 0.451376
\(538\) −14590.9 −1.16925
\(539\) −1723.11 −0.137699
\(540\) 0 0
\(541\) −23163.6 −1.84082 −0.920409 0.390957i \(-0.872144\pi\)
−0.920409 + 0.390957i \(0.872144\pi\)
\(542\) 4072.21 0.322724
\(543\) −11426.6 −0.903058
\(544\) 2968.11 0.233928
\(545\) 0 0
\(546\) 1170.66 0.0917579
\(547\) −7837.87 −0.612656 −0.306328 0.951926i \(-0.599100\pi\)
−0.306328 + 0.951926i \(0.599100\pi\)
\(548\) 989.114 0.0771037
\(549\) −1477.38 −0.114850
\(550\) 0 0
\(551\) 857.401 0.0662913
\(552\) 22811.0 1.75888
\(553\) −9810.57 −0.754408
\(554\) 7723.64 0.592321
\(555\) 0 0
\(556\) −1642.09 −0.125252
\(557\) 5364.01 0.408043 0.204022 0.978966i \(-0.434599\pi\)
0.204022 + 0.978966i \(0.434599\pi\)
\(558\) 782.125 0.0593369
\(559\) −1594.09 −0.120613
\(560\) 0 0
\(561\) −5565.39 −0.418843
\(562\) 9254.25 0.694603
\(563\) −6644.79 −0.497415 −0.248707 0.968579i \(-0.580006\pi\)
−0.248707 + 0.968579i \(0.580006\pi\)
\(564\) −869.024 −0.0648803
\(565\) 0 0
\(566\) 892.913 0.0663108
\(567\) −12049.2 −0.892452
\(568\) 13677.3 1.01036
\(569\) 10821.4 0.797285 0.398642 0.917107i \(-0.369482\pi\)
0.398642 + 0.917107i \(0.369482\pi\)
\(570\) 0 0
\(571\) 15659.1 1.14766 0.573829 0.818975i \(-0.305457\pi\)
0.573829 + 0.818975i \(0.305457\pi\)
\(572\) 45.6466 0.00333668
\(573\) 20447.7 1.49078
\(574\) 2606.82 0.189558
\(575\) 0 0
\(576\) 4495.17 0.325172
\(577\) 6311.86 0.455401 0.227700 0.973731i \(-0.426879\pi\)
0.227700 + 0.973731i \(0.426879\pi\)
\(578\) 6369.27 0.458351
\(579\) 19523.5 1.40133
\(580\) 0 0
\(581\) −20530.0 −1.46597
\(582\) −11276.3 −0.803125
\(583\) 6863.83 0.487600
\(584\) −4490.55 −0.318186
\(585\) 0 0
\(586\) 6086.58 0.429069
\(587\) 10734.5 0.754787 0.377394 0.926053i \(-0.376820\pi\)
0.377394 + 0.926053i \(0.376820\pi\)
\(588\) −716.402 −0.0502447
\(589\) 1844.35 0.129024
\(590\) 0 0
\(591\) 15319.7 1.06628
\(592\) −3178.42 −0.220662
\(593\) −5046.93 −0.349499 −0.174749 0.984613i \(-0.555911\pi\)
−0.174749 + 0.984613i \(0.555911\pi\)
\(594\) 3304.86 0.228283
\(595\) 0 0
\(596\) −1508.23 −0.103657
\(597\) 21945.2 1.50445
\(598\) −2359.70 −0.161364
\(599\) −10485.6 −0.715244 −0.357622 0.933866i \(-0.616412\pi\)
−0.357622 + 0.933866i \(0.616412\pi\)
\(600\) 0 0
\(601\) −9459.70 −0.642045 −0.321023 0.947072i \(-0.604027\pi\)
−0.321023 + 0.947072i \(0.604027\pi\)
\(602\) 10875.6 0.736306
\(603\) 5563.00 0.375693
\(604\) −1065.54 −0.0717816
\(605\) 0 0
\(606\) −31910.7 −2.13908
\(607\) −6659.26 −0.445290 −0.222645 0.974900i \(-0.571469\pi\)
−0.222645 + 0.974900i \(0.571469\pi\)
\(608\) 1797.79 0.119918
\(609\) −1342.60 −0.0893350
\(610\) 0 0
\(611\) 1022.24 0.0676848
\(612\) −536.627 −0.0354442
\(613\) 11480.6 0.756438 0.378219 0.925716i \(-0.376537\pi\)
0.378219 + 0.925716i \(0.376537\pi\)
\(614\) 2799.31 0.183992
\(615\) 0 0
\(616\) −3541.25 −0.231625
\(617\) −17395.2 −1.13502 −0.567509 0.823368i \(-0.692093\pi\)
−0.567509 + 0.823368i \(0.692093\pi\)
\(618\) 17658.2 1.14938
\(619\) 26031.1 1.69027 0.845137 0.534550i \(-0.179519\pi\)
0.845137 + 0.534550i \(0.179519\pi\)
\(620\) 0 0
\(621\) 18230.7 1.17806
\(622\) −16424.4 −1.05878
\(623\) 10331.6 0.664406
\(624\) −1825.54 −0.117115
\(625\) 0 0
\(626\) 6037.48 0.385473
\(627\) −3370.96 −0.214710
\(628\) −802.046 −0.0509636
\(629\) 4738.93 0.300403
\(630\) 0 0
\(631\) 4770.62 0.300975 0.150488 0.988612i \(-0.451916\pi\)
0.150488 + 0.988612i \(0.451916\pi\)
\(632\) 16948.1 1.06671
\(633\) 13908.5 0.873321
\(634\) −18281.1 −1.14517
\(635\) 0 0
\(636\) 2853.71 0.177920
\(637\) 842.709 0.0524165
\(638\) 490.593 0.0304432
\(639\) −4728.18 −0.292713
\(640\) 0 0
\(641\) −16635.8 −1.02508 −0.512540 0.858664i \(-0.671295\pi\)
−0.512540 + 0.858664i \(0.671295\pi\)
\(642\) −943.451 −0.0579985
\(643\) −91.0331 −0.00558320 −0.00279160 0.999996i \(-0.500889\pi\)
−0.00279160 + 0.999996i \(0.500889\pi\)
\(644\) −1717.91 −0.105116
\(645\) 0 0
\(646\) 11858.7 0.722250
\(647\) −24876.7 −1.51160 −0.755798 0.654804i \(-0.772751\pi\)
−0.755798 + 0.654804i \(0.772751\pi\)
\(648\) 20815.4 1.26189
\(649\) −5149.34 −0.311447
\(650\) 0 0
\(651\) −2888.06 −0.173874
\(652\) 2563.34 0.153970
\(653\) 2684.49 0.160876 0.0804380 0.996760i \(-0.474368\pi\)
0.0804380 + 0.996760i \(0.474368\pi\)
\(654\) 7436.40 0.444627
\(655\) 0 0
\(656\) −4065.07 −0.241942
\(657\) 1552.36 0.0921818
\(658\) −6974.17 −0.413194
\(659\) −10069.8 −0.595241 −0.297620 0.954684i \(-0.596193\pi\)
−0.297620 + 0.954684i \(0.596193\pi\)
\(660\) 0 0
\(661\) −838.461 −0.0493379 −0.0246690 0.999696i \(-0.507853\pi\)
−0.0246690 + 0.999696i \(0.507853\pi\)
\(662\) −3805.64 −0.223430
\(663\) 2721.82 0.159437
\(664\) 35466.3 2.07283
\(665\) 0 0
\(666\) 1217.23 0.0708209
\(667\) 2706.28 0.157103
\(668\) 72.9461 0.00422510
\(669\) −37906.0 −2.19063
\(670\) 0 0
\(671\) −1993.40 −0.114686
\(672\) −2815.15 −0.161603
\(673\) 27709.3 1.58709 0.793547 0.608508i \(-0.208232\pi\)
0.793547 + 0.608508i \(0.208232\pi\)
\(674\) 21173.7 1.21006
\(675\) 0 0
\(676\) 1672.36 0.0951502
\(677\) −6178.28 −0.350740 −0.175370 0.984503i \(-0.556112\pi\)
−0.175370 + 0.984503i \(0.556112\pi\)
\(678\) −1317.78 −0.0746444
\(679\) 9656.74 0.545790
\(680\) 0 0
\(681\) −6287.09 −0.353777
\(682\) 1055.31 0.0592521
\(683\) −3258.19 −0.182535 −0.0912674 0.995826i \(-0.529092\pi\)
−0.0912674 + 0.995826i \(0.529092\pi\)
\(684\) −325.036 −0.0181697
\(685\) 0 0
\(686\) −18338.3 −1.02064
\(687\) −36876.0 −2.04790
\(688\) −16959.4 −0.939784
\(689\) −3356.84 −0.185610
\(690\) 0 0
\(691\) 35334.6 1.94528 0.972641 0.232314i \(-0.0746295\pi\)
0.972641 + 0.232314i \(0.0746295\pi\)
\(692\) −1671.60 −0.0918276
\(693\) 1224.20 0.0671044
\(694\) −21963.1 −1.20131
\(695\) 0 0
\(696\) 2319.39 0.126316
\(697\) 6060.91 0.329373
\(698\) −19283.2 −1.04567
\(699\) −34486.5 −1.86609
\(700\) 0 0
\(701\) −2724.54 −0.146797 −0.0733983 0.997303i \(-0.523384\pi\)
−0.0733983 + 0.997303i \(0.523384\pi\)
\(702\) −1616.29 −0.0868985
\(703\) 2870.38 0.153995
\(704\) 6065.27 0.324707
\(705\) 0 0
\(706\) 25353.0 1.35152
\(707\) 27327.5 1.45368
\(708\) −2140.89 −0.113644
\(709\) −17884.3 −0.947335 −0.473667 0.880704i \(-0.657070\pi\)
−0.473667 + 0.880704i \(0.657070\pi\)
\(710\) 0 0
\(711\) −5858.87 −0.309036
\(712\) −17848.1 −0.939446
\(713\) 5821.45 0.305771
\(714\) −18569.5 −0.973313
\(715\) 0 0
\(716\) 730.770 0.0381427
\(717\) 9974.65 0.519540
\(718\) −9320.57 −0.484458
\(719\) −25807.6 −1.33861 −0.669305 0.742988i \(-0.733408\pi\)
−0.669305 + 0.742988i \(0.733408\pi\)
\(720\) 0 0
\(721\) −15122.0 −0.781101
\(722\) −11258.4 −0.580323
\(723\) −29086.9 −1.49620
\(724\) −1486.61 −0.0763112
\(725\) 0 0
\(726\) −1928.82 −0.0986022
\(727\) −22723.4 −1.15924 −0.579618 0.814888i \(-0.696798\pi\)
−0.579618 + 0.814888i \(0.696798\pi\)
\(728\) 1731.90 0.0881708
\(729\) 10692.7 0.543246
\(730\) 0 0
\(731\) 25286.0 1.27940
\(732\) −828.779 −0.0418478
\(733\) 6004.95 0.302589 0.151295 0.988489i \(-0.451656\pi\)
0.151295 + 0.988489i \(0.451656\pi\)
\(734\) −16933.3 −0.851527
\(735\) 0 0
\(736\) 5674.49 0.284191
\(737\) 7506.07 0.375156
\(738\) 1556.79 0.0776507
\(739\) 15968.1 0.794852 0.397426 0.917634i \(-0.369904\pi\)
0.397426 + 0.917634i \(0.369904\pi\)
\(740\) 0 0
\(741\) 1648.61 0.0817319
\(742\) 22901.9 1.13309
\(743\) 13555.6 0.669321 0.334661 0.942339i \(-0.391378\pi\)
0.334661 + 0.942339i \(0.391378\pi\)
\(744\) 4989.22 0.245852
\(745\) 0 0
\(746\) 12418.1 0.609465
\(747\) −12260.5 −0.600522
\(748\) −724.062 −0.0353935
\(749\) 807.946 0.0394148
\(750\) 0 0
\(751\) 16613.1 0.807216 0.403608 0.914932i \(-0.367756\pi\)
0.403608 + 0.914932i \(0.367756\pi\)
\(752\) 10875.5 0.527380
\(753\) −30357.0 −1.46915
\(754\) −239.931 −0.0115886
\(755\) 0 0
\(756\) −1176.68 −0.0566080
\(757\) −22933.9 −1.10112 −0.550560 0.834795i \(-0.685586\pi\)
−0.550560 + 0.834795i \(0.685586\pi\)
\(758\) −38414.6 −1.84074
\(759\) −10640.0 −0.508838
\(760\) 0 0
\(761\) −10297.4 −0.490512 −0.245256 0.969458i \(-0.578872\pi\)
−0.245256 + 0.969458i \(0.578872\pi\)
\(762\) −44026.7 −2.09307
\(763\) −6368.33 −0.302161
\(764\) 2660.27 0.125975
\(765\) 0 0
\(766\) −6930.09 −0.326886
\(767\) 2518.35 0.118556
\(768\) 6957.29 0.326888
\(769\) 20788.2 0.974826 0.487413 0.873172i \(-0.337941\pi\)
0.487413 + 0.873172i \(0.337941\pi\)
\(770\) 0 0
\(771\) 40902.9 1.91061
\(772\) 2540.03 0.118417
\(773\) 2934.95 0.136562 0.0682812 0.997666i \(-0.478249\pi\)
0.0682812 + 0.997666i \(0.478249\pi\)
\(774\) 6494.91 0.301621
\(775\) 0 0
\(776\) −16682.3 −0.771728
\(777\) −4494.72 −0.207525
\(778\) −8534.91 −0.393305
\(779\) 3671.10 0.168846
\(780\) 0 0
\(781\) −6379.66 −0.292295
\(782\) 37430.4 1.71165
\(783\) 1853.67 0.0846039
\(784\) 8965.51 0.408414
\(785\) 0 0
\(786\) −39411.3 −1.78849
\(787\) 28424.2 1.28744 0.643718 0.765263i \(-0.277391\pi\)
0.643718 + 0.765263i \(0.277391\pi\)
\(788\) 1993.11 0.0901037
\(789\) 29237.1 1.31923
\(790\) 0 0
\(791\) 1128.51 0.0507271
\(792\) −2114.84 −0.0948832
\(793\) 974.899 0.0436566
\(794\) 11951.1 0.534169
\(795\) 0 0
\(796\) 2855.10 0.127131
\(797\) 18507.8 0.822559 0.411280 0.911509i \(-0.365082\pi\)
0.411280 + 0.911509i \(0.365082\pi\)
\(798\) −11247.6 −0.498947
\(799\) −16215.1 −0.717959
\(800\) 0 0
\(801\) 6170.00 0.272168
\(802\) 3235.95 0.142476
\(803\) 2094.58 0.0920500
\(804\) 3120.73 0.136890
\(805\) 0 0
\(806\) −516.113 −0.0225550
\(807\) 32175.9 1.40353
\(808\) −47209.1 −2.05546
\(809\) −27576.9 −1.19846 −0.599228 0.800578i \(-0.704526\pi\)
−0.599228 + 0.800578i \(0.704526\pi\)
\(810\) 0 0
\(811\) −8553.71 −0.370360 −0.185180 0.982705i \(-0.559287\pi\)
−0.185180 + 0.982705i \(0.559287\pi\)
\(812\) −174.674 −0.00754908
\(813\) −8980.08 −0.387386
\(814\) 1642.39 0.0707197
\(815\) 0 0
\(816\) 28957.3 1.24229
\(817\) 15315.8 0.655853
\(818\) −34237.1 −1.46341
\(819\) −598.708 −0.0255440
\(820\) 0 0
\(821\) 27632.1 1.17462 0.587312 0.809360i \(-0.300186\pi\)
0.587312 + 0.809360i \(0.300186\pi\)
\(822\) 20440.6 0.867333
\(823\) −644.423 −0.0272942 −0.0136471 0.999907i \(-0.504344\pi\)
−0.0136471 + 0.999907i \(0.504344\pi\)
\(824\) 26123.8 1.10445
\(825\) 0 0
\(826\) −17181.3 −0.723746
\(827\) −39394.2 −1.65643 −0.828216 0.560409i \(-0.810644\pi\)
−0.828216 + 0.560409i \(0.810644\pi\)
\(828\) −1025.93 −0.0430600
\(829\) −21915.9 −0.918179 −0.459089 0.888390i \(-0.651824\pi\)
−0.459089 + 0.888390i \(0.651824\pi\)
\(830\) 0 0
\(831\) −17032.2 −0.711001
\(832\) −2966.30 −0.123603
\(833\) −13367.3 −0.556003
\(834\) −33934.7 −1.40895
\(835\) 0 0
\(836\) −438.566 −0.0181437
\(837\) 3987.42 0.164666
\(838\) 26021.2 1.07266
\(839\) −525.642 −0.0216295 −0.0108148 0.999942i \(-0.503443\pi\)
−0.0108148 + 0.999942i \(0.503443\pi\)
\(840\) 0 0
\(841\) −24113.8 −0.988717
\(842\) 3423.65 0.140127
\(843\) −20407.5 −0.833776
\(844\) 1809.51 0.0737983
\(845\) 0 0
\(846\) −4164.97 −0.169261
\(847\) 1651.79 0.0670084
\(848\) −35713.2 −1.44622
\(849\) −1969.06 −0.0795971
\(850\) 0 0
\(851\) 9059.99 0.364950
\(852\) −2652.41 −0.106655
\(853\) −8465.47 −0.339803 −0.169902 0.985461i \(-0.554345\pi\)
−0.169902 + 0.985461i \(0.554345\pi\)
\(854\) −6651.19 −0.266510
\(855\) 0 0
\(856\) −1395.75 −0.0557311
\(857\) −3954.48 −0.157622 −0.0788112 0.996890i \(-0.525112\pi\)
−0.0788112 + 0.996890i \(0.525112\pi\)
\(858\) 943.314 0.0375340
\(859\) 18581.2 0.738047 0.369024 0.929420i \(-0.379692\pi\)
0.369024 + 0.929420i \(0.379692\pi\)
\(860\) 0 0
\(861\) −5748.57 −0.227539
\(862\) −39797.9 −1.57253
\(863\) 40385.4 1.59297 0.796487 0.604656i \(-0.206689\pi\)
0.796487 + 0.604656i \(0.206689\pi\)
\(864\) 3886.76 0.153044
\(865\) 0 0
\(866\) 25573.0 1.00347
\(867\) −14045.6 −0.550187
\(868\) −375.740 −0.0146929
\(869\) −7905.29 −0.308594
\(870\) 0 0
\(871\) −3670.94 −0.142807
\(872\) 11001.5 0.427245
\(873\) 5767.01 0.223578
\(874\) 22671.7 0.877438
\(875\) 0 0
\(876\) 870.845 0.0335881
\(877\) 16920.0 0.651481 0.325740 0.945459i \(-0.394386\pi\)
0.325740 + 0.945459i \(0.394386\pi\)
\(878\) 9484.68 0.364570
\(879\) −13422.2 −0.515038
\(880\) 0 0
\(881\) 10081.2 0.385522 0.192761 0.981246i \(-0.438256\pi\)
0.192761 + 0.981246i \(0.438256\pi\)
\(882\) −3433.50 −0.131079
\(883\) −10340.6 −0.394098 −0.197049 0.980394i \(-0.563136\pi\)
−0.197049 + 0.980394i \(0.563136\pi\)
\(884\) 354.112 0.0134729
\(885\) 0 0
\(886\) −41153.4 −1.56047
\(887\) −17722.7 −0.670880 −0.335440 0.942062i \(-0.608885\pi\)
−0.335440 + 0.942062i \(0.608885\pi\)
\(888\) 7764.78 0.293433
\(889\) 37703.3 1.42242
\(890\) 0 0
\(891\) −9709.19 −0.365062
\(892\) −4931.61 −0.185115
\(893\) −9821.52 −0.368046
\(894\) −31168.5 −1.16603
\(895\) 0 0
\(896\) 16438.9 0.612929
\(897\) 5203.64 0.193695
\(898\) −5004.46 −0.185970
\(899\) 591.916 0.0219594
\(900\) 0 0
\(901\) 53247.4 1.96884
\(902\) 2100.55 0.0775397
\(903\) −23983.0 −0.883835
\(904\) −1949.53 −0.0717263
\(905\) 0 0
\(906\) −22019.9 −0.807465
\(907\) 16489.0 0.603646 0.301823 0.953364i \(-0.402405\pi\)
0.301823 + 0.953364i \(0.402405\pi\)
\(908\) −817.957 −0.0298952
\(909\) 16320.0 0.595488
\(910\) 0 0
\(911\) 29428.2 1.07025 0.535127 0.844772i \(-0.320264\pi\)
0.535127 + 0.844772i \(0.320264\pi\)
\(912\) 17539.5 0.636831
\(913\) −16543.0 −0.599663
\(914\) 17099.0 0.618800
\(915\) 0 0
\(916\) −4797.60 −0.173054
\(917\) 33750.8 1.21543
\(918\) 25638.1 0.921767
\(919\) −22961.8 −0.824200 −0.412100 0.911139i \(-0.635205\pi\)
−0.412100 + 0.911139i \(0.635205\pi\)
\(920\) 0 0
\(921\) −6173.07 −0.220857
\(922\) −20541.1 −0.733715
\(923\) 3120.06 0.111265
\(924\) 686.749 0.0244506
\(925\) 0 0
\(926\) 46299.2 1.64307
\(927\) −9030.88 −0.319971
\(928\) 576.973 0.0204096
\(929\) 2036.28 0.0719142 0.0359571 0.999353i \(-0.488552\pi\)
0.0359571 + 0.999353i \(0.488552\pi\)
\(930\) 0 0
\(931\) −8096.62 −0.285022
\(932\) −4486.72 −0.157690
\(933\) 36219.3 1.27092
\(934\) −24172.0 −0.846823
\(935\) 0 0
\(936\) 1034.29 0.0361183
\(937\) −37879.9 −1.32069 −0.660344 0.750964i \(-0.729589\pi\)
−0.660344 + 0.750964i \(0.729589\pi\)
\(938\) 25044.8 0.871792
\(939\) −13313.9 −0.462708
\(940\) 0 0
\(941\) 37440.0 1.29703 0.648517 0.761200i \(-0.275390\pi\)
0.648517 + 0.761200i \(0.275390\pi\)
\(942\) −16574.7 −0.573285
\(943\) 11587.4 0.400145
\(944\) 26792.5 0.923752
\(945\) 0 0
\(946\) 8763.49 0.301190
\(947\) 7494.83 0.257180 0.128590 0.991698i \(-0.458955\pi\)
0.128590 + 0.991698i \(0.458955\pi\)
\(948\) −3286.71 −0.112603
\(949\) −1024.38 −0.0350399
\(950\) 0 0
\(951\) 40313.6 1.37462
\(952\) −27471.9 −0.935263
\(953\) 26703.2 0.907662 0.453831 0.891088i \(-0.350057\pi\)
0.453831 + 0.891088i \(0.350057\pi\)
\(954\) 13677.0 0.464160
\(955\) 0 0
\(956\) 1297.71 0.0439027
\(957\) −1081.86 −0.0365429
\(958\) −22841.0 −0.770311
\(959\) −17504.8 −0.589425
\(960\) 0 0
\(961\) −28517.7 −0.957260
\(962\) −803.233 −0.0269202
\(963\) 482.505 0.0161459
\(964\) −3784.24 −0.126434
\(965\) 0 0
\(966\) −35501.5 −1.18245
\(967\) −28221.4 −0.938511 −0.469256 0.883062i \(-0.655478\pi\)
−0.469256 + 0.883062i \(0.655478\pi\)
\(968\) −2853.52 −0.0947475
\(969\) −26150.9 −0.866963
\(970\) 0 0
\(971\) 35882.6 1.18592 0.592959 0.805233i \(-0.297960\pi\)
0.592959 + 0.805233i \(0.297960\pi\)
\(972\) −1709.39 −0.0564082
\(973\) 29060.8 0.957498
\(974\) 14559.6 0.478972
\(975\) 0 0
\(976\) 10371.9 0.340159
\(977\) −2339.87 −0.0766214 −0.0383107 0.999266i \(-0.512198\pi\)
−0.0383107 + 0.999266i \(0.512198\pi\)
\(978\) 52972.9 1.73199
\(979\) 8325.09 0.271779
\(980\) 0 0
\(981\) −3803.17 −0.123778
\(982\) −7112.89 −0.231142
\(983\) 2328.54 0.0755534 0.0377767 0.999286i \(-0.487972\pi\)
0.0377767 + 0.999286i \(0.487972\pi\)
\(984\) 9930.85 0.321731
\(985\) 0 0
\(986\) 3805.87 0.122924
\(987\) 15379.5 0.495983
\(988\) 214.486 0.00690660
\(989\) 48342.4 1.55430
\(990\) 0 0
\(991\) −43619.2 −1.39819 −0.699097 0.715027i \(-0.746414\pi\)
−0.699097 + 0.715027i \(0.746414\pi\)
\(992\) 1241.12 0.0397235
\(993\) 8392.23 0.268197
\(994\) −21286.4 −0.679239
\(995\) 0 0
\(996\) −6877.92 −0.218810
\(997\) 13765.9 0.437281 0.218641 0.975805i \(-0.429838\pi\)
0.218641 + 0.975805i \(0.429838\pi\)
\(998\) 41446.3 1.31459
\(999\) 6205.66 0.196535
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.i.1.4 yes 5
3.2 odd 2 2475.4.a.bg.1.2 5
5.2 odd 4 275.4.b.g.199.8 10
5.3 odd 4 275.4.b.g.199.3 10
5.4 even 2 275.4.a.f.1.2 5
15.14 odd 2 2475.4.a.bk.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.4.a.f.1.2 5 5.4 even 2
275.4.a.i.1.4 yes 5 1.1 even 1 trivial
275.4.b.g.199.3 10 5.3 odd 4
275.4.b.g.199.8 10 5.2 odd 4
2475.4.a.bg.1.2 5 3.2 odd 2
2475.4.a.bk.1.4 5 15.14 odd 2