Properties

Label 275.4.b.b.199.1
Level $275$
Weight $4$
Character 275.199
Analytic conductor $16.226$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(199,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-1.56155i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.4.b.b.199.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.56155i q^{2} +3.56155i q^{3} -22.9309 q^{4} +19.8078 q^{6} +6.05398i q^{7} +83.0388i q^{8} +14.3153 q^{9} -11.0000 q^{11} -81.6695i q^{12} +4.38447i q^{13} +33.6695 q^{14} +278.378 q^{16} -110.546i q^{17} -79.6155i q^{18} +94.2699 q^{19} -21.5616 q^{21} +61.1771i q^{22} -15.7538i q^{23} -295.747 q^{24} +24.3845 q^{26} +147.147i q^{27} -138.823i q^{28} +256.870 q^{29} -170.702 q^{31} -883.902i q^{32} -39.1771i q^{33} -614.810 q^{34} -328.263 q^{36} -190.853i q^{37} -524.287i q^{38} -15.6155 q^{39} +249.602 q^{41} +119.916i q^{42} -291.602i q^{43} +252.240 q^{44} -87.6155 q^{46} +182.155i q^{47} +991.457i q^{48} +306.349 q^{49} +393.717 q^{51} -100.540i q^{52} +289.902i q^{53} +818.365 q^{54} -502.715 q^{56} +335.747i q^{57} -1428.60i q^{58} -282.725 q^{59} +167.825 q^{61} +949.366i q^{62} +86.6647i q^{63} -2688.85 q^{64} -217.885 q^{66} -176.233i q^{67} +2534.93i q^{68} +56.1080 q^{69} +919.255 q^{71} +1188.73i q^{72} -154.570i q^{73} -1061.44 q^{74} -2161.69 q^{76} -66.5937i q^{77} +86.8466i q^{78} +882.017 q^{79} -137.557 q^{81} -1388.18i q^{82} -277.619i q^{83} +494.425 q^{84} -1621.76 q^{86} +914.857i q^{87} -913.427i q^{88} +977.147 q^{89} -26.5435 q^{91} +361.248i q^{92} -607.963i q^{93} +1013.07 q^{94} +3148.07 q^{96} -1102.94i q^{97} -1703.78i q^{98} -157.469 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 34 q^{4} + 38 q^{6} + 82 q^{9} - 44 q^{11} - 22 q^{14} + 594 q^{16} + 6 q^{19} - 78 q^{21} - 614 q^{24} + 180 q^{26} + 442 q^{29} + 282 q^{31} - 1346 q^{34} - 340 q^{36} + 20 q^{39} - 288 q^{41} + 374 q^{44}+ \cdots - 902 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.56155i − 1.96631i −0.182785 0.983153i \(-0.558511\pi\)
0.182785 0.983153i \(-0.441489\pi\)
\(3\) 3.56155i 0.685421i 0.939441 + 0.342711i \(0.111345\pi\)
−0.939441 + 0.342711i \(0.888655\pi\)
\(4\) −22.9309 −2.86636
\(5\) 0 0
\(6\) 19.8078 1.34775
\(7\) 6.05398i 0.326884i 0.986553 + 0.163442i \(0.0522597\pi\)
−0.986553 + 0.163442i \(0.947740\pi\)
\(8\) 83.0388i 3.66983i
\(9\) 14.3153 0.530198
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) − 81.6695i − 1.96466i
\(13\) 4.38447i 0.0935411i 0.998906 + 0.0467705i \(0.0148930\pi\)
−0.998906 + 0.0467705i \(0.985107\pi\)
\(14\) 33.6695 0.642754
\(15\) 0 0
\(16\) 278.378 4.34965
\(17\) − 110.546i − 1.57714i −0.614943 0.788572i \(-0.710821\pi\)
0.614943 0.788572i \(-0.289179\pi\)
\(18\) − 79.6155i − 1.04253i
\(19\) 94.2699 1.13826 0.569131 0.822247i \(-0.307280\pi\)
0.569131 + 0.822247i \(0.307280\pi\)
\(20\) 0 0
\(21\) −21.5616 −0.224053
\(22\) 61.1771i 0.592864i
\(23\) − 15.7538i − 0.142821i −0.997447 0.0714107i \(-0.977250\pi\)
0.997447 0.0714107i \(-0.0227501\pi\)
\(24\) −295.747 −2.51538
\(25\) 0 0
\(26\) 24.3845 0.183930
\(27\) 147.147i 1.04883i
\(28\) − 138.823i − 0.936967i
\(29\) 256.870 1.64481 0.822407 0.568900i \(-0.192631\pi\)
0.822407 + 0.568900i \(0.192631\pi\)
\(30\) 0 0
\(31\) −170.702 −0.988998 −0.494499 0.869178i \(-0.664648\pi\)
−0.494499 + 0.869178i \(0.664648\pi\)
\(32\) − 883.902i − 4.88292i
\(33\) − 39.1771i − 0.206662i
\(34\) −614.810 −3.10115
\(35\) 0 0
\(36\) −328.263 −1.51974
\(37\) − 190.853i − 0.848002i −0.905662 0.424001i \(-0.860625\pi\)
0.905662 0.424001i \(-0.139375\pi\)
\(38\) − 524.287i − 2.23817i
\(39\) −15.6155 −0.0641150
\(40\) 0 0
\(41\) 249.602 0.950764 0.475382 0.879780i \(-0.342310\pi\)
0.475382 + 0.879780i \(0.342310\pi\)
\(42\) 119.916i 0.440557i
\(43\) − 291.602i − 1.03416i −0.855937 0.517081i \(-0.827019\pi\)
0.855937 0.517081i \(-0.172981\pi\)
\(44\) 252.240 0.864240
\(45\) 0 0
\(46\) −87.6155 −0.280831
\(47\) 182.155i 0.565321i 0.959220 + 0.282660i \(0.0912169\pi\)
−0.959220 + 0.282660i \(0.908783\pi\)
\(48\) 991.457i 2.98134i
\(49\) 306.349 0.893147
\(50\) 0 0
\(51\) 393.717 1.08101
\(52\) − 100.540i − 0.268122i
\(53\) 289.902i 0.751343i 0.926753 + 0.375671i \(0.122588\pi\)
−0.926753 + 0.375671i \(0.877412\pi\)
\(54\) 818.365 2.06232
\(55\) 0 0
\(56\) −502.715 −1.19961
\(57\) 335.747i 0.780189i
\(58\) − 1428.60i − 3.23421i
\(59\) −282.725 −0.623859 −0.311930 0.950105i \(-0.600975\pi\)
−0.311930 + 0.950105i \(0.600975\pi\)
\(60\) 0 0
\(61\) 167.825 0.352258 0.176129 0.984367i \(-0.443642\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(62\) 949.366i 1.94467i
\(63\) 86.6647i 0.173313i
\(64\) −2688.85 −5.25166
\(65\) 0 0
\(66\) −217.885 −0.406361
\(67\) − 176.233i − 0.321347i −0.987008 0.160674i \(-0.948633\pi\)
0.987008 0.160674i \(-0.0513667\pi\)
\(68\) 2534.93i 4.52066i
\(69\) 56.1080 0.0978928
\(70\) 0 0
\(71\) 919.255 1.53656 0.768278 0.640116i \(-0.221114\pi\)
0.768278 + 0.640116i \(0.221114\pi\)
\(72\) 1188.73i 1.94574i
\(73\) − 154.570i − 0.247823i −0.992293 0.123911i \(-0.960456\pi\)
0.992293 0.123911i \(-0.0395438\pi\)
\(74\) −1061.44 −1.66743
\(75\) 0 0
\(76\) −2161.69 −3.26267
\(77\) − 66.5937i − 0.0985592i
\(78\) 86.8466i 0.126070i
\(79\) 882.017 1.25614 0.628068 0.778159i \(-0.283846\pi\)
0.628068 + 0.778159i \(0.283846\pi\)
\(80\) 0 0
\(81\) −137.557 −0.188692
\(82\) − 1388.18i − 1.86949i
\(83\) − 277.619i − 0.367141i −0.983007 0.183570i \(-0.941234\pi\)
0.983007 0.183570i \(-0.0587655\pi\)
\(84\) 494.425 0.642217
\(85\) 0 0
\(86\) −1621.76 −2.03348
\(87\) 914.857i 1.12739i
\(88\) − 913.427i − 1.10650i
\(89\) 977.147 1.16379 0.581895 0.813264i \(-0.302311\pi\)
0.581895 + 0.813264i \(0.302311\pi\)
\(90\) 0 0
\(91\) −26.5435 −0.0305771
\(92\) 361.248i 0.409377i
\(93\) − 607.963i − 0.677880i
\(94\) 1013.07 1.11159
\(95\) 0 0
\(96\) 3148.07 3.34685
\(97\) − 1102.94i − 1.15451i −0.816565 0.577253i \(-0.804125\pi\)
0.816565 0.577253i \(-0.195875\pi\)
\(98\) − 1703.78i − 1.75620i
\(99\) −157.469 −0.159861
\(100\) 0 0
\(101\) 484.314 0.477139 0.238570 0.971125i \(-0.423321\pi\)
0.238570 + 0.971125i \(0.423321\pi\)
\(102\) − 2189.68i − 2.12559i
\(103\) 874.419i 0.836495i 0.908333 + 0.418248i \(0.137356\pi\)
−0.908333 + 0.418248i \(0.862644\pi\)
\(104\) −364.081 −0.343280
\(105\) 0 0
\(106\) 1612.31 1.47737
\(107\) 119.845i 0.108279i 0.998533 + 0.0541394i \(0.0172415\pi\)
−0.998533 + 0.0541394i \(0.982758\pi\)
\(108\) − 3374.20i − 3.00632i
\(109\) −414.621 −0.364344 −0.182172 0.983267i \(-0.558313\pi\)
−0.182172 + 0.983267i \(0.558313\pi\)
\(110\) 0 0
\(111\) 679.734 0.581239
\(112\) 1685.29i 1.42183i
\(113\) − 534.453i − 0.444930i −0.974941 0.222465i \(-0.928590\pi\)
0.974941 0.222465i \(-0.0714103\pi\)
\(114\) 1867.28 1.53409
\(115\) 0 0
\(116\) −5890.26 −4.71463
\(117\) 62.7652i 0.0495953i
\(118\) 1572.39i 1.22670i
\(119\) 669.245 0.515543
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) − 933.366i − 0.692648i
\(123\) 888.972i 0.651674i
\(124\) 3914.34 2.83482
\(125\) 0 0
\(126\) 481.990 0.340787
\(127\) 640.121i 0.447256i 0.974675 + 0.223628i \(0.0717902\pi\)
−0.974675 + 0.223628i \(0.928210\pi\)
\(128\) 7882.95i 5.44344i
\(129\) 1038.56 0.708836
\(130\) 0 0
\(131\) 1051.05 0.700999 0.350499 0.936563i \(-0.386012\pi\)
0.350499 + 0.936563i \(0.386012\pi\)
\(132\) 898.365i 0.592368i
\(133\) 570.708i 0.372080i
\(134\) −980.129 −0.631867
\(135\) 0 0
\(136\) 9179.64 5.78785
\(137\) 1690.68i 1.05434i 0.849761 + 0.527169i \(0.176746\pi\)
−0.849761 + 0.527169i \(0.823254\pi\)
\(138\) − 312.047i − 0.192487i
\(139\) −2789.43 −1.70213 −0.851067 0.525058i \(-0.824044\pi\)
−0.851067 + 0.525058i \(0.824044\pi\)
\(140\) 0 0
\(141\) −648.756 −0.387483
\(142\) − 5112.48i − 3.02134i
\(143\) − 48.2292i − 0.0282037i
\(144\) 3985.07 2.30618
\(145\) 0 0
\(146\) −859.650 −0.487295
\(147\) 1091.08i 0.612182i
\(148\) 4376.43i 2.43068i
\(149\) −1090.62 −0.599647 −0.299823 0.953995i \(-0.596928\pi\)
−0.299823 + 0.953995i \(0.596928\pi\)
\(150\) 0 0
\(151\) 623.574 0.336064 0.168032 0.985782i \(-0.446259\pi\)
0.168032 + 0.985782i \(0.446259\pi\)
\(152\) 7828.06i 4.17723i
\(153\) − 1582.51i − 0.836198i
\(154\) −370.365 −0.193798
\(155\) 0 0
\(156\) 358.078 0.183777
\(157\) − 2114.96i − 1.07511i −0.843228 0.537555i \(-0.819348\pi\)
0.843228 0.537555i \(-0.180652\pi\)
\(158\) − 4905.38i − 2.46995i
\(159\) −1032.50 −0.514986
\(160\) 0 0
\(161\) 95.3730 0.0466860
\(162\) 765.029i 0.371027i
\(163\) − 1153.53i − 0.554301i −0.960827 0.277151i \(-0.910610\pi\)
0.960827 0.277151i \(-0.0893901\pi\)
\(164\) −5723.60 −2.72523
\(165\) 0 0
\(166\) −1543.99 −0.721911
\(167\) − 1100.93i − 0.510137i −0.966923 0.255068i \(-0.917902\pi\)
0.966923 0.255068i \(-0.0820980\pi\)
\(168\) − 1790.45i − 0.822238i
\(169\) 2177.78 0.991250
\(170\) 0 0
\(171\) 1349.51 0.603504
\(172\) 6686.69i 2.96428i
\(173\) 2369.25i 1.04122i 0.853795 + 0.520609i \(0.174295\pi\)
−0.853795 + 0.520609i \(0.825705\pi\)
\(174\) 5088.03 2.21679
\(175\) 0 0
\(176\) −3062.16 −1.31147
\(177\) − 1006.94i − 0.427606i
\(178\) − 5434.45i − 2.28837i
\(179\) −1226.77 −0.512250 −0.256125 0.966644i \(-0.582446\pi\)
−0.256125 + 0.966644i \(0.582446\pi\)
\(180\) 0 0
\(181\) −439.606 −0.180528 −0.0902642 0.995918i \(-0.528771\pi\)
−0.0902642 + 0.995918i \(0.528771\pi\)
\(182\) 147.623i 0.0601239i
\(183\) 597.717i 0.241445i
\(184\) 1308.18 0.524131
\(185\) 0 0
\(186\) −3381.22 −1.33292
\(187\) 1216.01i 0.475527i
\(188\) − 4176.98i − 1.62041i
\(189\) −890.823 −0.342846
\(190\) 0 0
\(191\) −4968.96 −1.88241 −0.941207 0.337829i \(-0.890307\pi\)
−0.941207 + 0.337829i \(0.890307\pi\)
\(192\) − 9576.47i − 3.59960i
\(193\) 1362.22i 0.508054i 0.967197 + 0.254027i \(0.0817553\pi\)
−0.967197 + 0.254027i \(0.918245\pi\)
\(194\) −6134.09 −2.27011
\(195\) 0 0
\(196\) −7024.86 −2.56008
\(197\) 2195.91i 0.794174i 0.917781 + 0.397087i \(0.129979\pi\)
−0.917781 + 0.397087i \(0.870021\pi\)
\(198\) 875.771i 0.314335i
\(199\) 558.189 0.198839 0.0994194 0.995046i \(-0.468301\pi\)
0.0994194 + 0.995046i \(0.468301\pi\)
\(200\) 0 0
\(201\) 627.663 0.220258
\(202\) − 2693.54i − 0.938202i
\(203\) 1555.09i 0.537663i
\(204\) −9028.27 −3.09856
\(205\) 0 0
\(206\) 4863.12 1.64481
\(207\) − 225.521i − 0.0757236i
\(208\) 1220.54i 0.406871i
\(209\) −1036.97 −0.343199
\(210\) 0 0
\(211\) −3002.01 −0.979463 −0.489732 0.871873i \(-0.662905\pi\)
−0.489732 + 0.871873i \(0.662905\pi\)
\(212\) − 6647.71i − 2.15362i
\(213\) 3273.97i 1.05319i
\(214\) 666.523 0.212909
\(215\) 0 0
\(216\) −12218.9 −3.84903
\(217\) − 1033.42i − 0.323287i
\(218\) 2305.94i 0.716412i
\(219\) 550.509 0.169863
\(220\) 0 0
\(221\) 484.688 0.147528
\(222\) − 3780.38i − 1.14289i
\(223\) − 854.595i − 0.256627i −0.991734 0.128314i \(-0.959044\pi\)
0.991734 0.128314i \(-0.0409564\pi\)
\(224\) 5351.12 1.59615
\(225\) 0 0
\(226\) −2972.39 −0.874868
\(227\) 394.002i 0.115202i 0.998340 + 0.0576010i \(0.0183451\pi\)
−0.998340 + 0.0576010i \(0.981655\pi\)
\(228\) − 7698.97i − 2.23630i
\(229\) 491.822 0.141924 0.0709618 0.997479i \(-0.477393\pi\)
0.0709618 + 0.997479i \(0.477393\pi\)
\(230\) 0 0
\(231\) 237.177 0.0675546
\(232\) 21330.2i 6.03619i
\(233\) 6884.63i 1.93574i 0.251456 + 0.967869i \(0.419091\pi\)
−0.251456 + 0.967869i \(0.580909\pi\)
\(234\) 349.072 0.0975195
\(235\) 0 0
\(236\) 6483.14 1.78820
\(237\) 3141.35i 0.860982i
\(238\) − 3722.04i − 1.01371i
\(239\) −3012.77 −0.815397 −0.407699 0.913117i \(-0.633669\pi\)
−0.407699 + 0.913117i \(0.633669\pi\)
\(240\) 0 0
\(241\) 3106.98 0.830448 0.415224 0.909719i \(-0.363703\pi\)
0.415224 + 0.909719i \(0.363703\pi\)
\(242\) − 672.948i − 0.178755i
\(243\) 3483.05i 0.919496i
\(244\) −3848.37 −1.00970
\(245\) 0 0
\(246\) 4944.06 1.28139
\(247\) 413.324i 0.106474i
\(248\) − 14174.9i − 3.62946i
\(249\) 988.756 0.251646
\(250\) 0 0
\(251\) −834.313 −0.209806 −0.104903 0.994482i \(-0.533453\pi\)
−0.104903 + 0.994482i \(0.533453\pi\)
\(252\) − 1987.30i − 0.496778i
\(253\) 173.292i 0.0430623i
\(254\) 3560.07 0.879443
\(255\) 0 0
\(256\) 22330.6 5.45182
\(257\) − 7536.63i − 1.82927i −0.404281 0.914635i \(-0.632478\pi\)
0.404281 0.914635i \(-0.367522\pi\)
\(258\) − 5775.99i − 1.39379i
\(259\) 1155.42 0.277198
\(260\) 0 0
\(261\) 3677.19 0.872077
\(262\) − 5845.48i − 1.37838i
\(263\) 6242.10i 1.46351i 0.681565 + 0.731757i \(0.261300\pi\)
−0.681565 + 0.731757i \(0.738700\pi\)
\(264\) 3253.22 0.758416
\(265\) 0 0
\(266\) 3174.02 0.731623
\(267\) 3480.16i 0.797687i
\(268\) 4041.17i 0.921097i
\(269\) −1636.95 −0.371027 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(270\) 0 0
\(271\) 787.212 0.176457 0.0882283 0.996100i \(-0.471880\pi\)
0.0882283 + 0.996100i \(0.471880\pi\)
\(272\) − 30773.7i − 6.86003i
\(273\) − 94.5360i − 0.0209582i
\(274\) 9402.78 2.07315
\(275\) 0 0
\(276\) −1286.60 −0.280596
\(277\) 1954.96i 0.424052i 0.977264 + 0.212026i \(0.0680061\pi\)
−0.977264 + 0.212026i \(0.931994\pi\)
\(278\) 15513.6i 3.34691i
\(279\) −2443.65 −0.524364
\(280\) 0 0
\(281\) −5097.58 −1.08219 −0.541097 0.840960i \(-0.681991\pi\)
−0.541097 + 0.840960i \(0.681991\pi\)
\(282\) 3608.09i 0.761910i
\(283\) 7187.71i 1.50977i 0.655857 + 0.754885i \(0.272307\pi\)
−0.655857 + 0.754885i \(0.727693\pi\)
\(284\) −21079.3 −4.40432
\(285\) 0 0
\(286\) −268.229 −0.0554571
\(287\) 1511.09i 0.310789i
\(288\) − 12653.4i − 2.58891i
\(289\) −7307.51 −1.48738
\(290\) 0 0
\(291\) 3928.20 0.791323
\(292\) 3544.43i 0.710349i
\(293\) − 6388.82i − 1.27385i −0.770925 0.636926i \(-0.780206\pi\)
0.770925 0.636926i \(-0.219794\pi\)
\(294\) 6068.10 1.20374
\(295\) 0 0
\(296\) 15848.2 3.11203
\(297\) − 1618.61i − 0.316234i
\(298\) 6065.56i 1.17909i
\(299\) 69.0720 0.0133597
\(300\) 0 0
\(301\) 1765.35 0.338051
\(302\) − 3468.04i − 0.660806i
\(303\) 1724.91i 0.327041i
\(304\) 26242.6 4.95105
\(305\) 0 0
\(306\) −8801.21 −1.64422
\(307\) 4882.07i 0.907603i 0.891103 + 0.453802i \(0.149933\pi\)
−0.891103 + 0.453802i \(0.850067\pi\)
\(308\) 1527.05i 0.282506i
\(309\) −3114.29 −0.573352
\(310\) 0 0
\(311\) 2846.01 0.518914 0.259457 0.965755i \(-0.416456\pi\)
0.259457 + 0.965755i \(0.416456\pi\)
\(312\) − 1296.70i − 0.235291i
\(313\) − 8009.49i − 1.44640i −0.690639 0.723200i \(-0.742670\pi\)
0.690639 0.723200i \(-0.257330\pi\)
\(314\) −11762.5 −2.11400
\(315\) 0 0
\(316\) −20225.4 −3.60053
\(317\) 4668.89i 0.827227i 0.910453 + 0.413613i \(0.135733\pi\)
−0.910453 + 0.413613i \(0.864267\pi\)
\(318\) 5742.32i 1.01262i
\(319\) −2825.57 −0.495930
\(320\) 0 0
\(321\) −426.833 −0.0742165
\(322\) − 530.422i − 0.0917990i
\(323\) − 10421.2i − 1.79520i
\(324\) 3154.30 0.540860
\(325\) 0 0
\(326\) −6415.39 −1.08993
\(327\) − 1476.70i − 0.249729i
\(328\) 20726.7i 3.48914i
\(329\) −1102.76 −0.184794
\(330\) 0 0
\(331\) 2581.31 0.428645 0.214323 0.976763i \(-0.431246\pi\)
0.214323 + 0.976763i \(0.431246\pi\)
\(332\) 6366.05i 1.05236i
\(333\) − 2732.13i − 0.449609i
\(334\) −6122.91 −1.00309
\(335\) 0 0
\(336\) −6002.26 −0.974554
\(337\) − 8152.45i − 1.31778i −0.752239 0.658890i \(-0.771026\pi\)
0.752239 0.658890i \(-0.228974\pi\)
\(338\) − 12111.8i − 1.94910i
\(339\) 1903.48 0.304964
\(340\) 0 0
\(341\) 1877.72 0.298194
\(342\) − 7505.35i − 1.18667i
\(343\) 3931.15i 0.618839i
\(344\) 24214.3 3.79520
\(345\) 0 0
\(346\) 13176.7 2.04735
\(347\) − 3426.21i − 0.530054i −0.964241 0.265027i \(-0.914619\pi\)
0.964241 0.265027i \(-0.0853808\pi\)
\(348\) − 20978.5i − 3.23151i
\(349\) −1334.33 −0.204656 −0.102328 0.994751i \(-0.532629\pi\)
−0.102328 + 0.994751i \(0.532629\pi\)
\(350\) 0 0
\(351\) −645.161 −0.0981087
\(352\) 9722.93i 1.47225i
\(353\) − 4406.21i − 0.664360i −0.943216 0.332180i \(-0.892216\pi\)
0.943216 0.332180i \(-0.107784\pi\)
\(354\) −5600.16 −0.840805
\(355\) 0 0
\(356\) −22406.8 −3.33584
\(357\) 2383.55i 0.353364i
\(358\) 6822.72i 1.00724i
\(359\) 8623.04 1.26771 0.633853 0.773453i \(-0.281472\pi\)
0.633853 + 0.773453i \(0.281472\pi\)
\(360\) 0 0
\(361\) 2027.81 0.295642
\(362\) 2444.89i 0.354974i
\(363\) 430.948i 0.0623110i
\(364\) 608.665 0.0876448
\(365\) 0 0
\(366\) 3324.23 0.474755
\(367\) − 3585.58i − 0.509989i −0.966942 0.254995i \(-0.917926\pi\)
0.966942 0.254995i \(-0.0820737\pi\)
\(368\) − 4385.51i − 0.621224i
\(369\) 3573.14 0.504093
\(370\) 0 0
\(371\) −1755.06 −0.245602
\(372\) 13941.1i 1.94305i
\(373\) − 9855.90i − 1.36815i −0.729413 0.684074i \(-0.760207\pi\)
0.729413 0.684074i \(-0.239793\pi\)
\(374\) 6762.91 0.935031
\(375\) 0 0
\(376\) −15126.0 −2.07463
\(377\) 1126.24i 0.153858i
\(378\) 4954.36i 0.674139i
\(379\) 10837.8 1.46887 0.734435 0.678679i \(-0.237447\pi\)
0.734435 + 0.678679i \(0.237447\pi\)
\(380\) 0 0
\(381\) −2279.83 −0.306559
\(382\) 27635.1i 3.70140i
\(383\) 2025.55i 0.270237i 0.990829 + 0.135119i \(0.0431416\pi\)
−0.990829 + 0.135119i \(0.956858\pi\)
\(384\) −28075.5 −3.73105
\(385\) 0 0
\(386\) 7576.04 0.998990
\(387\) − 4174.39i − 0.548310i
\(388\) 25291.5i 3.30923i
\(389\) 978.894 0.127588 0.0637942 0.997963i \(-0.479680\pi\)
0.0637942 + 0.997963i \(0.479680\pi\)
\(390\) 0 0
\(391\) −1741.52 −0.225250
\(392\) 25438.9i 3.27770i
\(393\) 3743.38i 0.480479i
\(394\) 12212.7 1.56159
\(395\) 0 0
\(396\) 3610.90 0.458218
\(397\) − 5008.28i − 0.633144i −0.948568 0.316572i \(-0.897468\pi\)
0.948568 0.316572i \(-0.102532\pi\)
\(398\) − 3104.39i − 0.390978i
\(399\) −2032.60 −0.255031
\(400\) 0 0
\(401\) −15584.1 −1.94073 −0.970366 0.241639i \(-0.922315\pi\)
−0.970366 + 0.241639i \(0.922315\pi\)
\(402\) − 3490.78i − 0.433095i
\(403\) − 748.437i − 0.0925119i
\(404\) −11105.7 −1.36765
\(405\) 0 0
\(406\) 8648.69 1.05721
\(407\) 2099.39i 0.255682i
\(408\) 32693.8i 3.96712i
\(409\) −15106.6 −1.82634 −0.913171 0.407576i \(-0.866374\pi\)
−0.913171 + 0.407576i \(0.866374\pi\)
\(410\) 0 0
\(411\) −6021.43 −0.722665
\(412\) − 20051.2i − 2.39770i
\(413\) − 1711.61i − 0.203930i
\(414\) −1254.25 −0.148896
\(415\) 0 0
\(416\) 3875.45 0.456753
\(417\) − 9934.71i − 1.16668i
\(418\) 5767.16i 0.674834i
\(419\) 1518.17 0.177011 0.0885056 0.996076i \(-0.471791\pi\)
0.0885056 + 0.996076i \(0.471791\pi\)
\(420\) 0 0
\(421\) 4637.05 0.536808 0.268404 0.963306i \(-0.413504\pi\)
0.268404 + 0.963306i \(0.413504\pi\)
\(422\) 16695.8i 1.92592i
\(423\) 2607.62i 0.299732i
\(424\) −24073.2 −2.75730
\(425\) 0 0
\(426\) 18208.4 2.07089
\(427\) 1016.01i 0.115148i
\(428\) − 2748.14i − 0.310366i
\(429\) 171.771 0.0193314
\(430\) 0 0
\(431\) −11477.9 −1.28276 −0.641380 0.767223i \(-0.721638\pi\)
−0.641380 + 0.767223i \(0.721638\pi\)
\(432\) 40962.4i 4.56205i
\(433\) − 10204.5i − 1.13256i −0.824213 0.566280i \(-0.808382\pi\)
0.824213 0.566280i \(-0.191618\pi\)
\(434\) −5747.44 −0.635682
\(435\) 0 0
\(436\) 9507.62 1.04434
\(437\) − 1485.11i − 0.162568i
\(438\) − 3061.69i − 0.334002i
\(439\) 6919.06 0.752229 0.376115 0.926573i \(-0.377260\pi\)
0.376115 + 0.926573i \(0.377260\pi\)
\(440\) 0 0
\(441\) 4385.50 0.473545
\(442\) − 2695.62i − 0.290085i
\(443\) 2912.53i 0.312366i 0.987728 + 0.156183i \(0.0499190\pi\)
−0.987728 + 0.156183i \(0.950081\pi\)
\(444\) −15586.9 −1.66604
\(445\) 0 0
\(446\) −4752.87 −0.504608
\(447\) − 3884.32i − 0.411011i
\(448\) − 16278.2i − 1.71668i
\(449\) 1155.53 0.121454 0.0607270 0.998154i \(-0.480658\pi\)
0.0607270 + 0.998154i \(0.480658\pi\)
\(450\) 0 0
\(451\) −2745.62 −0.286666
\(452\) 12255.5i 1.27533i
\(453\) 2220.89i 0.230346i
\(454\) 2191.26 0.226522
\(455\) 0 0
\(456\) −27880.0 −2.86316
\(457\) 2745.62i 0.281039i 0.990078 + 0.140519i \(0.0448772\pi\)
−0.990078 + 0.140519i \(0.955123\pi\)
\(458\) − 2735.29i − 0.279065i
\(459\) 16266.5 1.65416
\(460\) 0 0
\(461\) 11224.1 1.13397 0.566984 0.823729i \(-0.308110\pi\)
0.566984 + 0.823729i \(0.308110\pi\)
\(462\) − 1319.07i − 0.132833i
\(463\) − 15994.8i − 1.60549i −0.596325 0.802743i \(-0.703373\pi\)
0.596325 0.802743i \(-0.296627\pi\)
\(464\) 71507.0 7.15437
\(465\) 0 0
\(466\) 38289.2 3.80625
\(467\) 6674.60i 0.661378i 0.943740 + 0.330689i \(0.107281\pi\)
−0.943740 + 0.330689i \(0.892719\pi\)
\(468\) − 1439.26i − 0.142158i
\(469\) 1066.91 0.105043
\(470\) 0 0
\(471\) 7532.55 0.736904
\(472\) − 23477.2i − 2.28946i
\(473\) 3207.62i 0.311811i
\(474\) 17470.8 1.69295
\(475\) 0 0
\(476\) −15346.4 −1.47773
\(477\) 4150.05i 0.398360i
\(478\) 16755.7i 1.60332i
\(479\) 11582.0 1.10479 0.552396 0.833582i \(-0.313714\pi\)
0.552396 + 0.833582i \(0.313714\pi\)
\(480\) 0 0
\(481\) 836.791 0.0793230
\(482\) − 17279.6i − 1.63292i
\(483\) 339.676i 0.0319996i
\(484\) −2774.64 −0.260578
\(485\) 0 0
\(486\) 19371.2 1.80801
\(487\) − 10618.7i − 0.988047i −0.869448 0.494024i \(-0.835526\pi\)
0.869448 0.494024i \(-0.164474\pi\)
\(488\) 13936.0i 1.29273i
\(489\) 4108.34 0.379930
\(490\) 0 0
\(491\) −17948.0 −1.64966 −0.824829 0.565382i \(-0.808729\pi\)
−0.824829 + 0.565382i \(0.808729\pi\)
\(492\) − 20384.9i − 1.86793i
\(493\) − 28396.1i − 2.59411i
\(494\) 2298.72 0.209361
\(495\) 0 0
\(496\) −47519.6 −4.30180
\(497\) 5565.15i 0.502275i
\(498\) − 5499.02i − 0.494813i
\(499\) 10409.6 0.933865 0.466932 0.884293i \(-0.345359\pi\)
0.466932 + 0.884293i \(0.345359\pi\)
\(500\) 0 0
\(501\) 3921.04 0.349659
\(502\) 4640.07i 0.412543i
\(503\) − 7319.98i − 0.648870i −0.945908 0.324435i \(-0.894826\pi\)
0.945908 0.324435i \(-0.105174\pi\)
\(504\) −7196.54 −0.636030
\(505\) 0 0
\(506\) 963.771 0.0846736
\(507\) 7756.27i 0.679424i
\(508\) − 14678.5i − 1.28200i
\(509\) −7619.94 −0.663552 −0.331776 0.943358i \(-0.607648\pi\)
−0.331776 + 0.943358i \(0.607648\pi\)
\(510\) 0 0
\(511\) 935.763 0.0810093
\(512\) − 61129.5i − 5.27650i
\(513\) 13871.5i 1.19384i
\(514\) −41915.4 −3.59690
\(515\) 0 0
\(516\) −23815.0 −2.03178
\(517\) − 2003.71i − 0.170451i
\(518\) − 6425.93i − 0.545057i
\(519\) −8438.20 −0.713672
\(520\) 0 0
\(521\) −12413.4 −1.04384 −0.521921 0.852994i \(-0.674785\pi\)
−0.521921 + 0.852994i \(0.674785\pi\)
\(522\) − 20450.9i − 1.71477i
\(523\) 2524.30i 0.211051i 0.994417 + 0.105526i \(0.0336525\pi\)
−0.994417 + 0.105526i \(0.966347\pi\)
\(524\) −24101.5 −2.00931
\(525\) 0 0
\(526\) 34715.8 2.87772
\(527\) 18870.5i 1.55979i
\(528\) − 10906.0i − 0.898909i
\(529\) 11918.8 0.979602
\(530\) 0 0
\(531\) −4047.31 −0.330769
\(532\) − 13086.8i − 1.06651i
\(533\) 1094.37i 0.0889355i
\(534\) 19355.1 1.56850
\(535\) 0 0
\(536\) 14634.2 1.17929
\(537\) − 4369.19i − 0.351107i
\(538\) 9103.96i 0.729553i
\(539\) −3369.84 −0.269294
\(540\) 0 0
\(541\) 10271.4 0.816269 0.408135 0.912922i \(-0.366179\pi\)
0.408135 + 0.912922i \(0.366179\pi\)
\(542\) − 4378.12i − 0.346968i
\(543\) − 1565.68i − 0.123738i
\(544\) −97712.2 −7.70106
\(545\) 0 0
\(546\) −525.767 −0.0412102
\(547\) 7810.11i 0.610487i 0.952274 + 0.305243i \(0.0987378\pi\)
−0.952274 + 0.305243i \(0.901262\pi\)
\(548\) − 38768.7i − 3.02211i
\(549\) 2402.47 0.186767
\(550\) 0 0
\(551\) 24215.1 1.87223
\(552\) 4659.14i 0.359250i
\(553\) 5339.71i 0.410610i
\(554\) 10872.6 0.833815
\(555\) 0 0
\(556\) 63964.1 4.87892
\(557\) − 18348.8i − 1.39580i −0.716193 0.697902i \(-0.754117\pi\)
0.716193 0.697902i \(-0.245883\pi\)
\(558\) 13590.5i 1.03106i
\(559\) 1278.52 0.0967365
\(560\) 0 0
\(561\) −4330.89 −0.325936
\(562\) 28350.5i 2.12792i
\(563\) 174.680i 0.0130761i 0.999979 + 0.00653807i \(0.00208115\pi\)
−0.999979 + 0.00653807i \(0.997919\pi\)
\(564\) 14876.5 1.11066
\(565\) 0 0
\(566\) 39974.8 2.96867
\(567\) − 832.765i − 0.0616805i
\(568\) 76333.8i 5.63890i
\(569\) 3208.08 0.236362 0.118181 0.992992i \(-0.462294\pi\)
0.118181 + 0.992992i \(0.462294\pi\)
\(570\) 0 0
\(571\) −11660.4 −0.854592 −0.427296 0.904112i \(-0.640534\pi\)
−0.427296 + 0.904112i \(0.640534\pi\)
\(572\) 1105.94i 0.0808419i
\(573\) − 17697.2i − 1.29025i
\(574\) 8403.98 0.611107
\(575\) 0 0
\(576\) −38491.8 −2.78442
\(577\) − 12906.9i − 0.931233i −0.884987 0.465617i \(-0.845833\pi\)
0.884987 0.465617i \(-0.154167\pi\)
\(578\) 40641.1i 2.92465i
\(579\) −4851.61 −0.348231
\(580\) 0 0
\(581\) 1680.70 0.120012
\(582\) − 21846.9i − 1.55598i
\(583\) − 3188.93i − 0.226538i
\(584\) 12835.3 0.909468
\(585\) 0 0
\(586\) −35531.8 −2.50478
\(587\) 27427.0i 1.92850i 0.264986 + 0.964252i \(0.414633\pi\)
−0.264986 + 0.964252i \(0.585367\pi\)
\(588\) − 25019.4i − 1.75473i
\(589\) −16092.0 −1.12574
\(590\) 0 0
\(591\) −7820.86 −0.544344
\(592\) − 53129.3i − 3.68852i
\(593\) − 5332.11i − 0.369247i −0.982809 0.184623i \(-0.940893\pi\)
0.982809 0.184623i \(-0.0591066\pi\)
\(594\) −9002.01 −0.621813
\(595\) 0 0
\(596\) 25009.0 1.71880
\(597\) 1988.02i 0.136288i
\(598\) − 384.148i − 0.0262692i
\(599\) 22329.2 1.52312 0.761558 0.648097i \(-0.224435\pi\)
0.761558 + 0.648097i \(0.224435\pi\)
\(600\) 0 0
\(601\) 15511.8 1.05281 0.526405 0.850234i \(-0.323540\pi\)
0.526405 + 0.850234i \(0.323540\pi\)
\(602\) − 9818.10i − 0.664711i
\(603\) − 2522.83i − 0.170378i
\(604\) −14299.1 −0.963281
\(605\) 0 0
\(606\) 9593.18 0.643063
\(607\) 7205.25i 0.481799i 0.970550 + 0.240900i \(0.0774424\pi\)
−0.970550 + 0.240900i \(0.922558\pi\)
\(608\) − 83325.4i − 5.55804i
\(609\) −5538.52 −0.368526
\(610\) 0 0
\(611\) −798.655 −0.0528807
\(612\) 36288.3i 2.39684i
\(613\) 2837.16i 0.186936i 0.995622 + 0.0934682i \(0.0297953\pi\)
−0.995622 + 0.0934682i \(0.970205\pi\)
\(614\) 27151.9 1.78463
\(615\) 0 0
\(616\) 5529.86 0.361696
\(617\) − 7423.58i − 0.484379i −0.970229 0.242190i \(-0.922134\pi\)
0.970229 0.242190i \(-0.0778656\pi\)
\(618\) 17320.3i 1.12738i
\(619\) −9747.62 −0.632940 −0.316470 0.948603i \(-0.602498\pi\)
−0.316470 + 0.948603i \(0.602498\pi\)
\(620\) 0 0
\(621\) 2318.12 0.149795
\(622\) − 15828.2i − 1.02034i
\(623\) 5915.62i 0.380424i
\(624\) −4347.02 −0.278878
\(625\) 0 0
\(626\) −44545.2 −2.84407
\(627\) − 3693.22i − 0.235236i
\(628\) 48497.9i 3.08165i
\(629\) −21098.1 −1.33742
\(630\) 0 0
\(631\) 5914.75 0.373157 0.186579 0.982440i \(-0.440260\pi\)
0.186579 + 0.982440i \(0.440260\pi\)
\(632\) 73241.7i 4.60980i
\(633\) − 10691.8i − 0.671345i
\(634\) 25966.3 1.62658
\(635\) 0 0
\(636\) 23676.2 1.47614
\(637\) 1343.18i 0.0835459i
\(638\) 15714.6i 0.975150i
\(639\) 13159.4 0.814679
\(640\) 0 0
\(641\) −25438.0 −1.56746 −0.783728 0.621104i \(-0.786684\pi\)
−0.783728 + 0.621104i \(0.786684\pi\)
\(642\) 2373.86i 0.145932i
\(643\) − 769.253i − 0.0471794i −0.999722 0.0235897i \(-0.992490\pi\)
0.999722 0.0235897i \(-0.00750954\pi\)
\(644\) −2186.99 −0.133819
\(645\) 0 0
\(646\) −57958.0 −3.52992
\(647\) 25813.2i 1.56850i 0.620445 + 0.784250i \(0.286952\pi\)
−0.620445 + 0.784250i \(0.713048\pi\)
\(648\) − 11422.6i − 0.692469i
\(649\) 3109.98 0.188101
\(650\) 0 0
\(651\) 3680.59 0.221588
\(652\) 26451.3i 1.58883i
\(653\) 13138.6i 0.787372i 0.919245 + 0.393686i \(0.128800\pi\)
−0.919245 + 0.393686i \(0.871200\pi\)
\(654\) −8212.72 −0.491044
\(655\) 0 0
\(656\) 69483.7 4.13549
\(657\) − 2212.72i − 0.131395i
\(658\) 6133.08i 0.363362i
\(659\) 19105.0 1.12933 0.564663 0.825322i \(-0.309006\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(660\) 0 0
\(661\) −31694.3 −1.86500 −0.932502 0.361166i \(-0.882379\pi\)
−0.932502 + 0.361166i \(0.882379\pi\)
\(662\) − 14356.1i − 0.842848i
\(663\) 1726.24i 0.101119i
\(664\) 23053.2 1.34734
\(665\) 0 0
\(666\) −15194.9 −0.884069
\(667\) − 4046.68i − 0.234915i
\(668\) 25245.4i 1.46224i
\(669\) 3043.68 0.175898
\(670\) 0 0
\(671\) −1846.07 −0.106210
\(672\) 19058.3i 1.09403i
\(673\) 23110.6i 1.32370i 0.749638 + 0.661848i \(0.230228\pi\)
−0.749638 + 0.661848i \(0.769772\pi\)
\(674\) −45340.3 −2.59116
\(675\) 0 0
\(676\) −49938.3 −2.84128
\(677\) − 17052.4i − 0.968062i −0.875051 0.484031i \(-0.839172\pi\)
0.875051 0.484031i \(-0.160828\pi\)
\(678\) − 10586.3i − 0.599653i
\(679\) 6677.20 0.377390
\(680\) 0 0
\(681\) −1403.26 −0.0789618
\(682\) − 10443.0i − 0.586341i
\(683\) − 28542.8i − 1.59907i −0.600623 0.799533i \(-0.705081\pi\)
0.600623 0.799533i \(-0.294919\pi\)
\(684\) −30945.3 −1.72986
\(685\) 0 0
\(686\) 21863.3 1.21683
\(687\) 1751.65i 0.0972774i
\(688\) − 81175.6i − 4.49824i
\(689\) −1271.07 −0.0702814
\(690\) 0 0
\(691\) 6479.20 0.356701 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(692\) − 54328.9i − 2.98450i
\(693\) − 953.312i − 0.0522559i
\(694\) −19055.1 −1.04225
\(695\) 0 0
\(696\) −75968.6 −4.13733
\(697\) − 27592.6i − 1.49949i
\(698\) 7420.94i 0.402417i
\(699\) −24520.0 −1.32680
\(700\) 0 0
\(701\) 21118.6 1.13786 0.568929 0.822386i \(-0.307358\pi\)
0.568929 + 0.822386i \(0.307358\pi\)
\(702\) 3588.10i 0.192912i
\(703\) − 17991.7i − 0.965249i
\(704\) 29577.3 1.58343
\(705\) 0 0
\(706\) −24505.4 −1.30633
\(707\) 2932.03i 0.155969i
\(708\) 23090.0i 1.22567i
\(709\) −7072.53 −0.374632 −0.187316 0.982300i \(-0.559979\pi\)
−0.187316 + 0.982300i \(0.559979\pi\)
\(710\) 0 0
\(711\) 12626.4 0.666000
\(712\) 81141.1i 4.27092i
\(713\) 2689.20i 0.141250i
\(714\) 13256.3 0.694822
\(715\) 0 0
\(716\) 28130.8 1.46829
\(717\) − 10730.1i − 0.558890i
\(718\) − 47957.5i − 2.49270i
\(719\) −22177.9 −1.15034 −0.575170 0.818034i \(-0.695064\pi\)
−0.575170 + 0.818034i \(0.695064\pi\)
\(720\) 0 0
\(721\) −5293.71 −0.273437
\(722\) − 11277.8i − 0.581323i
\(723\) 11065.7i 0.569207i
\(724\) 10080.5 0.517459
\(725\) 0 0
\(726\) 2396.74 0.122523
\(727\) − 17390.7i − 0.887186i −0.896228 0.443593i \(-0.853704\pi\)
0.896228 0.443593i \(-0.146296\pi\)
\(728\) − 2204.14i − 0.112213i
\(729\) −16119.1 −0.818935
\(730\) 0 0
\(731\) −32235.6 −1.63102
\(732\) − 13706.2i − 0.692069i
\(733\) 21877.0i 1.10238i 0.834379 + 0.551191i \(0.185826\pi\)
−0.834379 + 0.551191i \(0.814174\pi\)
\(734\) −19941.4 −1.00279
\(735\) 0 0
\(736\) −13924.8 −0.697385
\(737\) 1938.56i 0.0968899i
\(738\) − 19872.2i − 0.991201i
\(739\) −14203.1 −0.706994 −0.353497 0.935436i \(-0.615008\pi\)
−0.353497 + 0.935436i \(0.615008\pi\)
\(740\) 0 0
\(741\) −1472.07 −0.0729797
\(742\) 9760.87i 0.482928i
\(743\) 3933.68i 0.194230i 0.995273 + 0.0971148i \(0.0309614\pi\)
−0.995273 + 0.0971148i \(0.969039\pi\)
\(744\) 50484.5 2.48771
\(745\) 0 0
\(746\) −54814.1 −2.69020
\(747\) − 3974.21i − 0.194657i
\(748\) − 27884.2i − 1.36303i
\(749\) −725.537 −0.0353946
\(750\) 0 0
\(751\) 22554.3 1.09590 0.547949 0.836512i \(-0.315409\pi\)
0.547949 + 0.836512i \(0.315409\pi\)
\(752\) 50708.0i 2.45895i
\(753\) − 2971.45i − 0.143806i
\(754\) 6263.65 0.302531
\(755\) 0 0
\(756\) 20427.3 0.982719
\(757\) 11432.0i 0.548883i 0.961604 + 0.274441i \(0.0884929\pi\)
−0.961604 + 0.274441i \(0.911507\pi\)
\(758\) − 60275.2i − 2.88825i
\(759\) −617.187 −0.0295158
\(760\) 0 0
\(761\) −32660.1 −1.55575 −0.777877 0.628416i \(-0.783704\pi\)
−0.777877 + 0.628416i \(0.783704\pi\)
\(762\) 12679.4i 0.602789i
\(763\) − 2510.11i − 0.119098i
\(764\) 113943. 5.39568
\(765\) 0 0
\(766\) 11265.2 0.531369
\(767\) − 1239.60i − 0.0583565i
\(768\) 79531.8i 3.73679i
\(769\) 8569.93 0.401872 0.200936 0.979604i \(-0.435602\pi\)
0.200936 + 0.979604i \(0.435602\pi\)
\(770\) 0 0
\(771\) 26842.1 1.25382
\(772\) − 31236.8i − 1.45627i
\(773\) 29158.0i 1.35671i 0.734733 + 0.678357i \(0.237307\pi\)
−0.734733 + 0.678357i \(0.762693\pi\)
\(774\) −23216.1 −1.07815
\(775\) 0 0
\(776\) 91587.2 4.23684
\(777\) 4115.09i 0.189998i
\(778\) − 5444.17i − 0.250878i
\(779\) 23530.0 1.08222
\(780\) 0 0
\(781\) −10111.8 −0.463289
\(782\) 9685.58i 0.442910i
\(783\) 37797.6i 1.72513i
\(784\) 85280.9 3.88488
\(785\) 0 0
\(786\) 20819.0 0.944770
\(787\) − 8501.30i − 0.385055i −0.981292 0.192528i \(-0.938332\pi\)
0.981292 0.192528i \(-0.0616685\pi\)
\(788\) − 50354.2i − 2.27639i
\(789\) −22231.6 −1.00312
\(790\) 0 0
\(791\) 3235.56 0.145440
\(792\) − 13076.0i − 0.586662i
\(793\) 735.823i 0.0329506i
\(794\) −27853.8 −1.24496
\(795\) 0 0
\(796\) −12799.7 −0.569944
\(797\) 37459.5i 1.66485i 0.554139 + 0.832424i \(0.313047\pi\)
−0.554139 + 0.832424i \(0.686953\pi\)
\(798\) 11304.4i 0.501470i
\(799\) 20136.6 0.891592
\(800\) 0 0
\(801\) 13988.2 0.617039
\(802\) 86671.9i 3.81607i
\(803\) 1700.27i 0.0747214i
\(804\) −14392.9 −0.631339
\(805\) 0 0
\(806\) −4162.47 −0.181907
\(807\) − 5830.07i − 0.254310i
\(808\) 40216.9i 1.75102i
\(809\) −18045.8 −0.784246 −0.392123 0.919913i \(-0.628259\pi\)
−0.392123 + 0.919913i \(0.628259\pi\)
\(810\) 0 0
\(811\) 914.961 0.0396161 0.0198080 0.999804i \(-0.493694\pi\)
0.0198080 + 0.999804i \(0.493694\pi\)
\(812\) − 35659.5i − 1.54114i
\(813\) 2803.70i 0.120947i
\(814\) 11675.8 0.502750
\(815\) 0 0
\(816\) 109602. 4.70201
\(817\) − 27489.3i − 1.17715i
\(818\) 84016.3i 3.59115i
\(819\) −379.979 −0.0162119
\(820\) 0 0
\(821\) 15188.9 0.645672 0.322836 0.946455i \(-0.395364\pi\)
0.322836 + 0.946455i \(0.395364\pi\)
\(822\) 33488.5i 1.42098i
\(823\) 37930.3i 1.60652i 0.595628 + 0.803261i \(0.296903\pi\)
−0.595628 + 0.803261i \(0.703097\pi\)
\(824\) −72610.7 −3.06980
\(825\) 0 0
\(826\) −9519.22 −0.400988
\(827\) 29679.9i 1.24797i 0.781437 + 0.623985i \(0.214487\pi\)
−0.781437 + 0.623985i \(0.785513\pi\)
\(828\) 5171.39i 0.217051i
\(829\) −29094.2 −1.21892 −0.609458 0.792818i \(-0.708613\pi\)
−0.609458 + 0.792818i \(0.708613\pi\)
\(830\) 0 0
\(831\) −6962.70 −0.290654
\(832\) − 11789.2i − 0.491245i
\(833\) − 33865.8i − 1.40862i
\(834\) −55252.4 −2.29405
\(835\) 0 0
\(836\) 23778.6 0.983732
\(837\) − 25118.2i − 1.03729i
\(838\) − 8443.41i − 0.348058i
\(839\) −38791.2 −1.59621 −0.798105 0.602519i \(-0.794164\pi\)
−0.798105 + 0.602519i \(0.794164\pi\)
\(840\) 0 0
\(841\) 41593.3 1.70541
\(842\) − 25789.2i − 1.05553i
\(843\) − 18155.3i − 0.741758i
\(844\) 68838.7 2.80749
\(845\) 0 0
\(846\) 14502.4 0.589365
\(847\) 732.531i 0.0297167i
\(848\) 80702.4i 3.26808i
\(849\) −25599.4 −1.03483
\(850\) 0 0
\(851\) −3006.66 −0.121113
\(852\) − 75075.1i − 3.01881i
\(853\) 42933.7i 1.72335i 0.507458 + 0.861677i \(0.330585\pi\)
−0.507458 + 0.861677i \(0.669415\pi\)
\(854\) 5650.58 0.226415
\(855\) 0 0
\(856\) −9951.76 −0.397365
\(857\) − 2664.36i − 0.106199i −0.998589 0.0530997i \(-0.983090\pi\)
0.998589 0.0530997i \(-0.0169101\pi\)
\(858\) − 955.312i − 0.0380115i
\(859\) 25002.7 0.993111 0.496556 0.868005i \(-0.334598\pi\)
0.496556 + 0.868005i \(0.334598\pi\)
\(860\) 0 0
\(861\) −5381.81 −0.213022
\(862\) 63834.8i 2.52230i
\(863\) − 27509.8i − 1.08510i −0.840023 0.542551i \(-0.817459\pi\)
0.840023 0.542551i \(-0.182541\pi\)
\(864\) 130063. 5.12135
\(865\) 0 0
\(866\) −56753.1 −2.22696
\(867\) − 26026.1i − 1.01948i
\(868\) 23697.3i 0.926658i
\(869\) −9702.19 −0.378739
\(870\) 0 0
\(871\) 772.688 0.0300592
\(872\) − 34429.6i − 1.33708i
\(873\) − 15789.0i − 0.612117i
\(874\) −8259.51 −0.319659
\(875\) 0 0
\(876\) −12623.7 −0.486888
\(877\) − 25993.8i − 1.00085i −0.865779 0.500426i \(-0.833177\pi\)
0.865779 0.500426i \(-0.166823\pi\)
\(878\) − 38480.7i − 1.47911i
\(879\) 22754.1 0.873126
\(880\) 0 0
\(881\) −29528.7 −1.12922 −0.564612 0.825357i \(-0.690974\pi\)
−0.564612 + 0.825357i \(0.690974\pi\)
\(882\) − 24390.2i − 0.931133i
\(883\) 50497.5i 1.92455i 0.272081 + 0.962274i \(0.412288\pi\)
−0.272081 + 0.962274i \(0.587712\pi\)
\(884\) −11114.3 −0.422867
\(885\) 0 0
\(886\) 16198.2 0.614208
\(887\) 36471.9i 1.38062i 0.723515 + 0.690309i \(0.242525\pi\)
−0.723515 + 0.690309i \(0.757475\pi\)
\(888\) 56444.3i 2.13305i
\(889\) −3875.28 −0.146201
\(890\) 0 0
\(891\) 1513.12 0.0568929
\(892\) 19596.6i 0.735586i
\(893\) 17171.8i 0.643484i
\(894\) −21602.8 −0.808173
\(895\) 0 0
\(896\) −47723.2 −1.77937
\(897\) 246.004i 0.00915700i
\(898\) − 6426.54i − 0.238816i
\(899\) −43848.2 −1.62672
\(900\) 0 0
\(901\) 32047.7 1.18498
\(902\) 15269.9i 0.563673i
\(903\) 6287.40i 0.231707i
\(904\) 44380.3 1.63282
\(905\) 0 0
\(906\) 12351.6 0.452930
\(907\) 15130.2i 0.553902i 0.960884 + 0.276951i \(0.0893240\pi\)
−0.960884 + 0.276951i \(0.910676\pi\)
\(908\) − 9034.81i − 0.330210i
\(909\) 6933.12 0.252978
\(910\) 0 0
\(911\) 13937.0 0.506864 0.253432 0.967353i \(-0.418441\pi\)
0.253432 + 0.967353i \(0.418441\pi\)
\(912\) 93464.6i 3.39355i
\(913\) 3053.81i 0.110697i
\(914\) 15269.9 0.552608
\(915\) 0 0
\(916\) −11277.9 −0.406804
\(917\) 6363.04i 0.229145i
\(918\) − 90467.3i − 3.25258i
\(919\) 40897.5 1.46799 0.733996 0.679153i \(-0.237653\pi\)
0.733996 + 0.679153i \(0.237653\pi\)
\(920\) 0 0
\(921\) −17387.7 −0.622091
\(922\) − 62423.5i − 2.22973i
\(923\) 4030.45i 0.143731i
\(924\) −5438.68 −0.193636
\(925\) 0 0
\(926\) −88955.7 −3.15688
\(927\) 12517.6i 0.443508i
\(928\) − 227048.i − 8.03149i
\(929\) 12154.1 0.429239 0.214620 0.976698i \(-0.431149\pi\)
0.214620 + 0.976698i \(0.431149\pi\)
\(930\) 0 0
\(931\) 28879.5 1.01664
\(932\) − 157870.i − 5.54852i
\(933\) 10136.2i 0.355675i
\(934\) 37121.1 1.30047
\(935\) 0 0
\(936\) −5211.95 −0.182006
\(937\) − 15754.1i − 0.549267i −0.961549 0.274634i \(-0.911443\pi\)
0.961549 0.274634i \(-0.0885566\pi\)
\(938\) − 5933.67i − 0.206547i
\(939\) 28526.2 0.991393
\(940\) 0 0
\(941\) −4217.53 −0.146108 −0.0730539 0.997328i \(-0.523275\pi\)
−0.0730539 + 0.997328i \(0.523275\pi\)
\(942\) − 41892.7i − 1.44898i
\(943\) − 3932.18i − 0.135789i
\(944\) −78704.5 −2.71357
\(945\) 0 0
\(946\) 17839.4 0.613116
\(947\) 49839.0i 1.71019i 0.518471 + 0.855095i \(0.326502\pi\)
−0.518471 + 0.855095i \(0.673498\pi\)
\(948\) − 72033.9i − 2.46788i
\(949\) 677.708 0.0231816
\(950\) 0 0
\(951\) −16628.5 −0.566999
\(952\) 55573.3i 1.89196i
\(953\) 12845.7i 0.436635i 0.975878 + 0.218318i \(0.0700569\pi\)
−0.975878 + 0.218318i \(0.929943\pi\)
\(954\) 23080.7 0.783298
\(955\) 0 0
\(956\) 69085.4 2.33722
\(957\) − 10063.4i − 0.339921i
\(958\) − 64413.9i − 2.17236i
\(959\) −10235.3 −0.344646
\(960\) 0 0
\(961\) −651.937 −0.0218837
\(962\) − 4653.86i − 0.155973i
\(963\) 1715.62i 0.0574092i
\(964\) −71245.7 −2.38036
\(965\) 0 0
\(966\) 1889.13 0.0629210
\(967\) − 38829.6i − 1.29129i −0.763638 0.645645i \(-0.776589\pi\)
0.763638 0.645645i \(-0.223411\pi\)
\(968\) 10047.7i 0.333621i
\(969\) 37115.6 1.23047
\(970\) 0 0
\(971\) −11438.8 −0.378053 −0.189026 0.981972i \(-0.560533\pi\)
−0.189026 + 0.981972i \(0.560533\pi\)
\(972\) − 79869.3i − 2.63561i
\(973\) − 16887.1i − 0.556400i
\(974\) −59056.4 −1.94280
\(975\) 0 0
\(976\) 46718.7 1.53220
\(977\) − 12084.1i − 0.395706i −0.980232 0.197853i \(-0.936603\pi\)
0.980232 0.197853i \(-0.0633969\pi\)
\(978\) − 22848.8i − 0.747058i
\(979\) −10748.6 −0.350896
\(980\) 0 0
\(981\) −5935.44 −0.193174
\(982\) 99818.8i 3.24373i
\(983\) 23502.2i 0.762569i 0.924458 + 0.381284i \(0.124518\pi\)
−0.924458 + 0.381284i \(0.875482\pi\)
\(984\) −73819.1 −2.39153
\(985\) 0 0
\(986\) −157926. −5.10081
\(987\) − 3927.55i − 0.126662i
\(988\) − 9477.87i − 0.305194i
\(989\) −4593.84 −0.147700
\(990\) 0 0
\(991\) −18664.1 −0.598268 −0.299134 0.954211i \(-0.596698\pi\)
−0.299134 + 0.954211i \(0.596698\pi\)
\(992\) 150884.i 4.82919i
\(993\) 9193.47i 0.293803i
\(994\) 30950.9 0.987627
\(995\) 0 0
\(996\) −22673.0 −0.721308
\(997\) 24528.4i 0.779158i 0.920993 + 0.389579i \(0.127380\pi\)
−0.920993 + 0.389579i \(0.872620\pi\)
\(998\) − 57893.7i − 1.83626i
\(999\) 28083.4 0.889410
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.b.b.199.1 4
5.2 odd 4 275.4.a.c.1.2 2
5.3 odd 4 55.4.a.b.1.1 2
5.4 even 2 inner 275.4.b.b.199.4 4
15.2 even 4 2475.4.a.l.1.1 2
15.8 even 4 495.4.a.e.1.2 2
20.3 even 4 880.4.a.r.1.2 2
55.43 even 4 605.4.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.1 2 5.3 odd 4
275.4.a.c.1.2 2 5.2 odd 4
275.4.b.b.199.1 4 1.1 even 1 trivial
275.4.b.b.199.4 4 5.4 even 2 inner
495.4.a.e.1.2 2 15.8 even 4
605.4.a.g.1.2 2 55.43 even 4
880.4.a.r.1.2 2 20.3 even 4
2475.4.a.l.1.1 2 15.2 even 4