Properties

Label 275.4.a.k.1.6
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 72x^{8} + 1771x^{6} - 17056x^{4} + 52892x^{2} - 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.245890\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.245890 q^{2} +2.52576 q^{3} -7.93954 q^{4} +0.621060 q^{6} -10.5016 q^{7} -3.91938 q^{8} -20.6205 q^{9} +11.0000 q^{11} -20.0534 q^{12} +63.0258 q^{13} -2.58224 q^{14} +62.5526 q^{16} +133.900 q^{17} -5.07039 q^{18} +76.1851 q^{19} -26.5245 q^{21} +2.70479 q^{22} -169.684 q^{23} -9.89940 q^{24} +15.4974 q^{26} -120.278 q^{27} +83.3777 q^{28} +202.349 q^{29} +191.639 q^{31} +46.7361 q^{32} +27.7833 q^{33} +32.9246 q^{34} +163.718 q^{36} -21.5915 q^{37} +18.7332 q^{38} +159.188 q^{39} +305.966 q^{41} -6.52211 q^{42} -285.731 q^{43} -87.3349 q^{44} -41.7236 q^{46} -123.908 q^{47} +157.993 q^{48} -232.717 q^{49} +338.198 q^{51} -500.396 q^{52} +480.068 q^{53} -29.5752 q^{54} +41.1597 q^{56} +192.425 q^{57} +49.7556 q^{58} +364.714 q^{59} +9.11965 q^{61} +47.1222 q^{62} +216.548 q^{63} -488.929 q^{64} +6.83166 q^{66} +568.827 q^{67} -1063.10 q^{68} -428.580 q^{69} -157.805 q^{71} +80.8197 q^{72} +212.831 q^{73} -5.30915 q^{74} -604.874 q^{76} -115.517 q^{77} +39.1428 q^{78} +792.027 q^{79} +252.962 q^{81} +75.2340 q^{82} -587.824 q^{83} +210.592 q^{84} -70.2586 q^{86} +511.084 q^{87} -43.1132 q^{88} +698.243 q^{89} -661.871 q^{91} +1347.21 q^{92} +484.033 q^{93} -30.4677 q^{94} +118.044 q^{96} -1837.23 q^{97} -57.2228 q^{98} -226.826 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 64 q^{4} + 26 q^{6} + 152 q^{9} + 110 q^{11} + 34 q^{14} + 468 q^{16} + 90 q^{19} + 302 q^{21} + 206 q^{24} + 392 q^{26} - 58 q^{29} + 1242 q^{31} - 66 q^{34} + 1786 q^{36} - 384 q^{39} + 416 q^{41}+ \cdots + 1672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.245890 0.0869354 0.0434677 0.999055i \(-0.486159\pi\)
0.0434677 + 0.999055i \(0.486159\pi\)
\(3\) 2.52576 0.486082 0.243041 0.970016i \(-0.421855\pi\)
0.243041 + 0.970016i \(0.421855\pi\)
\(4\) −7.93954 −0.992442
\(5\) 0 0
\(6\) 0.621060 0.0422578
\(7\) −10.5016 −0.567032 −0.283516 0.958967i \(-0.591501\pi\)
−0.283516 + 0.958967i \(0.591501\pi\)
\(8\) −3.91938 −0.173214
\(9\) −20.6205 −0.763724
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) −20.0534 −0.482409
\(13\) 63.0258 1.34463 0.672316 0.740265i \(-0.265300\pi\)
0.672316 + 0.740265i \(0.265300\pi\)
\(14\) −2.58224 −0.0492952
\(15\) 0 0
\(16\) 62.5526 0.977384
\(17\) 133.900 1.91032 0.955160 0.296091i \(-0.0956832\pi\)
0.955160 + 0.296091i \(0.0956832\pi\)
\(18\) −5.07039 −0.0663946
\(19\) 76.1851 0.919898 0.459949 0.887945i \(-0.347868\pi\)
0.459949 + 0.887945i \(0.347868\pi\)
\(20\) 0 0
\(21\) −26.5245 −0.275624
\(22\) 2.70479 0.0262120
\(23\) −169.684 −1.53833 −0.769163 0.639053i \(-0.779326\pi\)
−0.769163 + 0.639053i \(0.779326\pi\)
\(24\) −9.89940 −0.0841961
\(25\) 0 0
\(26\) 15.4974 0.116896
\(27\) −120.278 −0.857315
\(28\) 83.3777 0.562747
\(29\) 202.349 1.29570 0.647849 0.761769i \(-0.275669\pi\)
0.647849 + 0.761769i \(0.275669\pi\)
\(30\) 0 0
\(31\) 191.639 1.11030 0.555151 0.831750i \(-0.312660\pi\)
0.555151 + 0.831750i \(0.312660\pi\)
\(32\) 46.7361 0.258183
\(33\) 27.7833 0.146559
\(34\) 32.9246 0.166074
\(35\) 0 0
\(36\) 163.718 0.757952
\(37\) −21.5915 −0.0959359 −0.0479679 0.998849i \(-0.515275\pi\)
−0.0479679 + 0.998849i \(0.515275\pi\)
\(38\) 18.7332 0.0799717
\(39\) 159.188 0.653602
\(40\) 0 0
\(41\) 305.966 1.16546 0.582729 0.812666i \(-0.301985\pi\)
0.582729 + 0.812666i \(0.301985\pi\)
\(42\) −6.52211 −0.0239615
\(43\) −285.731 −1.01334 −0.506670 0.862140i \(-0.669124\pi\)
−0.506670 + 0.862140i \(0.669124\pi\)
\(44\) −87.3349 −0.299233
\(45\) 0 0
\(46\) −41.7236 −0.133735
\(47\) −123.908 −0.384548 −0.192274 0.981341i \(-0.561586\pi\)
−0.192274 + 0.981341i \(0.561586\pi\)
\(48\) 157.993 0.475089
\(49\) −232.717 −0.678474
\(50\) 0 0
\(51\) 338.198 0.928573
\(52\) −500.396 −1.33447
\(53\) 480.068 1.24420 0.622098 0.782939i \(-0.286280\pi\)
0.622098 + 0.782939i \(0.286280\pi\)
\(54\) −29.5752 −0.0745310
\(55\) 0 0
\(56\) 41.1597 0.0982178
\(57\) 192.425 0.447146
\(58\) 49.7556 0.112642
\(59\) 364.714 0.804776 0.402388 0.915469i \(-0.368180\pi\)
0.402388 + 0.915469i \(0.368180\pi\)
\(60\) 0 0
\(61\) 9.11965 0.0191418 0.00957091 0.999954i \(-0.496953\pi\)
0.00957091 + 0.999954i \(0.496953\pi\)
\(62\) 47.1222 0.0965245
\(63\) 216.548 0.433056
\(64\) −488.929 −0.954939
\(65\) 0 0
\(66\) 6.83166 0.0127412
\(67\) 568.827 1.03721 0.518607 0.855013i \(-0.326451\pi\)
0.518607 + 0.855013i \(0.326451\pi\)
\(68\) −1063.10 −1.89588
\(69\) −428.580 −0.747753
\(70\) 0 0
\(71\) −157.805 −0.263775 −0.131887 0.991265i \(-0.542104\pi\)
−0.131887 + 0.991265i \(0.542104\pi\)
\(72\) 80.8197 0.132287
\(73\) 212.831 0.341232 0.170616 0.985338i \(-0.445424\pi\)
0.170616 + 0.985338i \(0.445424\pi\)
\(74\) −5.30915 −0.00834022
\(75\) 0 0
\(76\) −604.874 −0.912945
\(77\) −115.517 −0.170967
\(78\) 39.1428 0.0568211
\(79\) 792.027 1.12798 0.563988 0.825783i \(-0.309267\pi\)
0.563988 + 0.825783i \(0.309267\pi\)
\(80\) 0 0
\(81\) 252.962 0.346998
\(82\) 75.2340 0.101320
\(83\) −587.824 −0.777375 −0.388687 0.921370i \(-0.627071\pi\)
−0.388687 + 0.921370i \(0.627071\pi\)
\(84\) 210.592 0.273541
\(85\) 0 0
\(86\) −70.2586 −0.0880951
\(87\) 511.084 0.629816
\(88\) −43.1132 −0.0522259
\(89\) 698.243 0.831613 0.415807 0.909453i \(-0.363499\pi\)
0.415807 + 0.909453i \(0.363499\pi\)
\(90\) 0 0
\(91\) −661.871 −0.762449
\(92\) 1347.21 1.52670
\(93\) 484.033 0.539698
\(94\) −30.4677 −0.0334309
\(95\) 0 0
\(96\) 118.044 0.125498
\(97\) −1837.23 −1.92312 −0.961558 0.274601i \(-0.911454\pi\)
−0.961558 + 0.274601i \(0.911454\pi\)
\(98\) −57.2228 −0.0589834
\(99\) −226.826 −0.230271
\(100\) 0 0
\(101\) 81.1351 0.0799331 0.0399666 0.999201i \(-0.487275\pi\)
0.0399666 + 0.999201i \(0.487275\pi\)
\(102\) 83.1597 0.0807258
\(103\) 17.0321 0.0162935 0.00814673 0.999967i \(-0.497407\pi\)
0.00814673 + 0.999967i \(0.497407\pi\)
\(104\) −247.022 −0.232909
\(105\) 0 0
\(106\) 118.044 0.108165
\(107\) 128.189 0.115817 0.0579087 0.998322i \(-0.481557\pi\)
0.0579087 + 0.998322i \(0.481557\pi\)
\(108\) 954.952 0.850836
\(109\) −206.739 −0.181670 −0.0908351 0.995866i \(-0.528954\pi\)
−0.0908351 + 0.995866i \(0.528954\pi\)
\(110\) 0 0
\(111\) −54.5350 −0.0466327
\(112\) −656.901 −0.554208
\(113\) 291.669 0.242814 0.121407 0.992603i \(-0.461259\pi\)
0.121407 + 0.992603i \(0.461259\pi\)
\(114\) 47.3155 0.0388728
\(115\) 0 0
\(116\) −1606.56 −1.28590
\(117\) −1299.63 −1.02693
\(118\) 89.6797 0.0699635
\(119\) −1406.16 −1.08321
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 2.24243 0.00166410
\(123\) 772.795 0.566509
\(124\) −1521.52 −1.10191
\(125\) 0 0
\(126\) 53.2472 0.0376479
\(127\) 1241.35 0.867336 0.433668 0.901073i \(-0.357219\pi\)
0.433668 + 0.901073i \(0.357219\pi\)
\(128\) −494.112 −0.341201
\(129\) −721.689 −0.492567
\(130\) 0 0
\(131\) −2013.62 −1.34298 −0.671491 0.741013i \(-0.734346\pi\)
−0.671491 + 0.741013i \(0.734346\pi\)
\(132\) −220.587 −0.145452
\(133\) −800.064 −0.521612
\(134\) 139.869 0.0901706
\(135\) 0 0
\(136\) −524.803 −0.330894
\(137\) −214.973 −0.134061 −0.0670307 0.997751i \(-0.521353\pi\)
−0.0670307 + 0.997751i \(0.521353\pi\)
\(138\) −105.384 −0.0650062
\(139\) 2073.76 1.26543 0.632714 0.774386i \(-0.281941\pi\)
0.632714 + 0.774386i \(0.281941\pi\)
\(140\) 0 0
\(141\) −312.960 −0.186922
\(142\) −38.8028 −0.0229314
\(143\) 693.284 0.405422
\(144\) −1289.87 −0.746451
\(145\) 0 0
\(146\) 52.3330 0.0296652
\(147\) −587.786 −0.329794
\(148\) 171.427 0.0952108
\(149\) −357.210 −0.196401 −0.0982007 0.995167i \(-0.531309\pi\)
−0.0982007 + 0.995167i \(0.531309\pi\)
\(150\) 0 0
\(151\) −1097.04 −0.591229 −0.295615 0.955307i \(-0.595524\pi\)
−0.295615 + 0.955307i \(0.595524\pi\)
\(152\) −298.598 −0.159339
\(153\) −2761.08 −1.45896
\(154\) −28.4046 −0.0148631
\(155\) 0 0
\(156\) −1263.88 −0.648662
\(157\) 804.745 0.409081 0.204540 0.978858i \(-0.434430\pi\)
0.204540 + 0.978858i \(0.434430\pi\)
\(158\) 194.752 0.0980610
\(159\) 1212.54 0.604782
\(160\) 0 0
\(161\) 1781.95 0.872280
\(162\) 62.2008 0.0301664
\(163\) −2112.00 −1.01487 −0.507437 0.861689i \(-0.669407\pi\)
−0.507437 + 0.861689i \(0.669407\pi\)
\(164\) −2429.23 −1.15665
\(165\) 0 0
\(166\) −144.540 −0.0675814
\(167\) −45.0510 −0.0208752 −0.0104376 0.999946i \(-0.503322\pi\)
−0.0104376 + 0.999946i \(0.503322\pi\)
\(168\) 103.959 0.0477419
\(169\) 1775.25 0.808034
\(170\) 0 0
\(171\) −1570.98 −0.702548
\(172\) 2268.58 1.00568
\(173\) 1381.34 0.607058 0.303529 0.952822i \(-0.401835\pi\)
0.303529 + 0.952822i \(0.401835\pi\)
\(174\) 125.671 0.0547533
\(175\) 0 0
\(176\) 688.078 0.294692
\(177\) 921.180 0.391187
\(178\) 171.691 0.0722966
\(179\) −92.1182 −0.0384650 −0.0192325 0.999815i \(-0.506122\pi\)
−0.0192325 + 0.999815i \(0.506122\pi\)
\(180\) 0 0
\(181\) −759.559 −0.311920 −0.155960 0.987763i \(-0.549847\pi\)
−0.155960 + 0.987763i \(0.549847\pi\)
\(182\) −162.748 −0.0662838
\(183\) 23.0340 0.00930450
\(184\) 665.054 0.266459
\(185\) 0 0
\(186\) 119.019 0.0469189
\(187\) 1472.90 0.575983
\(188\) 983.769 0.381642
\(189\) 1263.11 0.486125
\(190\) 0 0
\(191\) 1496.04 0.566752 0.283376 0.959009i \(-0.408546\pi\)
0.283376 + 0.959009i \(0.408546\pi\)
\(192\) −1234.92 −0.464179
\(193\) 3483.32 1.29914 0.649572 0.760300i \(-0.274948\pi\)
0.649572 + 0.760300i \(0.274948\pi\)
\(194\) −451.757 −0.167187
\(195\) 0 0
\(196\) 1847.66 0.673347
\(197\) −1648.00 −0.596017 −0.298009 0.954563i \(-0.596322\pi\)
−0.298009 + 0.954563i \(0.596322\pi\)
\(198\) −55.7743 −0.0200187
\(199\) 2761.91 0.983851 0.491925 0.870637i \(-0.336293\pi\)
0.491925 + 0.870637i \(0.336293\pi\)
\(200\) 0 0
\(201\) 1436.72 0.504171
\(202\) 19.9503 0.00694902
\(203\) −2124.98 −0.734702
\(204\) −2685.14 −0.921555
\(205\) 0 0
\(206\) 4.18804 0.00141648
\(207\) 3498.97 1.17486
\(208\) 3942.42 1.31422
\(209\) 838.036 0.277360
\(210\) 0 0
\(211\) 3345.09 1.09140 0.545701 0.837980i \(-0.316264\pi\)
0.545701 + 0.837980i \(0.316264\pi\)
\(212\) −3811.52 −1.23479
\(213\) −398.578 −0.128216
\(214\) 31.5204 0.0100686
\(215\) 0 0
\(216\) 471.415 0.148499
\(217\) −2012.51 −0.629577
\(218\) −50.8352 −0.0157936
\(219\) 537.559 0.165867
\(220\) 0 0
\(221\) 8439.13 2.56868
\(222\) −13.4096 −0.00405403
\(223\) −3935.15 −1.18169 −0.590846 0.806784i \(-0.701206\pi\)
−0.590846 + 0.806784i \(0.701206\pi\)
\(224\) −490.803 −0.146398
\(225\) 0 0
\(226\) 71.7187 0.0211091
\(227\) −3157.35 −0.923175 −0.461588 0.887095i \(-0.652720\pi\)
−0.461588 + 0.887095i \(0.652720\pi\)
\(228\) −1527.77 −0.443767
\(229\) 3945.40 1.13851 0.569257 0.822160i \(-0.307231\pi\)
0.569257 + 0.822160i \(0.307231\pi\)
\(230\) 0 0
\(231\) −291.769 −0.0831039
\(232\) −793.082 −0.224433
\(233\) 144.268 0.0405636 0.0202818 0.999794i \(-0.493544\pi\)
0.0202818 + 0.999794i \(0.493544\pi\)
\(234\) −319.566 −0.0892763
\(235\) 0 0
\(236\) −2895.66 −0.798693
\(237\) 2000.47 0.548289
\(238\) −345.761 −0.0941695
\(239\) 655.848 0.177503 0.0887517 0.996054i \(-0.471712\pi\)
0.0887517 + 0.996054i \(0.471712\pi\)
\(240\) 0 0
\(241\) 1949.94 0.521191 0.260595 0.965448i \(-0.416081\pi\)
0.260595 + 0.965448i \(0.416081\pi\)
\(242\) 29.7527 0.00790322
\(243\) 3886.43 1.02598
\(244\) −72.4058 −0.0189972
\(245\) 0 0
\(246\) 190.023 0.0492497
\(247\) 4801.62 1.23692
\(248\) −751.105 −0.192320
\(249\) −1484.70 −0.377868
\(250\) 0 0
\(251\) −6016.61 −1.51301 −0.756504 0.653989i \(-0.773094\pi\)
−0.756504 + 0.653989i \(0.773094\pi\)
\(252\) −1719.29 −0.429783
\(253\) −1866.52 −0.463823
\(254\) 305.235 0.0754022
\(255\) 0 0
\(256\) 3789.93 0.925276
\(257\) 649.498 0.157644 0.0788221 0.996889i \(-0.474884\pi\)
0.0788221 + 0.996889i \(0.474884\pi\)
\(258\) −177.456 −0.0428215
\(259\) 226.745 0.0543987
\(260\) 0 0
\(261\) −4172.54 −0.989555
\(262\) −495.130 −0.116753
\(263\) 4534.73 1.06321 0.531604 0.846993i \(-0.321589\pi\)
0.531604 + 0.846993i \(0.321589\pi\)
\(264\) −108.893 −0.0253861
\(265\) 0 0
\(266\) −196.728 −0.0453465
\(267\) 1763.59 0.404233
\(268\) −4516.23 −1.02937
\(269\) −3873.76 −0.878019 −0.439009 0.898482i \(-0.644671\pi\)
−0.439009 + 0.898482i \(0.644671\pi\)
\(270\) 0 0
\(271\) 8052.53 1.80501 0.902503 0.430684i \(-0.141728\pi\)
0.902503 + 0.430684i \(0.141728\pi\)
\(272\) 8375.77 1.86712
\(273\) −1671.73 −0.370613
\(274\) −52.8599 −0.0116547
\(275\) 0 0
\(276\) 3402.73 0.742101
\(277\) −6923.67 −1.50182 −0.750908 0.660407i \(-0.770384\pi\)
−0.750908 + 0.660407i \(0.770384\pi\)
\(278\) 509.919 0.110010
\(279\) −3951.70 −0.847964
\(280\) 0 0
\(281\) −1994.96 −0.423520 −0.211760 0.977322i \(-0.567920\pi\)
−0.211760 + 0.977322i \(0.567920\pi\)
\(282\) −76.9540 −0.0162501
\(283\) −4636.33 −0.973855 −0.486928 0.873442i \(-0.661882\pi\)
−0.486928 + 0.873442i \(0.661882\pi\)
\(284\) 1252.90 0.261781
\(285\) 0 0
\(286\) 170.472 0.0352455
\(287\) −3213.12 −0.660853
\(288\) −963.724 −0.197181
\(289\) 13016.1 2.64932
\(290\) 0 0
\(291\) −4640.40 −0.934793
\(292\) −1689.78 −0.338653
\(293\) 326.024 0.0650052 0.0325026 0.999472i \(-0.489652\pi\)
0.0325026 + 0.999472i \(0.489652\pi\)
\(294\) −144.531 −0.0286708
\(295\) 0 0
\(296\) 84.6254 0.0166174
\(297\) −1323.06 −0.258490
\(298\) −87.8346 −0.0170742
\(299\) −10694.4 −2.06848
\(300\) 0 0
\(301\) 3000.63 0.574597
\(302\) −269.751 −0.0513987
\(303\) 204.928 0.0388541
\(304\) 4765.57 0.899093
\(305\) 0 0
\(306\) −678.924 −0.126835
\(307\) −2137.32 −0.397339 −0.198669 0.980067i \(-0.563662\pi\)
−0.198669 + 0.980067i \(0.563662\pi\)
\(308\) 917.155 0.169675
\(309\) 43.0191 0.00791996
\(310\) 0 0
\(311\) 2422.78 0.441747 0.220874 0.975302i \(-0.429109\pi\)
0.220874 + 0.975302i \(0.429109\pi\)
\(312\) −623.918 −0.113213
\(313\) 4607.87 0.832115 0.416058 0.909338i \(-0.363411\pi\)
0.416058 + 0.909338i \(0.363411\pi\)
\(314\) 197.879 0.0355636
\(315\) 0 0
\(316\) −6288.33 −1.11945
\(317\) 5773.18 1.02288 0.511442 0.859318i \(-0.329111\pi\)
0.511442 + 0.859318i \(0.329111\pi\)
\(318\) 298.151 0.0525770
\(319\) 2225.84 0.390668
\(320\) 0 0
\(321\) 323.774 0.0562968
\(322\) 438.164 0.0758320
\(323\) 10201.2 1.75730
\(324\) −2008.40 −0.344376
\(325\) 0 0
\(326\) −519.320 −0.0882285
\(327\) −522.174 −0.0883066
\(328\) −1199.20 −0.201873
\(329\) 1301.23 0.218051
\(330\) 0 0
\(331\) 8976.09 1.49054 0.745272 0.666760i \(-0.232319\pi\)
0.745272 + 0.666760i \(0.232319\pi\)
\(332\) 4667.05 0.771499
\(333\) 445.229 0.0732685
\(334\) −11.0776 −0.00181479
\(335\) 0 0
\(336\) −1659.17 −0.269391
\(337\) 3868.16 0.625258 0.312629 0.949875i \(-0.398790\pi\)
0.312629 + 0.949875i \(0.398790\pi\)
\(338\) 436.517 0.0702467
\(339\) 736.686 0.118027
\(340\) 0 0
\(341\) 2108.03 0.334769
\(342\) −386.288 −0.0610763
\(343\) 6045.94 0.951749
\(344\) 1119.89 0.175524
\(345\) 0 0
\(346\) 339.657 0.0527749
\(347\) −11307.6 −1.74935 −0.874677 0.484706i \(-0.838926\pi\)
−0.874677 + 0.484706i \(0.838926\pi\)
\(348\) −4057.77 −0.625056
\(349\) −3296.03 −0.505537 −0.252768 0.967527i \(-0.581341\pi\)
−0.252768 + 0.967527i \(0.581341\pi\)
\(350\) 0 0
\(351\) −7580.61 −1.15277
\(352\) 514.097 0.0778451
\(353\) −3675.46 −0.554179 −0.277089 0.960844i \(-0.589370\pi\)
−0.277089 + 0.960844i \(0.589370\pi\)
\(354\) 226.509 0.0340080
\(355\) 0 0
\(356\) −5543.72 −0.825328
\(357\) −3551.62 −0.526531
\(358\) −22.6510 −0.00334397
\(359\) −5319.46 −0.782034 −0.391017 0.920383i \(-0.627877\pi\)
−0.391017 + 0.920383i \(0.627877\pi\)
\(360\) 0 0
\(361\) −1054.83 −0.153788
\(362\) −186.768 −0.0271169
\(363\) 305.617 0.0441893
\(364\) 5254.95 0.756687
\(365\) 0 0
\(366\) 5.66385 0.000808891 0
\(367\) −1408.85 −0.200386 −0.100193 0.994968i \(-0.531946\pi\)
−0.100193 + 0.994968i \(0.531946\pi\)
\(368\) −10614.1 −1.50353
\(369\) −6309.18 −0.890089
\(370\) 0 0
\(371\) −5041.47 −0.705500
\(372\) −3843.00 −0.535619
\(373\) −7785.80 −1.08079 −0.540393 0.841413i \(-0.681725\pi\)
−0.540393 + 0.841413i \(0.681725\pi\)
\(374\) 362.171 0.0500733
\(375\) 0 0
\(376\) 485.641 0.0666091
\(377\) 12753.2 1.74224
\(378\) 310.586 0.0422615
\(379\) 355.192 0.0481398 0.0240699 0.999710i \(-0.492338\pi\)
0.0240699 + 0.999710i \(0.492338\pi\)
\(380\) 0 0
\(381\) 3135.34 0.421597
\(382\) 367.861 0.0492708
\(383\) −2611.83 −0.348454 −0.174227 0.984705i \(-0.555743\pi\)
−0.174227 + 0.984705i \(0.555743\pi\)
\(384\) −1248.01 −0.165852
\(385\) 0 0
\(386\) 856.515 0.112942
\(387\) 5891.94 0.773912
\(388\) 14586.7 1.90858
\(389\) −5258.80 −0.685428 −0.342714 0.939440i \(-0.611346\pi\)
−0.342714 + 0.939440i \(0.611346\pi\)
\(390\) 0 0
\(391\) −22720.6 −2.93869
\(392\) 912.105 0.117521
\(393\) −5085.91 −0.652800
\(394\) −405.228 −0.0518150
\(395\) 0 0
\(396\) 1800.89 0.228531
\(397\) 967.463 0.122306 0.0611531 0.998128i \(-0.480522\pi\)
0.0611531 + 0.998128i \(0.480522\pi\)
\(398\) 679.126 0.0855315
\(399\) −2020.77 −0.253546
\(400\) 0 0
\(401\) −12713.0 −1.58318 −0.791592 0.611050i \(-0.790747\pi\)
−0.791592 + 0.611050i \(0.790747\pi\)
\(402\) 353.276 0.0438303
\(403\) 12078.2 1.49295
\(404\) −644.175 −0.0793290
\(405\) 0 0
\(406\) −522.513 −0.0638716
\(407\) −237.507 −0.0289258
\(408\) −1325.53 −0.160842
\(409\) 874.540 0.105729 0.0528646 0.998602i \(-0.483165\pi\)
0.0528646 + 0.998602i \(0.483165\pi\)
\(410\) 0 0
\(411\) −542.971 −0.0651649
\(412\) −135.227 −0.0161703
\(413\) −3830.08 −0.456334
\(414\) 860.363 0.102137
\(415\) 0 0
\(416\) 2945.58 0.347161
\(417\) 5237.83 0.615102
\(418\) 206.065 0.0241124
\(419\) 2682.23 0.312734 0.156367 0.987699i \(-0.450022\pi\)
0.156367 + 0.987699i \(0.450022\pi\)
\(420\) 0 0
\(421\) 6853.07 0.793345 0.396672 0.917960i \(-0.370165\pi\)
0.396672 + 0.917960i \(0.370165\pi\)
\(422\) 822.526 0.0948814
\(423\) 2555.04 0.293689
\(424\) −1881.57 −0.215512
\(425\) 0 0
\(426\) −98.0064 −0.0111465
\(427\) −95.7708 −0.0108540
\(428\) −1017.76 −0.114942
\(429\) 1751.07 0.197068
\(430\) 0 0
\(431\) −12404.3 −1.38630 −0.693151 0.720793i \(-0.743778\pi\)
−0.693151 + 0.720793i \(0.743778\pi\)
\(432\) −7523.70 −0.837926
\(433\) −10034.7 −1.11372 −0.556858 0.830608i \(-0.687993\pi\)
−0.556858 + 0.830608i \(0.687993\pi\)
\(434\) −494.857 −0.0547325
\(435\) 0 0
\(436\) 1641.42 0.180297
\(437\) −12927.4 −1.41510
\(438\) 132.181 0.0144197
\(439\) −1016.19 −0.110479 −0.0552393 0.998473i \(-0.517592\pi\)
−0.0552393 + 0.998473i \(0.517592\pi\)
\(440\) 0 0
\(441\) 4798.75 0.518167
\(442\) 2075.10 0.223309
\(443\) −13425.8 −1.43991 −0.719955 0.694020i \(-0.755838\pi\)
−0.719955 + 0.694020i \(0.755838\pi\)
\(444\) 432.983 0.0462803
\(445\) 0 0
\(446\) −967.616 −0.102731
\(447\) −902.227 −0.0954672
\(448\) 5134.52 0.541481
\(449\) −1006.56 −0.105796 −0.0528982 0.998600i \(-0.516846\pi\)
−0.0528982 + 0.998600i \(0.516846\pi\)
\(450\) 0 0
\(451\) 3365.62 0.351399
\(452\) −2315.72 −0.240979
\(453\) −2770.85 −0.287386
\(454\) −776.363 −0.0802566
\(455\) 0 0
\(456\) −754.187 −0.0774518
\(457\) 11568.6 1.18415 0.592077 0.805882i \(-0.298308\pi\)
0.592077 + 0.805882i \(0.298308\pi\)
\(458\) 970.137 0.0989771
\(459\) −16105.2 −1.63775
\(460\) 0 0
\(461\) −17359.4 −1.75381 −0.876906 0.480663i \(-0.840396\pi\)
−0.876906 + 0.480663i \(0.840396\pi\)
\(462\) −71.7432 −0.00722467
\(463\) −4837.20 −0.485537 −0.242768 0.970084i \(-0.578056\pi\)
−0.242768 + 0.970084i \(0.578056\pi\)
\(464\) 12657.4 1.26639
\(465\) 0 0
\(466\) 35.4742 0.00352641
\(467\) −666.327 −0.0660256 −0.0330128 0.999455i \(-0.510510\pi\)
−0.0330128 + 0.999455i \(0.510510\pi\)
\(468\) 10318.4 1.01917
\(469\) −5973.59 −0.588134
\(470\) 0 0
\(471\) 2032.59 0.198847
\(472\) −1429.45 −0.139398
\(473\) −3143.05 −0.305534
\(474\) 491.896 0.0476657
\(475\) 0 0
\(476\) 11164.2 1.07503
\(477\) −9899.26 −0.950223
\(478\) 161.267 0.0154313
\(479\) −6115.67 −0.583366 −0.291683 0.956515i \(-0.594215\pi\)
−0.291683 + 0.956515i \(0.594215\pi\)
\(480\) 0 0
\(481\) −1360.82 −0.128998
\(482\) 479.473 0.0453099
\(483\) 4500.77 0.424000
\(484\) −960.684 −0.0902220
\(485\) 0 0
\(486\) 955.635 0.0891944
\(487\) −17161.4 −1.59683 −0.798417 0.602105i \(-0.794329\pi\)
−0.798417 + 0.602105i \(0.794329\pi\)
\(488\) −35.7434 −0.00331563
\(489\) −5334.40 −0.493313
\(490\) 0 0
\(491\) 16482.4 1.51495 0.757477 0.652862i \(-0.226432\pi\)
0.757477 + 0.652862i \(0.226432\pi\)
\(492\) −6135.64 −0.562227
\(493\) 27094.4 2.47520
\(494\) 1180.67 0.107532
\(495\) 0 0
\(496\) 11987.5 1.08519
\(497\) 1657.20 0.149569
\(498\) −365.074 −0.0328501
\(499\) 17008.9 1.52590 0.762951 0.646456i \(-0.223750\pi\)
0.762951 + 0.646456i \(0.223750\pi\)
\(500\) 0 0
\(501\) −113.788 −0.0101470
\(502\) −1479.43 −0.131534
\(503\) 12515.0 1.10938 0.554689 0.832058i \(-0.312837\pi\)
0.554689 + 0.832058i \(0.312837\pi\)
\(504\) −848.735 −0.0750113
\(505\) 0 0
\(506\) −458.959 −0.0403226
\(507\) 4483.85 0.392771
\(508\) −9855.71 −0.860781
\(509\) 1833.43 0.159657 0.0798284 0.996809i \(-0.474563\pi\)
0.0798284 + 0.996809i \(0.474563\pi\)
\(510\) 0 0
\(511\) −2235.06 −0.193490
\(512\) 4884.80 0.421640
\(513\) −9163.39 −0.788642
\(514\) 159.705 0.0137049
\(515\) 0 0
\(516\) 5729.87 0.488844
\(517\) −1362.98 −0.115946
\(518\) 55.7545 0.00472917
\(519\) 3488.92 0.295080
\(520\) 0 0
\(521\) 9607.94 0.807930 0.403965 0.914774i \(-0.367632\pi\)
0.403965 + 0.914774i \(0.367632\pi\)
\(522\) −1025.99 −0.0860274
\(523\) −22737.4 −1.90103 −0.950515 0.310680i \(-0.899443\pi\)
−0.950515 + 0.310680i \(0.899443\pi\)
\(524\) 15987.2 1.33283
\(525\) 0 0
\(526\) 1115.05 0.0924304
\(527\) 25660.4 2.12103
\(528\) 1737.92 0.143245
\(529\) 16625.5 1.36644
\(530\) 0 0
\(531\) −7520.61 −0.614626
\(532\) 6352.14 0.517669
\(533\) 19283.7 1.56711
\(534\) 433.650 0.0351421
\(535\) 0 0
\(536\) −2229.45 −0.179660
\(537\) −232.668 −0.0186972
\(538\) −952.519 −0.0763309
\(539\) −2559.88 −0.204568
\(540\) 0 0
\(541\) 17169.2 1.36444 0.682218 0.731149i \(-0.261015\pi\)
0.682218 + 0.731149i \(0.261015\pi\)
\(542\) 1980.04 0.156919
\(543\) −1918.46 −0.151619
\(544\) 6257.95 0.493212
\(545\) 0 0
\(546\) −411.061 −0.0322194
\(547\) 8825.65 0.689868 0.344934 0.938627i \(-0.387901\pi\)
0.344934 + 0.938627i \(0.387901\pi\)
\(548\) 1706.79 0.133048
\(549\) −188.052 −0.0146191
\(550\) 0 0
\(551\) 15416.0 1.19191
\(552\) 1679.77 0.129521
\(553\) −8317.54 −0.639598
\(554\) −1702.46 −0.130561
\(555\) 0 0
\(556\) −16464.7 −1.25586
\(557\) 5127.25 0.390034 0.195017 0.980800i \(-0.437524\pi\)
0.195017 + 0.980800i \(0.437524\pi\)
\(558\) −971.685 −0.0737181
\(559\) −18008.5 −1.36257
\(560\) 0 0
\(561\) 3720.18 0.279975
\(562\) −490.541 −0.0368189
\(563\) −7376.40 −0.552182 −0.276091 0.961132i \(-0.589039\pi\)
−0.276091 + 0.961132i \(0.589039\pi\)
\(564\) 2484.76 0.185509
\(565\) 0 0
\(566\) −1140.03 −0.0846625
\(567\) −2656.50 −0.196759
\(568\) 618.498 0.0456894
\(569\) −4994.96 −0.368013 −0.184007 0.982925i \(-0.558907\pi\)
−0.184007 + 0.982925i \(0.558907\pi\)
\(570\) 0 0
\(571\) −17437.0 −1.27796 −0.638981 0.769223i \(-0.720644\pi\)
−0.638981 + 0.769223i \(0.720644\pi\)
\(572\) −5504.35 −0.402358
\(573\) 3778.63 0.275488
\(574\) −790.076 −0.0574515
\(575\) 0 0
\(576\) 10082.0 0.729309
\(577\) −6214.31 −0.448362 −0.224181 0.974548i \(-0.571971\pi\)
−0.224181 + 0.974548i \(0.571971\pi\)
\(578\) 3200.54 0.230320
\(579\) 8798.02 0.631491
\(580\) 0 0
\(581\) 6173.09 0.440796
\(582\) −1141.03 −0.0812666
\(583\) 5280.75 0.375139
\(584\) −834.165 −0.0591061
\(585\) 0 0
\(586\) 80.1661 0.00565125
\(587\) −17894.4 −1.25823 −0.629115 0.777312i \(-0.716583\pi\)
−0.629115 + 0.777312i \(0.716583\pi\)
\(588\) 4666.75 0.327302
\(589\) 14600.0 1.02136
\(590\) 0 0
\(591\) −4162.46 −0.289714
\(592\) −1350.61 −0.0937662
\(593\) −9135.21 −0.632611 −0.316305 0.948657i \(-0.602442\pi\)
−0.316305 + 0.948657i \(0.602442\pi\)
\(594\) −325.327 −0.0224719
\(595\) 0 0
\(596\) 2836.08 0.194917
\(597\) 6975.91 0.478233
\(598\) −2629.66 −0.179824
\(599\) −10733.3 −0.732138 −0.366069 0.930588i \(-0.619297\pi\)
−0.366069 + 0.930588i \(0.619297\pi\)
\(600\) 0 0
\(601\) 22991.7 1.56048 0.780241 0.625479i \(-0.215096\pi\)
0.780241 + 0.625479i \(0.215096\pi\)
\(602\) 737.827 0.0499528
\(603\) −11729.5 −0.792145
\(604\) 8709.97 0.586761
\(605\) 0 0
\(606\) 50.3897 0.00337779
\(607\) 7737.80 0.517410 0.258705 0.965956i \(-0.416704\pi\)
0.258705 + 0.965956i \(0.416704\pi\)
\(608\) 3560.59 0.237502
\(609\) −5367.19 −0.357126
\(610\) 0 0
\(611\) −7809.37 −0.517076
\(612\) 21921.7 1.44793
\(613\) 7184.13 0.473351 0.236676 0.971589i \(-0.423942\pi\)
0.236676 + 0.971589i \(0.423942\pi\)
\(614\) −525.545 −0.0345428
\(615\) 0 0
\(616\) 452.757 0.0296138
\(617\) 8472.83 0.552842 0.276421 0.961037i \(-0.410852\pi\)
0.276421 + 0.961037i \(0.410852\pi\)
\(618\) 10.5780 0.000688525 0
\(619\) −19905.0 −1.29249 −0.646243 0.763132i \(-0.723661\pi\)
−0.646243 + 0.763132i \(0.723661\pi\)
\(620\) 0 0
\(621\) 20409.2 1.31883
\(622\) 595.739 0.0384035
\(623\) −7332.66 −0.471552
\(624\) 9957.61 0.638820
\(625\) 0 0
\(626\) 1133.03 0.0723403
\(627\) 2116.68 0.134820
\(628\) −6389.30 −0.405989
\(629\) −2891.10 −0.183268
\(630\) 0 0
\(631\) −10106.1 −0.637585 −0.318792 0.947825i \(-0.603277\pi\)
−0.318792 + 0.947825i \(0.603277\pi\)
\(632\) −3104.26 −0.195381
\(633\) 8448.90 0.530511
\(634\) 1419.57 0.0889248
\(635\) 0 0
\(636\) −9626.97 −0.600211
\(637\) −14667.2 −0.912298
\(638\) 547.312 0.0339628
\(639\) 3254.03 0.201451
\(640\) 0 0
\(641\) 9871.80 0.608288 0.304144 0.952626i \(-0.401630\pi\)
0.304144 + 0.952626i \(0.401630\pi\)
\(642\) 79.6128 0.00489419
\(643\) −17121.0 −1.05006 −0.525029 0.851085i \(-0.675945\pi\)
−0.525029 + 0.851085i \(0.675945\pi\)
\(644\) −14147.8 −0.865688
\(645\) 0 0
\(646\) 2508.37 0.152771
\(647\) −31134.9 −1.89187 −0.945934 0.324360i \(-0.894851\pi\)
−0.945934 + 0.324360i \(0.894851\pi\)
\(648\) −991.453 −0.0601048
\(649\) 4011.86 0.242649
\(650\) 0 0
\(651\) −5083.12 −0.306026
\(652\) 16768.3 1.00720
\(653\) 6956.15 0.416868 0.208434 0.978036i \(-0.433163\pi\)
0.208434 + 0.978036i \(0.433163\pi\)
\(654\) −128.397 −0.00767697
\(655\) 0 0
\(656\) 19138.9 1.13910
\(657\) −4388.69 −0.260607
\(658\) 319.959 0.0189564
\(659\) −24539.2 −1.45055 −0.725273 0.688461i \(-0.758287\pi\)
−0.725273 + 0.688461i \(0.758287\pi\)
\(660\) 0 0
\(661\) 8010.03 0.471338 0.235669 0.971833i \(-0.424272\pi\)
0.235669 + 0.971833i \(0.424272\pi\)
\(662\) 2207.13 0.129581
\(663\) 21315.2 1.24859
\(664\) 2303.91 0.134652
\(665\) 0 0
\(666\) 109.478 0.00636963
\(667\) −34335.3 −1.99320
\(668\) 357.684 0.0207174
\(669\) −9939.24 −0.574400
\(670\) 0 0
\(671\) 100.316 0.00577148
\(672\) −1239.65 −0.0711615
\(673\) 32455.9 1.85896 0.929481 0.368870i \(-0.120255\pi\)
0.929481 + 0.368870i \(0.120255\pi\)
\(674\) 951.143 0.0543571
\(675\) 0 0
\(676\) −14094.7 −0.801927
\(677\) −29149.4 −1.65480 −0.827402 0.561610i \(-0.810182\pi\)
−0.827402 + 0.561610i \(0.810182\pi\)
\(678\) 181.144 0.0102608
\(679\) 19293.8 1.09047
\(680\) 0 0
\(681\) −7974.71 −0.448739
\(682\) 518.344 0.0291032
\(683\) 4649.07 0.260457 0.130228 0.991484i \(-0.458429\pi\)
0.130228 + 0.991484i \(0.458429\pi\)
\(684\) 12472.8 0.697238
\(685\) 0 0
\(686\) 1486.64 0.0827407
\(687\) 9965.14 0.553411
\(688\) −17873.2 −0.990423
\(689\) 30256.7 1.67299
\(690\) 0 0
\(691\) 4286.03 0.235960 0.117980 0.993016i \(-0.462358\pi\)
0.117980 + 0.993016i \(0.462358\pi\)
\(692\) −10967.2 −0.602470
\(693\) 2382.03 0.130571
\(694\) −2780.44 −0.152081
\(695\) 0 0
\(696\) −2003.13 −0.109093
\(697\) 40968.7 2.22640
\(698\) −810.462 −0.0439490
\(699\) 364.387 0.0197173
\(700\) 0 0
\(701\) 22751.0 1.22581 0.612905 0.790157i \(-0.290001\pi\)
0.612905 + 0.790157i \(0.290001\pi\)
\(702\) −1864.00 −0.100217
\(703\) −1644.95 −0.0882512
\(704\) −5378.21 −0.287925
\(705\) 0 0
\(706\) −903.761 −0.0481777
\(707\) −852.047 −0.0453247
\(708\) −7313.74 −0.388231
\(709\) −541.209 −0.0286679 −0.0143339 0.999897i \(-0.504563\pi\)
−0.0143339 + 0.999897i \(0.504563\pi\)
\(710\) 0 0
\(711\) −16332.0 −0.861462
\(712\) −2736.68 −0.144047
\(713\) −32518.0 −1.70801
\(714\) −873.308 −0.0457741
\(715\) 0 0
\(716\) 731.376 0.0381743
\(717\) 1656.51 0.0862813
\(718\) −1308.00 −0.0679865
\(719\) 11819.9 0.613085 0.306543 0.951857i \(-0.400828\pi\)
0.306543 + 0.951857i \(0.400828\pi\)
\(720\) 0 0
\(721\) −178.864 −0.00923892
\(722\) −259.374 −0.0133696
\(723\) 4925.09 0.253342
\(724\) 6030.55 0.309563
\(725\) 0 0
\(726\) 75.1482 0.00384161
\(727\) 28.3305 0.00144528 0.000722642 1.00000i \(-0.499770\pi\)
0.000722642 1.00000i \(0.499770\pi\)
\(728\) 2594.12 0.132067
\(729\) 2986.21 0.151715
\(730\) 0 0
\(731\) −38259.3 −1.93580
\(732\) −182.880 −0.00923418
\(733\) 3239.61 0.163244 0.0816220 0.996663i \(-0.473990\pi\)
0.0816220 + 0.996663i \(0.473990\pi\)
\(734\) −346.423 −0.0174206
\(735\) 0 0
\(736\) −7930.35 −0.397169
\(737\) 6257.10 0.312732
\(738\) −1551.37 −0.0773802
\(739\) −10380.6 −0.516720 −0.258360 0.966049i \(-0.583182\pi\)
−0.258360 + 0.966049i \(0.583182\pi\)
\(740\) 0 0
\(741\) 12127.7 0.601247
\(742\) −1239.65 −0.0613329
\(743\) 12344.3 0.609515 0.304758 0.952430i \(-0.401425\pi\)
0.304758 + 0.952430i \(0.401425\pi\)
\(744\) −1897.11 −0.0934831
\(745\) 0 0
\(746\) −1914.45 −0.0939586
\(747\) 12121.3 0.593700
\(748\) −11694.1 −0.571630
\(749\) −1346.18 −0.0656722
\(750\) 0 0
\(751\) −5340.50 −0.259491 −0.129745 0.991547i \(-0.541416\pi\)
−0.129745 + 0.991547i \(0.541416\pi\)
\(752\) −7750.73 −0.375851
\(753\) −15196.5 −0.735447
\(754\) 3135.89 0.151462
\(755\) 0 0
\(756\) −10028.5 −0.482451
\(757\) 22616.5 1.08588 0.542939 0.839772i \(-0.317312\pi\)
0.542939 + 0.839772i \(0.317312\pi\)
\(758\) 87.3383 0.00418505
\(759\) −4714.38 −0.225456
\(760\) 0 0
\(761\) −36847.6 −1.75522 −0.877611 0.479373i \(-0.840864\pi\)
−0.877611 + 0.479373i \(0.840864\pi\)
\(762\) 770.950 0.0366517
\(763\) 2171.09 0.103013
\(764\) −11877.9 −0.562468
\(765\) 0 0
\(766\) −642.223 −0.0302930
\(767\) 22986.4 1.08213
\(768\) 9572.45 0.449760
\(769\) −30448.8 −1.42785 −0.713923 0.700225i \(-0.753083\pi\)
−0.713923 + 0.700225i \(0.753083\pi\)
\(770\) 0 0
\(771\) 1640.47 0.0766281
\(772\) −27656.0 −1.28933
\(773\) 8119.13 0.377781 0.188890 0.981998i \(-0.439511\pi\)
0.188890 + 0.981998i \(0.439511\pi\)
\(774\) 1448.77 0.0672804
\(775\) 0 0
\(776\) 7200.80 0.333110
\(777\) 572.704 0.0264423
\(778\) −1293.09 −0.0595880
\(779\) 23310.0 1.07210
\(780\) 0 0
\(781\) −1735.86 −0.0795311
\(782\) −5586.77 −0.255476
\(783\) −24338.1 −1.11082
\(784\) −14557.0 −0.663130
\(785\) 0 0
\(786\) −1250.58 −0.0567514
\(787\) 39807.6 1.80303 0.901517 0.432744i \(-0.142455\pi\)
0.901517 + 0.432744i \(0.142455\pi\)
\(788\) 13084.4 0.591513
\(789\) 11453.6 0.516807
\(790\) 0 0
\(791\) −3062.99 −0.137683
\(792\) 889.017 0.0398862
\(793\) 574.773 0.0257387
\(794\) 237.890 0.0106327
\(795\) 0 0
\(796\) −21928.3 −0.976415
\(797\) 26083.3 1.15924 0.579621 0.814886i \(-0.303201\pi\)
0.579621 + 0.814886i \(0.303201\pi\)
\(798\) −496.887 −0.0220421
\(799\) −16591.2 −0.734610
\(800\) 0 0
\(801\) −14398.1 −0.635123
\(802\) −3126.00 −0.137635
\(803\) 2341.14 0.102885
\(804\) −11406.9 −0.500361
\(805\) 0 0
\(806\) 2969.91 0.129790
\(807\) −9784.17 −0.426789
\(808\) −317.999 −0.0138455
\(809\) −24719.7 −1.07429 −0.537143 0.843491i \(-0.680496\pi\)
−0.537143 + 0.843491i \(0.680496\pi\)
\(810\) 0 0
\(811\) −39107.6 −1.69328 −0.846642 0.532163i \(-0.821379\pi\)
−0.846642 + 0.532163i \(0.821379\pi\)
\(812\) 16871.4 0.729150
\(813\) 20338.7 0.877381
\(814\) −58.4007 −0.00251467
\(815\) 0 0
\(816\) 21155.2 0.907572
\(817\) −21768.5 −0.932170
\(818\) 215.041 0.00919161
\(819\) 13648.1 0.582301
\(820\) 0 0
\(821\) −8149.66 −0.346438 −0.173219 0.984883i \(-0.555417\pi\)
−0.173219 + 0.984883i \(0.555417\pi\)
\(822\) −133.511 −0.00566514
\(823\) 1052.83 0.0445923 0.0222962 0.999751i \(-0.492902\pi\)
0.0222962 + 0.999751i \(0.492902\pi\)
\(824\) −66.7554 −0.00282225
\(825\) 0 0
\(826\) −941.779 −0.0396715
\(827\) −14414.1 −0.606078 −0.303039 0.952978i \(-0.598001\pi\)
−0.303039 + 0.952978i \(0.598001\pi\)
\(828\) −27780.2 −1.16598
\(829\) 25958.2 1.08753 0.543767 0.839236i \(-0.316997\pi\)
0.543767 + 0.839236i \(0.316997\pi\)
\(830\) 0 0
\(831\) −17487.5 −0.730006
\(832\) −30815.1 −1.28404
\(833\) −31160.7 −1.29610
\(834\) 1287.93 0.0534741
\(835\) 0 0
\(836\) −6653.62 −0.275263
\(837\) −23049.9 −0.951879
\(838\) 659.535 0.0271877
\(839\) −39.9909 −0.00164558 −0.000822789 1.00000i \(-0.500262\pi\)
−0.000822789 1.00000i \(0.500262\pi\)
\(840\) 0 0
\(841\) 16556.0 0.678832
\(842\) 1685.10 0.0689697
\(843\) −5038.78 −0.205866
\(844\) −26558.5 −1.08315
\(845\) 0 0
\(846\) 628.260 0.0255319
\(847\) −1270.69 −0.0515484
\(848\) 30029.5 1.21606
\(849\) −11710.2 −0.473374
\(850\) 0 0
\(851\) 3663.73 0.147581
\(852\) 3164.52 0.127247
\(853\) 10756.0 0.431743 0.215871 0.976422i \(-0.430741\pi\)
0.215871 + 0.976422i \(0.430741\pi\)
\(854\) −23.5491 −0.000943599 0
\(855\) 0 0
\(856\) −502.420 −0.0200612
\(857\) −37977.4 −1.51375 −0.756875 0.653560i \(-0.773275\pi\)
−0.756875 + 0.653560i \(0.773275\pi\)
\(858\) 430.570 0.0171322
\(859\) −12471.3 −0.495361 −0.247681 0.968842i \(-0.579668\pi\)
−0.247681 + 0.968842i \(0.579668\pi\)
\(860\) 0 0
\(861\) −8115.57 −0.321229
\(862\) −3050.11 −0.120519
\(863\) 30920.2 1.21963 0.609813 0.792545i \(-0.291245\pi\)
0.609813 + 0.792545i \(0.291245\pi\)
\(864\) −5621.32 −0.221344
\(865\) 0 0
\(866\) −2467.45 −0.0968212
\(867\) 32875.5 1.28779
\(868\) 15978.4 0.624819
\(869\) 8712.30 0.340097
\(870\) 0 0
\(871\) 35850.8 1.39467
\(872\) 810.290 0.0314678
\(873\) 37884.7 1.46873
\(874\) −3178.71 −0.123022
\(875\) 0 0
\(876\) −4267.97 −0.164613
\(877\) 1896.09 0.0730061 0.0365030 0.999334i \(-0.488378\pi\)
0.0365030 + 0.999334i \(0.488378\pi\)
\(878\) −249.871 −0.00960450
\(879\) 823.457 0.0315979
\(880\) 0 0
\(881\) −9451.40 −0.361437 −0.180718 0.983535i \(-0.557842\pi\)
−0.180718 + 0.983535i \(0.557842\pi\)
\(882\) 1179.97 0.0450471
\(883\) −17623.7 −0.671669 −0.335834 0.941921i \(-0.609018\pi\)
−0.335834 + 0.941921i \(0.609018\pi\)
\(884\) −67002.8 −2.54926
\(885\) 0 0
\(886\) −3301.28 −0.125179
\(887\) 43411.7 1.64332 0.821658 0.569980i \(-0.193049\pi\)
0.821658 + 0.569980i \(0.193049\pi\)
\(888\) 213.743 0.00807743
\(889\) −13036.1 −0.491807
\(890\) 0 0
\(891\) 2782.58 0.104624
\(892\) 31243.3 1.17276
\(893\) −9439.91 −0.353745
\(894\) −221.849 −0.00829948
\(895\) 0 0
\(896\) 5188.96 0.193472
\(897\) −27011.6 −1.00545
\(898\) −247.504 −0.00919745
\(899\) 38777.9 1.43862
\(900\) 0 0
\(901\) 64280.9 2.37681
\(902\) 827.574 0.0305490
\(903\) 7578.87 0.279301
\(904\) −1143.16 −0.0420587
\(905\) 0 0
\(906\) −681.325 −0.0249840
\(907\) −37888.6 −1.38707 −0.693534 0.720423i \(-0.743947\pi\)
−0.693534 + 0.720423i \(0.743947\pi\)
\(908\) 25067.9 0.916198
\(909\) −1673.05 −0.0610468
\(910\) 0 0
\(911\) −42276.8 −1.53753 −0.768766 0.639530i \(-0.779129\pi\)
−0.768766 + 0.639530i \(0.779129\pi\)
\(912\) 12036.7 0.437033
\(913\) −6466.07 −0.234387
\(914\) 2844.62 0.102945
\(915\) 0 0
\(916\) −31324.7 −1.12991
\(917\) 21146.2 0.761514
\(918\) −3960.11 −0.142378
\(919\) 32790.8 1.17701 0.588504 0.808494i \(-0.299717\pi\)
0.588504 + 0.808494i \(0.299717\pi\)
\(920\) 0 0
\(921\) −5398.34 −0.193139
\(922\) −4268.51 −0.152468
\(923\) −9945.79 −0.354680
\(924\) 2316.51 0.0824758
\(925\) 0 0
\(926\) −1189.42 −0.0422103
\(927\) −351.212 −0.0124437
\(928\) 9457.00 0.334527
\(929\) 25997.1 0.918122 0.459061 0.888405i \(-0.348186\pi\)
0.459061 + 0.888405i \(0.348186\pi\)
\(930\) 0 0
\(931\) −17729.5 −0.624127
\(932\) −1145.42 −0.0402571
\(933\) 6119.36 0.214726
\(934\) −163.843 −0.00573996
\(935\) 0 0
\(936\) 5093.73 0.177878
\(937\) −23318.7 −0.813008 −0.406504 0.913649i \(-0.633252\pi\)
−0.406504 + 0.913649i \(0.633252\pi\)
\(938\) −1468.85 −0.0511296
\(939\) 11638.4 0.404477
\(940\) 0 0
\(941\) 47178.4 1.63440 0.817201 0.576353i \(-0.195525\pi\)
0.817201 + 0.576353i \(0.195525\pi\)
\(942\) 499.795 0.0172868
\(943\) −51917.4 −1.79285
\(944\) 22813.8 0.786575
\(945\) 0 0
\(946\) −772.845 −0.0265617
\(947\) −18988.7 −0.651584 −0.325792 0.945441i \(-0.605631\pi\)
−0.325792 + 0.945441i \(0.605631\pi\)
\(948\) −15882.8 −0.544145
\(949\) 13413.8 0.458832
\(950\) 0 0
\(951\) 14581.7 0.497206
\(952\) 5511.27 0.187627
\(953\) −33650.1 −1.14379 −0.571896 0.820326i \(-0.693792\pi\)
−0.571896 + 0.820326i \(0.693792\pi\)
\(954\) −2434.13 −0.0826080
\(955\) 0 0
\(956\) −5207.13 −0.176162
\(957\) 5621.93 0.189897
\(958\) −1503.79 −0.0507151
\(959\) 2257.56 0.0760172
\(960\) 0 0
\(961\) 6934.46 0.232770
\(962\) −334.613 −0.0112145
\(963\) −2643.32 −0.0884526
\(964\) −15481.7 −0.517252
\(965\) 0 0
\(966\) 1106.70 0.0368606
\(967\) −25555.9 −0.849869 −0.424934 0.905224i \(-0.639703\pi\)
−0.424934 + 0.905224i \(0.639703\pi\)
\(968\) −474.245 −0.0157467
\(969\) 25765.6 0.854192
\(970\) 0 0
\(971\) 23379.4 0.772690 0.386345 0.922354i \(-0.373737\pi\)
0.386345 + 0.922354i \(0.373737\pi\)
\(972\) −30856.4 −1.01823
\(973\) −21777.8 −0.717538
\(974\) −4219.83 −0.138821
\(975\) 0 0
\(976\) 570.457 0.0187089
\(977\) −5631.85 −0.184421 −0.0922103 0.995740i \(-0.529393\pi\)
−0.0922103 + 0.995740i \(0.529393\pi\)
\(978\) −1311.68 −0.0428863
\(979\) 7680.67 0.250741
\(980\) 0 0
\(981\) 4263.08 0.138746
\(982\) 4052.88 0.131703
\(983\) −24438.5 −0.792946 −0.396473 0.918046i \(-0.629766\pi\)
−0.396473 + 0.918046i \(0.629766\pi\)
\(984\) −3028.88 −0.0981271
\(985\) 0 0
\(986\) 6662.26 0.215182
\(987\) 3286.58 0.105991
\(988\) −38122.7 −1.22757
\(989\) 48484.0 1.55885
\(990\) 0 0
\(991\) −13590.4 −0.435635 −0.217817 0.975990i \(-0.569894\pi\)
−0.217817 + 0.975990i \(0.569894\pi\)
\(992\) 8956.46 0.286661
\(993\) 22671.4 0.724528
\(994\) 407.491 0.0130028
\(995\) 0 0
\(996\) 11787.8 0.375012
\(997\) 24783.1 0.787249 0.393624 0.919271i \(-0.371221\pi\)
0.393624 + 0.919271i \(0.371221\pi\)
\(998\) 4182.34 0.132655
\(999\) 2596.99 0.0822473
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.k.1.6 10
3.2 odd 2 2475.4.a.bw.1.5 10
5.2 odd 4 55.4.b.b.34.6 yes 10
5.3 odd 4 55.4.b.b.34.5 10
5.4 even 2 inner 275.4.a.k.1.5 10
15.2 even 4 495.4.c.b.199.5 10
15.8 even 4 495.4.c.b.199.6 10
15.14 odd 2 2475.4.a.bw.1.6 10
20.3 even 4 880.4.b.i.529.5 10
20.7 even 4 880.4.b.i.529.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.b.b.34.5 10 5.3 odd 4
55.4.b.b.34.6 yes 10 5.2 odd 4
275.4.a.k.1.5 10 5.4 even 2 inner
275.4.a.k.1.6 10 1.1 even 1 trivial
495.4.c.b.199.5 10 15.2 even 4
495.4.c.b.199.6 10 15.8 even 4
880.4.b.i.529.5 10 20.3 even 4
880.4.b.i.529.6 10 20.7 even 4
2475.4.a.bw.1.5 10 3.2 odd 2
2475.4.a.bw.1.6 10 15.14 odd 2