Properties

Label 495.4.a.e.1.2
Level $495$
Weight $4$
Character 495.1
Self dual yes
Analytic conductor $29.206$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,4,Mod(1,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 495.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.2059454528\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 495.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.56155 q^{2} +22.9309 q^{4} -5.00000 q^{5} +6.05398 q^{7} +83.0388 q^{8} -27.8078 q^{10} +11.0000 q^{11} -4.38447 q^{13} +33.6695 q^{14} +278.378 q^{16} +110.546 q^{17} -94.2699 q^{19} -114.654 q^{20} +61.1771 q^{22} -15.7538 q^{23} +25.0000 q^{25} -24.3845 q^{26} +138.823 q^{28} +256.870 q^{29} -170.702 q^{31} +883.902 q^{32} +614.810 q^{34} -30.2699 q^{35} -190.853 q^{37} -524.287 q^{38} -415.194 q^{40} -249.602 q^{41} +291.602 q^{43} +252.240 q^{44} -87.6155 q^{46} -182.155 q^{47} -306.349 q^{49} +139.039 q^{50} -100.540 q^{52} +289.902 q^{53} -55.0000 q^{55} +502.715 q^{56} +1428.60 q^{58} -282.725 q^{59} +167.825 q^{61} -949.366 q^{62} +2688.85 q^{64} +21.9224 q^{65} -176.233 q^{67} +2534.93 q^{68} -168.348 q^{70} -919.255 q^{71} +154.570 q^{73} -1061.44 q^{74} -2161.69 q^{76} +66.5937 q^{77} -882.017 q^{79} -1391.89 q^{80} -1388.18 q^{82} -277.619 q^{83} -552.732 q^{85} +1621.76 q^{86} +913.427 q^{88} +977.147 q^{89} -26.5435 q^{91} -361.248 q^{92} -1013.07 q^{94} +471.349 q^{95} -1102.94 q^{97} -1703.78 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{2} + 17 q^{4} - 10 q^{5} - 25 q^{7} + 63 q^{8} - 35 q^{10} + 22 q^{11} - 50 q^{13} - 11 q^{14} + 297 q^{16} + 151 q^{17} - 3 q^{19} - 85 q^{20} + 77 q^{22} - 48 q^{23} + 50 q^{25} - 90 q^{26}+ \cdots - 810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.56155 1.96631 0.983153 0.182785i \(-0.0585112\pi\)
0.983153 + 0.182785i \(0.0585112\pi\)
\(3\) 0 0
\(4\) 22.9309 2.86636
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 6.05398 0.326884 0.163442 0.986553i \(-0.447740\pi\)
0.163442 + 0.986553i \(0.447740\pi\)
\(8\) 83.0388 3.66983
\(9\) 0 0
\(10\) −27.8078 −0.879359
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −4.38447 −0.0935411 −0.0467705 0.998906i \(-0.514893\pi\)
−0.0467705 + 0.998906i \(0.514893\pi\)
\(14\) 33.6695 0.642754
\(15\) 0 0
\(16\) 278.378 4.34965
\(17\) 110.546 1.57714 0.788572 0.614943i \(-0.210821\pi\)
0.788572 + 0.614943i \(0.210821\pi\)
\(18\) 0 0
\(19\) −94.2699 −1.13826 −0.569131 0.822247i \(-0.692720\pi\)
−0.569131 + 0.822247i \(0.692720\pi\)
\(20\) −114.654 −1.28187
\(21\) 0 0
\(22\) 61.1771 0.592864
\(23\) −15.7538 −0.142821 −0.0714107 0.997447i \(-0.522750\pi\)
−0.0714107 + 0.997447i \(0.522750\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −24.3845 −0.183930
\(27\) 0 0
\(28\) 138.823 0.936967
\(29\) 256.870 1.64481 0.822407 0.568900i \(-0.192631\pi\)
0.822407 + 0.568900i \(0.192631\pi\)
\(30\) 0 0
\(31\) −170.702 −0.988998 −0.494499 0.869178i \(-0.664648\pi\)
−0.494499 + 0.869178i \(0.664648\pi\)
\(32\) 883.902 4.88292
\(33\) 0 0
\(34\) 614.810 3.10115
\(35\) −30.2699 −0.146187
\(36\) 0 0
\(37\) −190.853 −0.848002 −0.424001 0.905662i \(-0.639375\pi\)
−0.424001 + 0.905662i \(0.639375\pi\)
\(38\) −524.287 −2.23817
\(39\) 0 0
\(40\) −415.194 −1.64120
\(41\) −249.602 −0.950764 −0.475382 0.879780i \(-0.657690\pi\)
−0.475382 + 0.879780i \(0.657690\pi\)
\(42\) 0 0
\(43\) 291.602 1.03416 0.517081 0.855937i \(-0.327019\pi\)
0.517081 + 0.855937i \(0.327019\pi\)
\(44\) 252.240 0.864240
\(45\) 0 0
\(46\) −87.6155 −0.280831
\(47\) −182.155 −0.565321 −0.282660 0.959220i \(-0.591217\pi\)
−0.282660 + 0.959220i \(0.591217\pi\)
\(48\) 0 0
\(49\) −306.349 −0.893147
\(50\) 139.039 0.393261
\(51\) 0 0
\(52\) −100.540 −0.268122
\(53\) 289.902 0.751343 0.375671 0.926753i \(-0.377412\pi\)
0.375671 + 0.926753i \(0.377412\pi\)
\(54\) 0 0
\(55\) −55.0000 −0.134840
\(56\) 502.715 1.19961
\(57\) 0 0
\(58\) 1428.60 3.23421
\(59\) −282.725 −0.623859 −0.311930 0.950105i \(-0.600975\pi\)
−0.311930 + 0.950105i \(0.600975\pi\)
\(60\) 0 0
\(61\) 167.825 0.352258 0.176129 0.984367i \(-0.443642\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(62\) −949.366 −1.94467
\(63\) 0 0
\(64\) 2688.85 5.25166
\(65\) 21.9224 0.0418328
\(66\) 0 0
\(67\) −176.233 −0.321347 −0.160674 0.987008i \(-0.551367\pi\)
−0.160674 + 0.987008i \(0.551367\pi\)
\(68\) 2534.93 4.52066
\(69\) 0 0
\(70\) −168.348 −0.287448
\(71\) −919.255 −1.53656 −0.768278 0.640116i \(-0.778886\pi\)
−0.768278 + 0.640116i \(0.778886\pi\)
\(72\) 0 0
\(73\) 154.570 0.247823 0.123911 0.992293i \(-0.460456\pi\)
0.123911 + 0.992293i \(0.460456\pi\)
\(74\) −1061.44 −1.66743
\(75\) 0 0
\(76\) −2161.69 −3.26267
\(77\) 66.5937 0.0985592
\(78\) 0 0
\(79\) −882.017 −1.25614 −0.628068 0.778159i \(-0.716154\pi\)
−0.628068 + 0.778159i \(0.716154\pi\)
\(80\) −1391.89 −1.94522
\(81\) 0 0
\(82\) −1388.18 −1.86949
\(83\) −277.619 −0.367141 −0.183570 0.983007i \(-0.558766\pi\)
−0.183570 + 0.983007i \(0.558766\pi\)
\(84\) 0 0
\(85\) −552.732 −0.705320
\(86\) 1621.76 2.03348
\(87\) 0 0
\(88\) 913.427 1.10650
\(89\) 977.147 1.16379 0.581895 0.813264i \(-0.302311\pi\)
0.581895 + 0.813264i \(0.302311\pi\)
\(90\) 0 0
\(91\) −26.5435 −0.0305771
\(92\) −361.248 −0.409377
\(93\) 0 0
\(94\) −1013.07 −1.11159
\(95\) 471.349 0.509047
\(96\) 0 0
\(97\) −1102.94 −1.15451 −0.577253 0.816565i \(-0.695875\pi\)
−0.577253 + 0.816565i \(0.695875\pi\)
\(98\) −1703.78 −1.75620
\(99\) 0 0
\(100\) 573.272 0.573272
\(101\) −484.314 −0.477139 −0.238570 0.971125i \(-0.576679\pi\)
−0.238570 + 0.971125i \(0.576679\pi\)
\(102\) 0 0
\(103\) −874.419 −0.836495 −0.418248 0.908333i \(-0.637356\pi\)
−0.418248 + 0.908333i \(0.637356\pi\)
\(104\) −364.081 −0.343280
\(105\) 0 0
\(106\) 1612.31 1.47737
\(107\) −119.845 −0.108279 −0.0541394 0.998533i \(-0.517242\pi\)
−0.0541394 + 0.998533i \(0.517242\pi\)
\(108\) 0 0
\(109\) 414.621 0.364344 0.182172 0.983267i \(-0.441687\pi\)
0.182172 + 0.983267i \(0.441687\pi\)
\(110\) −305.885 −0.265137
\(111\) 0 0
\(112\) 1685.29 1.42183
\(113\) −534.453 −0.444930 −0.222465 0.974941i \(-0.571410\pi\)
−0.222465 + 0.974941i \(0.571410\pi\)
\(114\) 0 0
\(115\) 78.7689 0.0638717
\(116\) 5890.26 4.71463
\(117\) 0 0
\(118\) −1572.39 −1.22670
\(119\) 669.245 0.515543
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 933.366 0.692648
\(123\) 0 0
\(124\) −3914.34 −2.83482
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 640.121 0.447256 0.223628 0.974675i \(-0.428210\pi\)
0.223628 + 0.974675i \(0.428210\pi\)
\(128\) 7882.95 5.44344
\(129\) 0 0
\(130\) 121.922 0.0822561
\(131\) −1051.05 −0.700999 −0.350499 0.936563i \(-0.613988\pi\)
−0.350499 + 0.936563i \(0.613988\pi\)
\(132\) 0 0
\(133\) −570.708 −0.372080
\(134\) −980.129 −0.631867
\(135\) 0 0
\(136\) 9179.64 5.78785
\(137\) −1690.68 −1.05434 −0.527169 0.849761i \(-0.676746\pi\)
−0.527169 + 0.849761i \(0.676746\pi\)
\(138\) 0 0
\(139\) 2789.43 1.70213 0.851067 0.525058i \(-0.175956\pi\)
0.851067 + 0.525058i \(0.175956\pi\)
\(140\) −694.115 −0.419024
\(141\) 0 0
\(142\) −5112.48 −3.02134
\(143\) −48.2292 −0.0282037
\(144\) 0 0
\(145\) −1284.35 −0.735583
\(146\) 859.650 0.487295
\(147\) 0 0
\(148\) −4376.43 −2.43068
\(149\) −1090.62 −0.599647 −0.299823 0.953995i \(-0.596928\pi\)
−0.299823 + 0.953995i \(0.596928\pi\)
\(150\) 0 0
\(151\) 623.574 0.336064 0.168032 0.985782i \(-0.446259\pi\)
0.168032 + 0.985782i \(0.446259\pi\)
\(152\) −7828.06 −4.17723
\(153\) 0 0
\(154\) 370.365 0.193798
\(155\) 853.508 0.442293
\(156\) 0 0
\(157\) −2114.96 −1.07511 −0.537555 0.843228i \(-0.680652\pi\)
−0.537555 + 0.843228i \(0.680652\pi\)
\(158\) −4905.38 −2.46995
\(159\) 0 0
\(160\) −4419.51 −2.18371
\(161\) −95.3730 −0.0466860
\(162\) 0 0
\(163\) 1153.53 0.554301 0.277151 0.960827i \(-0.410610\pi\)
0.277151 + 0.960827i \(0.410610\pi\)
\(164\) −5723.60 −2.72523
\(165\) 0 0
\(166\) −1543.99 −0.721911
\(167\) 1100.93 0.510137 0.255068 0.966923i \(-0.417902\pi\)
0.255068 + 0.966923i \(0.417902\pi\)
\(168\) 0 0
\(169\) −2177.78 −0.991250
\(170\) −3074.05 −1.38687
\(171\) 0 0
\(172\) 6686.69 2.96428
\(173\) 2369.25 1.04122 0.520609 0.853795i \(-0.325705\pi\)
0.520609 + 0.853795i \(0.325705\pi\)
\(174\) 0 0
\(175\) 151.349 0.0653768
\(176\) 3062.16 1.31147
\(177\) 0 0
\(178\) 5434.45 2.28837
\(179\) −1226.77 −0.512250 −0.256125 0.966644i \(-0.582446\pi\)
−0.256125 + 0.966644i \(0.582446\pi\)
\(180\) 0 0
\(181\) −439.606 −0.180528 −0.0902642 0.995918i \(-0.528771\pi\)
−0.0902642 + 0.995918i \(0.528771\pi\)
\(182\) −147.623 −0.0601239
\(183\) 0 0
\(184\) −1308.18 −0.524131
\(185\) 954.266 0.379238
\(186\) 0 0
\(187\) 1216.01 0.475527
\(188\) −4176.98 −1.62041
\(189\) 0 0
\(190\) 2621.43 1.00094
\(191\) 4968.96 1.88241 0.941207 0.337829i \(-0.109693\pi\)
0.941207 + 0.337829i \(0.109693\pi\)
\(192\) 0 0
\(193\) −1362.22 −0.508054 −0.254027 0.967197i \(-0.581755\pi\)
−0.254027 + 0.967197i \(0.581755\pi\)
\(194\) −6134.09 −2.27011
\(195\) 0 0
\(196\) −7024.86 −2.56008
\(197\) −2195.91 −0.794174 −0.397087 0.917781i \(-0.629979\pi\)
−0.397087 + 0.917781i \(0.629979\pi\)
\(198\) 0 0
\(199\) −558.189 −0.198839 −0.0994194 0.995046i \(-0.531699\pi\)
−0.0994194 + 0.995046i \(0.531699\pi\)
\(200\) 2075.97 0.733966
\(201\) 0 0
\(202\) −2693.54 −0.938202
\(203\) 1555.09 0.537663
\(204\) 0 0
\(205\) 1248.01 0.425195
\(206\) −4863.12 −1.64481
\(207\) 0 0
\(208\) −1220.54 −0.406871
\(209\) −1036.97 −0.343199
\(210\) 0 0
\(211\) −3002.01 −0.979463 −0.489732 0.871873i \(-0.662905\pi\)
−0.489732 + 0.871873i \(0.662905\pi\)
\(212\) 6647.71 2.15362
\(213\) 0 0
\(214\) −666.523 −0.212909
\(215\) −1458.01 −0.462491
\(216\) 0 0
\(217\) −1033.42 −0.323287
\(218\) 2305.94 0.716412
\(219\) 0 0
\(220\) −1261.20 −0.386500
\(221\) −484.688 −0.147528
\(222\) 0 0
\(223\) 854.595 0.256627 0.128314 0.991734i \(-0.459044\pi\)
0.128314 + 0.991734i \(0.459044\pi\)
\(224\) 5351.12 1.59615
\(225\) 0 0
\(226\) −2972.39 −0.874868
\(227\) −394.002 −0.115202 −0.0576010 0.998340i \(-0.518345\pi\)
−0.0576010 + 0.998340i \(0.518345\pi\)
\(228\) 0 0
\(229\) −491.822 −0.141924 −0.0709618 0.997479i \(-0.522607\pi\)
−0.0709618 + 0.997479i \(0.522607\pi\)
\(230\) 438.078 0.125591
\(231\) 0 0
\(232\) 21330.2 6.03619
\(233\) 6884.63 1.93574 0.967869 0.251456i \(-0.0809094\pi\)
0.967869 + 0.251456i \(0.0809094\pi\)
\(234\) 0 0
\(235\) 910.776 0.252819
\(236\) −6483.14 −1.78820
\(237\) 0 0
\(238\) 3722.04 1.01371
\(239\) −3012.77 −0.815397 −0.407699 0.913117i \(-0.633669\pi\)
−0.407699 + 0.913117i \(0.633669\pi\)
\(240\) 0 0
\(241\) 3106.98 0.830448 0.415224 0.909719i \(-0.363703\pi\)
0.415224 + 0.909719i \(0.363703\pi\)
\(242\) 672.948 0.178755
\(243\) 0 0
\(244\) 3848.37 1.00970
\(245\) 1531.75 0.399427
\(246\) 0 0
\(247\) 413.324 0.106474
\(248\) −14174.9 −3.62946
\(249\) 0 0
\(250\) −695.194 −0.175872
\(251\) 834.313 0.209806 0.104903 0.994482i \(-0.466547\pi\)
0.104903 + 0.994482i \(0.466547\pi\)
\(252\) 0 0
\(253\) −173.292 −0.0430623
\(254\) 3560.07 0.879443
\(255\) 0 0
\(256\) 22330.6 5.45182
\(257\) 7536.63 1.82927 0.914635 0.404281i \(-0.132478\pi\)
0.914635 + 0.404281i \(0.132478\pi\)
\(258\) 0 0
\(259\) −1155.42 −0.277198
\(260\) 502.699 0.119908
\(261\) 0 0
\(262\) −5845.48 −1.37838
\(263\) 6242.10 1.46351 0.731757 0.681565i \(-0.238700\pi\)
0.731757 + 0.681565i \(0.238700\pi\)
\(264\) 0 0
\(265\) −1449.51 −0.336011
\(266\) −3174.02 −0.731623
\(267\) 0 0
\(268\) −4041.17 −0.921097
\(269\) −1636.95 −0.371027 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(270\) 0 0
\(271\) 787.212 0.176457 0.0882283 0.996100i \(-0.471880\pi\)
0.0882283 + 0.996100i \(0.471880\pi\)
\(272\) 30773.7 6.86003
\(273\) 0 0
\(274\) −9402.78 −2.07315
\(275\) 275.000 0.0603023
\(276\) 0 0
\(277\) 1954.96 0.424052 0.212026 0.977264i \(-0.431994\pi\)
0.212026 + 0.977264i \(0.431994\pi\)
\(278\) 15513.6 3.34691
\(279\) 0 0
\(280\) −2513.57 −0.536482
\(281\) 5097.58 1.08219 0.541097 0.840960i \(-0.318009\pi\)
0.541097 + 0.840960i \(0.318009\pi\)
\(282\) 0 0
\(283\) −7187.71 −1.50977 −0.754885 0.655857i \(-0.772307\pi\)
−0.754885 + 0.655857i \(0.772307\pi\)
\(284\) −21079.3 −4.40432
\(285\) 0 0
\(286\) −268.229 −0.0554571
\(287\) −1511.09 −0.310789
\(288\) 0 0
\(289\) 7307.51 1.48738
\(290\) −7142.99 −1.44638
\(291\) 0 0
\(292\) 3544.43 0.710349
\(293\) −6388.82 −1.27385 −0.636926 0.770925i \(-0.719794\pi\)
−0.636926 + 0.770925i \(0.719794\pi\)
\(294\) 0 0
\(295\) 1413.63 0.278998
\(296\) −15848.2 −3.11203
\(297\) 0 0
\(298\) −6065.56 −1.17909
\(299\) 69.0720 0.0133597
\(300\) 0 0
\(301\) 1765.35 0.338051
\(302\) 3468.04 0.660806
\(303\) 0 0
\(304\) −26242.6 −4.95105
\(305\) −839.124 −0.157535
\(306\) 0 0
\(307\) 4882.07 0.907603 0.453802 0.891103i \(-0.350067\pi\)
0.453802 + 0.891103i \(0.350067\pi\)
\(308\) 1527.05 0.282506
\(309\) 0 0
\(310\) 4746.83 0.869684
\(311\) −2846.01 −0.518914 −0.259457 0.965755i \(-0.583544\pi\)
−0.259457 + 0.965755i \(0.583544\pi\)
\(312\) 0 0
\(313\) 8009.49 1.44640 0.723200 0.690639i \(-0.242670\pi\)
0.723200 + 0.690639i \(0.242670\pi\)
\(314\) −11762.5 −2.11400
\(315\) 0 0
\(316\) −20225.4 −3.60053
\(317\) −4668.89 −0.827227 −0.413613 0.910453i \(-0.635733\pi\)
−0.413613 + 0.910453i \(0.635733\pi\)
\(318\) 0 0
\(319\) 2825.57 0.495930
\(320\) −13444.2 −2.34861
\(321\) 0 0
\(322\) −530.422 −0.0917990
\(323\) −10421.2 −1.79520
\(324\) 0 0
\(325\) −109.612 −0.0187082
\(326\) 6415.39 1.08993
\(327\) 0 0
\(328\) −20726.7 −3.48914
\(329\) −1102.76 −0.184794
\(330\) 0 0
\(331\) 2581.31 0.428645 0.214323 0.976763i \(-0.431246\pi\)
0.214323 + 0.976763i \(0.431246\pi\)
\(332\) −6366.05 −1.05236
\(333\) 0 0
\(334\) 6122.91 1.00309
\(335\) 881.165 0.143711
\(336\) 0 0
\(337\) −8152.45 −1.31778 −0.658890 0.752239i \(-0.728974\pi\)
−0.658890 + 0.752239i \(0.728974\pi\)
\(338\) −12111.8 −1.94910
\(339\) 0 0
\(340\) −12674.6 −2.02170
\(341\) −1877.72 −0.298194
\(342\) 0 0
\(343\) −3931.15 −0.618839
\(344\) 24214.3 3.79520
\(345\) 0 0
\(346\) 13176.7 2.04735
\(347\) 3426.21 0.530054 0.265027 0.964241i \(-0.414619\pi\)
0.265027 + 0.964241i \(0.414619\pi\)
\(348\) 0 0
\(349\) 1334.33 0.204656 0.102328 0.994751i \(-0.467371\pi\)
0.102328 + 0.994751i \(0.467371\pi\)
\(350\) 841.738 0.128551
\(351\) 0 0
\(352\) 9722.93 1.47225
\(353\) −4406.21 −0.664360 −0.332180 0.943216i \(-0.607784\pi\)
−0.332180 + 0.943216i \(0.607784\pi\)
\(354\) 0 0
\(355\) 4596.27 0.687169
\(356\) 22406.8 3.33584
\(357\) 0 0
\(358\) −6822.72 −1.00724
\(359\) 8623.04 1.26771 0.633853 0.773453i \(-0.281472\pi\)
0.633853 + 0.773453i \(0.281472\pi\)
\(360\) 0 0
\(361\) 2027.81 0.295642
\(362\) −2444.89 −0.354974
\(363\) 0 0
\(364\) −608.665 −0.0876448
\(365\) −772.850 −0.110830
\(366\) 0 0
\(367\) −3585.58 −0.509989 −0.254995 0.966942i \(-0.582074\pi\)
−0.254995 + 0.966942i \(0.582074\pi\)
\(368\) −4385.51 −0.621224
\(369\) 0 0
\(370\) 5307.20 0.745698
\(371\) 1755.06 0.245602
\(372\) 0 0
\(373\) 9855.90 1.36815 0.684074 0.729413i \(-0.260207\pi\)
0.684074 + 0.729413i \(0.260207\pi\)
\(374\) 6762.91 0.935031
\(375\) 0 0
\(376\) −15126.0 −2.07463
\(377\) −1126.24 −0.153858
\(378\) 0 0
\(379\) −10837.8 −1.46887 −0.734435 0.678679i \(-0.762553\pi\)
−0.734435 + 0.678679i \(0.762553\pi\)
\(380\) 10808.5 1.45911
\(381\) 0 0
\(382\) 27635.1 3.70140
\(383\) 2025.55 0.270237 0.135119 0.990829i \(-0.456858\pi\)
0.135119 + 0.990829i \(0.456858\pi\)
\(384\) 0 0
\(385\) −332.969 −0.0440770
\(386\) −7576.04 −0.998990
\(387\) 0 0
\(388\) −25291.5 −3.30923
\(389\) 978.894 0.127588 0.0637942 0.997963i \(-0.479680\pi\)
0.0637942 + 0.997963i \(0.479680\pi\)
\(390\) 0 0
\(391\) −1741.52 −0.225250
\(392\) −25438.9 −3.27770
\(393\) 0 0
\(394\) −12212.7 −1.56159
\(395\) 4410.09 0.561761
\(396\) 0 0
\(397\) −5008.28 −0.633144 −0.316572 0.948568i \(-0.602532\pi\)
−0.316572 + 0.948568i \(0.602532\pi\)
\(398\) −3104.39 −0.390978
\(399\) 0 0
\(400\) 6959.45 0.869931
\(401\) 15584.1 1.94073 0.970366 0.241639i \(-0.0776850\pi\)
0.970366 + 0.241639i \(0.0776850\pi\)
\(402\) 0 0
\(403\) 748.437 0.0925119
\(404\) −11105.7 −1.36765
\(405\) 0 0
\(406\) 8648.69 1.05721
\(407\) −2099.39 −0.255682
\(408\) 0 0
\(409\) 15106.6 1.82634 0.913171 0.407576i \(-0.133626\pi\)
0.913171 + 0.407576i \(0.133626\pi\)
\(410\) 6940.88 0.836063
\(411\) 0 0
\(412\) −20051.2 −2.39770
\(413\) −1711.61 −0.203930
\(414\) 0 0
\(415\) 1388.10 0.164190
\(416\) −3875.45 −0.456753
\(417\) 0 0
\(418\) −5767.16 −0.674834
\(419\) 1518.17 0.177011 0.0885056 0.996076i \(-0.471791\pi\)
0.0885056 + 0.996076i \(0.471791\pi\)
\(420\) 0 0
\(421\) 4637.05 0.536808 0.268404 0.963306i \(-0.413504\pi\)
0.268404 + 0.963306i \(0.413504\pi\)
\(422\) −16695.8 −1.92592
\(423\) 0 0
\(424\) 24073.2 2.75730
\(425\) 2763.66 0.315429
\(426\) 0 0
\(427\) 1016.01 0.115148
\(428\) −2748.14 −0.310366
\(429\) 0 0
\(430\) −8108.81 −0.909399
\(431\) 11477.9 1.28276 0.641380 0.767223i \(-0.278362\pi\)
0.641380 + 0.767223i \(0.278362\pi\)
\(432\) 0 0
\(433\) 10204.5 1.13256 0.566280 0.824213i \(-0.308382\pi\)
0.566280 + 0.824213i \(0.308382\pi\)
\(434\) −5747.44 −0.635682
\(435\) 0 0
\(436\) 9507.62 1.04434
\(437\) 1485.11 0.162568
\(438\) 0 0
\(439\) −6919.06 −0.752229 −0.376115 0.926573i \(-0.622740\pi\)
−0.376115 + 0.926573i \(0.622740\pi\)
\(440\) −4567.14 −0.494840
\(441\) 0 0
\(442\) −2695.62 −0.290085
\(443\) 2912.53 0.312366 0.156183 0.987728i \(-0.450081\pi\)
0.156183 + 0.987728i \(0.450081\pi\)
\(444\) 0 0
\(445\) −4885.73 −0.520463
\(446\) 4752.87 0.504608
\(447\) 0 0
\(448\) 16278.2 1.71668
\(449\) 1155.53 0.121454 0.0607270 0.998154i \(-0.480658\pi\)
0.0607270 + 0.998154i \(0.480658\pi\)
\(450\) 0 0
\(451\) −2745.62 −0.286666
\(452\) −12255.5 −1.27533
\(453\) 0 0
\(454\) −2191.26 −0.226522
\(455\) 132.717 0.0136745
\(456\) 0 0
\(457\) 2745.62 0.281039 0.140519 0.990078i \(-0.455123\pi\)
0.140519 + 0.990078i \(0.455123\pi\)
\(458\) −2735.29 −0.279065
\(459\) 0 0
\(460\) 1806.24 0.183079
\(461\) −11224.1 −1.13397 −0.566984 0.823729i \(-0.691890\pi\)
−0.566984 + 0.823729i \(0.691890\pi\)
\(462\) 0 0
\(463\) 15994.8 1.60549 0.802743 0.596325i \(-0.203373\pi\)
0.802743 + 0.596325i \(0.203373\pi\)
\(464\) 71507.0 7.15437
\(465\) 0 0
\(466\) 38289.2 3.80625
\(467\) −6674.60 −0.661378 −0.330689 0.943740i \(-0.607281\pi\)
−0.330689 + 0.943740i \(0.607281\pi\)
\(468\) 0 0
\(469\) −1066.91 −0.105043
\(470\) 5065.33 0.497120
\(471\) 0 0
\(472\) −23477.2 −2.28946
\(473\) 3207.62 0.311811
\(474\) 0 0
\(475\) −2356.75 −0.227653
\(476\) 15346.4 1.47773
\(477\) 0 0
\(478\) −16755.7 −1.60332
\(479\) 11582.0 1.10479 0.552396 0.833582i \(-0.313714\pi\)
0.552396 + 0.833582i \(0.313714\pi\)
\(480\) 0 0
\(481\) 836.791 0.0793230
\(482\) 17279.6 1.63292
\(483\) 0 0
\(484\) 2774.64 0.260578
\(485\) 5514.72 0.516311
\(486\) 0 0
\(487\) −10618.7 −0.988047 −0.494024 0.869448i \(-0.664474\pi\)
−0.494024 + 0.869448i \(0.664474\pi\)
\(488\) 13936.0 1.29273
\(489\) 0 0
\(490\) 8518.89 0.785396
\(491\) 17948.0 1.64966 0.824829 0.565382i \(-0.191271\pi\)
0.824829 + 0.565382i \(0.191271\pi\)
\(492\) 0 0
\(493\) 28396.1 2.59411
\(494\) 2298.72 0.209361
\(495\) 0 0
\(496\) −47519.6 −4.30180
\(497\) −5565.15 −0.502275
\(498\) 0 0
\(499\) −10409.6 −0.933865 −0.466932 0.884293i \(-0.654641\pi\)
−0.466932 + 0.884293i \(0.654641\pi\)
\(500\) −2866.36 −0.256375
\(501\) 0 0
\(502\) 4640.07 0.412543
\(503\) −7319.98 −0.648870 −0.324435 0.945908i \(-0.605174\pi\)
−0.324435 + 0.945908i \(0.605174\pi\)
\(504\) 0 0
\(505\) 2421.57 0.213383
\(506\) −963.771 −0.0846736
\(507\) 0 0
\(508\) 14678.5 1.28200
\(509\) −7619.94 −0.663552 −0.331776 0.943358i \(-0.607648\pi\)
−0.331776 + 0.943358i \(0.607648\pi\)
\(510\) 0 0
\(511\) 935.763 0.0810093
\(512\) 61129.5 5.27650
\(513\) 0 0
\(514\) 41915.4 3.59690
\(515\) 4372.09 0.374092
\(516\) 0 0
\(517\) −2003.71 −0.170451
\(518\) −6425.93 −0.545057
\(519\) 0 0
\(520\) 1820.41 0.153519
\(521\) 12413.4 1.04384 0.521921 0.852994i \(-0.325215\pi\)
0.521921 + 0.852994i \(0.325215\pi\)
\(522\) 0 0
\(523\) −2524.30 −0.211051 −0.105526 0.994417i \(-0.533653\pi\)
−0.105526 + 0.994417i \(0.533653\pi\)
\(524\) −24101.5 −2.00931
\(525\) 0 0
\(526\) 34715.8 2.87772
\(527\) −18870.5 −1.55979
\(528\) 0 0
\(529\) −11918.8 −0.979602
\(530\) −8061.54 −0.660700
\(531\) 0 0
\(532\) −13086.8 −1.06651
\(533\) 1094.37 0.0889355
\(534\) 0 0
\(535\) 599.224 0.0484237
\(536\) −14634.2 −1.17929
\(537\) 0 0
\(538\) −9103.96 −0.729553
\(539\) −3369.84 −0.269294
\(540\) 0 0
\(541\) 10271.4 0.816269 0.408135 0.912922i \(-0.366179\pi\)
0.408135 + 0.912922i \(0.366179\pi\)
\(542\) 4378.12 0.346968
\(543\) 0 0
\(544\) 97712.2 7.70106
\(545\) −2073.11 −0.162940
\(546\) 0 0
\(547\) 7810.11 0.610487 0.305243 0.952274i \(-0.401262\pi\)
0.305243 + 0.952274i \(0.401262\pi\)
\(548\) −38768.7 −3.02211
\(549\) 0 0
\(550\) 1529.43 0.118573
\(551\) −24215.1 −1.87223
\(552\) 0 0
\(553\) −5339.71 −0.410610
\(554\) 10872.6 0.833815
\(555\) 0 0
\(556\) 63964.1 4.87892
\(557\) 18348.8 1.39580 0.697902 0.716193i \(-0.254117\pi\)
0.697902 + 0.716193i \(0.254117\pi\)
\(558\) 0 0
\(559\) −1278.52 −0.0967365
\(560\) −8426.46 −0.635863
\(561\) 0 0
\(562\) 28350.5 2.12792
\(563\) 174.680 0.0130761 0.00653807 0.999979i \(-0.497919\pi\)
0.00653807 + 0.999979i \(0.497919\pi\)
\(564\) 0 0
\(565\) 2672.26 0.198979
\(566\) −39974.8 −2.96867
\(567\) 0 0
\(568\) −76333.8 −5.63890
\(569\) 3208.08 0.236362 0.118181 0.992992i \(-0.462294\pi\)
0.118181 + 0.992992i \(0.462294\pi\)
\(570\) 0 0
\(571\) −11660.4 −0.854592 −0.427296 0.904112i \(-0.640534\pi\)
−0.427296 + 0.904112i \(0.640534\pi\)
\(572\) −1105.94 −0.0808419
\(573\) 0 0
\(574\) −8403.98 −0.611107
\(575\) −393.845 −0.0285643
\(576\) 0 0
\(577\) −12906.9 −0.931233 −0.465617 0.884987i \(-0.654167\pi\)
−0.465617 + 0.884987i \(0.654167\pi\)
\(578\) 40641.1 2.92465
\(579\) 0 0
\(580\) −29451.3 −2.10845
\(581\) −1680.70 −0.120012
\(582\) 0 0
\(583\) 3188.93 0.226538
\(584\) 12835.3 0.909468
\(585\) 0 0
\(586\) −35531.8 −2.50478
\(587\) −27427.0 −1.92850 −0.964252 0.264986i \(-0.914633\pi\)
−0.964252 + 0.264986i \(0.914633\pi\)
\(588\) 0 0
\(589\) 16092.0 1.12574
\(590\) 7861.96 0.548596
\(591\) 0 0
\(592\) −53129.3 −3.68852
\(593\) −5332.11 −0.369247 −0.184623 0.982809i \(-0.559107\pi\)
−0.184623 + 0.982809i \(0.559107\pi\)
\(594\) 0 0
\(595\) −3346.23 −0.230558
\(596\) −25009.0 −1.71880
\(597\) 0 0
\(598\) 384.148 0.0262692
\(599\) 22329.2 1.52312 0.761558 0.648097i \(-0.224435\pi\)
0.761558 + 0.648097i \(0.224435\pi\)
\(600\) 0 0
\(601\) 15511.8 1.05281 0.526405 0.850234i \(-0.323540\pi\)
0.526405 + 0.850234i \(0.323540\pi\)
\(602\) 9818.10 0.664711
\(603\) 0 0
\(604\) 14299.1 0.963281
\(605\) −605.000 −0.0406558
\(606\) 0 0
\(607\) 7205.25 0.481799 0.240900 0.970550i \(-0.422558\pi\)
0.240900 + 0.970550i \(0.422558\pi\)
\(608\) −83325.4 −5.55804
\(609\) 0 0
\(610\) −4666.83 −0.309761
\(611\) 798.655 0.0528807
\(612\) 0 0
\(613\) −2837.16 −0.186936 −0.0934682 0.995622i \(-0.529795\pi\)
−0.0934682 + 0.995622i \(0.529795\pi\)
\(614\) 27151.9 1.78463
\(615\) 0 0
\(616\) 5529.86 0.361696
\(617\) 7423.58 0.484379 0.242190 0.970229i \(-0.422134\pi\)
0.242190 + 0.970229i \(0.422134\pi\)
\(618\) 0 0
\(619\) 9747.62 0.632940 0.316470 0.948603i \(-0.397502\pi\)
0.316470 + 0.948603i \(0.397502\pi\)
\(620\) 19571.7 1.26777
\(621\) 0 0
\(622\) −15828.2 −1.02034
\(623\) 5915.62 0.380424
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 44545.2 2.84407
\(627\) 0 0
\(628\) −48497.9 −3.08165
\(629\) −21098.1 −1.33742
\(630\) 0 0
\(631\) 5914.75 0.373157 0.186579 0.982440i \(-0.440260\pi\)
0.186579 + 0.982440i \(0.440260\pi\)
\(632\) −73241.7 −4.60980
\(633\) 0 0
\(634\) −25966.3 −1.62658
\(635\) −3200.61 −0.200019
\(636\) 0 0
\(637\) 1343.18 0.0835459
\(638\) 15714.6 0.975150
\(639\) 0 0
\(640\) −39414.7 −2.43438
\(641\) 25438.0 1.56746 0.783728 0.621104i \(-0.213316\pi\)
0.783728 + 0.621104i \(0.213316\pi\)
\(642\) 0 0
\(643\) 769.253 0.0471794 0.0235897 0.999722i \(-0.492490\pi\)
0.0235897 + 0.999722i \(0.492490\pi\)
\(644\) −2186.99 −0.133819
\(645\) 0 0
\(646\) −57958.0 −3.52992
\(647\) −25813.2 −1.56850 −0.784250 0.620445i \(-0.786952\pi\)
−0.784250 + 0.620445i \(0.786952\pi\)
\(648\) 0 0
\(649\) −3109.98 −0.188101
\(650\) −609.612 −0.0367861
\(651\) 0 0
\(652\) 26451.3 1.58883
\(653\) 13138.6 0.787372 0.393686 0.919245i \(-0.371200\pi\)
0.393686 + 0.919245i \(0.371200\pi\)
\(654\) 0 0
\(655\) 5255.26 0.313496
\(656\) −69483.7 −4.13549
\(657\) 0 0
\(658\) −6133.08 −0.363362
\(659\) 19105.0 1.12933 0.564663 0.825322i \(-0.309006\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(660\) 0 0
\(661\) −31694.3 −1.86500 −0.932502 0.361166i \(-0.882379\pi\)
−0.932502 + 0.361166i \(0.882379\pi\)
\(662\) 14356.1 0.842848
\(663\) 0 0
\(664\) −23053.2 −1.34734
\(665\) 2853.54 0.166399
\(666\) 0 0
\(667\) −4046.68 −0.234915
\(668\) 25245.4 1.46224
\(669\) 0 0
\(670\) 4900.64 0.282580
\(671\) 1846.07 0.106210
\(672\) 0 0
\(673\) −23110.6 −1.32370 −0.661848 0.749638i \(-0.730228\pi\)
−0.661848 + 0.749638i \(0.730228\pi\)
\(674\) −45340.3 −2.59116
\(675\) 0 0
\(676\) −49938.3 −2.84128
\(677\) 17052.4 0.968062 0.484031 0.875051i \(-0.339172\pi\)
0.484031 + 0.875051i \(0.339172\pi\)
\(678\) 0 0
\(679\) −6677.20 −0.377390
\(680\) −45898.2 −2.58841
\(681\) 0 0
\(682\) −10443.0 −0.586341
\(683\) −28542.8 −1.59907 −0.799533 0.600623i \(-0.794919\pi\)
−0.799533 + 0.600623i \(0.794919\pi\)
\(684\) 0 0
\(685\) 8453.38 0.471514
\(686\) −21863.3 −1.21683
\(687\) 0 0
\(688\) 81175.6 4.49824
\(689\) −1271.07 −0.0702814
\(690\) 0 0
\(691\) 6479.20 0.356701 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(692\) 54328.9 2.98450
\(693\) 0 0
\(694\) 19055.1 1.04225
\(695\) −13947.2 −0.761217
\(696\) 0 0
\(697\) −27592.6 −1.49949
\(698\) 7420.94 0.402417
\(699\) 0 0
\(700\) 3470.57 0.187393
\(701\) −21118.6 −1.13786 −0.568929 0.822386i \(-0.692642\pi\)
−0.568929 + 0.822386i \(0.692642\pi\)
\(702\) 0 0
\(703\) 17991.7 0.965249
\(704\) 29577.3 1.58343
\(705\) 0 0
\(706\) −24505.4 −1.30633
\(707\) −2932.03 −0.155969
\(708\) 0 0
\(709\) 7072.53 0.374632 0.187316 0.982300i \(-0.440021\pi\)
0.187316 + 0.982300i \(0.440021\pi\)
\(710\) 25562.4 1.35118
\(711\) 0 0
\(712\) 81141.1 4.27092
\(713\) 2689.20 0.141250
\(714\) 0 0
\(715\) 241.146 0.0126131
\(716\) −28130.8 −1.46829
\(717\) 0 0
\(718\) 47957.5 2.49270
\(719\) −22177.9 −1.15034 −0.575170 0.818034i \(-0.695064\pi\)
−0.575170 + 0.818034i \(0.695064\pi\)
\(720\) 0 0
\(721\) −5293.71 −0.273437
\(722\) 11277.8 0.581323
\(723\) 0 0
\(724\) −10080.5 −0.517459
\(725\) 6421.76 0.328963
\(726\) 0 0
\(727\) −17390.7 −0.887186 −0.443593 0.896228i \(-0.646296\pi\)
−0.443593 + 0.896228i \(0.646296\pi\)
\(728\) −2204.14 −0.112213
\(729\) 0 0
\(730\) −4298.25 −0.217925
\(731\) 32235.6 1.63102
\(732\) 0 0
\(733\) −21877.0 −1.10238 −0.551191 0.834379i \(-0.685826\pi\)
−0.551191 + 0.834379i \(0.685826\pi\)
\(734\) −19941.4 −1.00279
\(735\) 0 0
\(736\) −13924.8 −0.697385
\(737\) −1938.56 −0.0968899
\(738\) 0 0
\(739\) 14203.1 0.706994 0.353497 0.935436i \(-0.384992\pi\)
0.353497 + 0.935436i \(0.384992\pi\)
\(740\) 21882.2 1.08703
\(741\) 0 0
\(742\) 9760.87 0.482928
\(743\) 3933.68 0.194230 0.0971148 0.995273i \(-0.469039\pi\)
0.0971148 + 0.995273i \(0.469039\pi\)
\(744\) 0 0
\(745\) 5453.12 0.268170
\(746\) 54814.1 2.69020
\(747\) 0 0
\(748\) 27884.2 1.36303
\(749\) −725.537 −0.0353946
\(750\) 0 0
\(751\) 22554.3 1.09590 0.547949 0.836512i \(-0.315409\pi\)
0.547949 + 0.836512i \(0.315409\pi\)
\(752\) −50708.0 −2.45895
\(753\) 0 0
\(754\) −6263.65 −0.302531
\(755\) −3117.87 −0.150293
\(756\) 0 0
\(757\) 11432.0 0.548883 0.274441 0.961604i \(-0.411507\pi\)
0.274441 + 0.961604i \(0.411507\pi\)
\(758\) −60275.2 −2.88825
\(759\) 0 0
\(760\) 39140.3 1.86812
\(761\) 32660.1 1.55575 0.777877 0.628416i \(-0.216296\pi\)
0.777877 + 0.628416i \(0.216296\pi\)
\(762\) 0 0
\(763\) 2510.11 0.119098
\(764\) 113943. 5.39568
\(765\) 0 0
\(766\) 11265.2 0.531369
\(767\) 1239.60 0.0583565
\(768\) 0 0
\(769\) −8569.93 −0.401872 −0.200936 0.979604i \(-0.564398\pi\)
−0.200936 + 0.979604i \(0.564398\pi\)
\(770\) −1851.82 −0.0866689
\(771\) 0 0
\(772\) −31236.8 −1.45627
\(773\) 29158.0 1.35671 0.678357 0.734733i \(-0.262693\pi\)
0.678357 + 0.734733i \(0.262693\pi\)
\(774\) 0 0
\(775\) −4267.54 −0.197800
\(776\) −91587.2 −4.23684
\(777\) 0 0
\(778\) 5444.17 0.250878
\(779\) 23530.0 1.08222
\(780\) 0 0
\(781\) −10111.8 −0.463289
\(782\) −9685.58 −0.442910
\(783\) 0 0
\(784\) −85280.9 −3.88488
\(785\) 10574.8 0.480804
\(786\) 0 0
\(787\) −8501.30 −0.385055 −0.192528 0.981292i \(-0.561668\pi\)
−0.192528 + 0.981292i \(0.561668\pi\)
\(788\) −50354.2 −2.27639
\(789\) 0 0
\(790\) 24526.9 1.10459
\(791\) −3235.56 −0.145440
\(792\) 0 0
\(793\) −735.823 −0.0329506
\(794\) −27853.8 −1.24496
\(795\) 0 0
\(796\) −12799.7 −0.569944
\(797\) −37459.5 −1.66485 −0.832424 0.554139i \(-0.813047\pi\)
−0.832424 + 0.554139i \(0.813047\pi\)
\(798\) 0 0
\(799\) −20136.6 −0.891592
\(800\) 22097.6 0.976583
\(801\) 0 0
\(802\) 86671.9 3.81607
\(803\) 1700.27 0.0747214
\(804\) 0 0
\(805\) 476.865 0.0208786
\(806\) 4162.47 0.181907
\(807\) 0 0
\(808\) −40216.9 −1.75102
\(809\) −18045.8 −0.784246 −0.392123 0.919913i \(-0.628259\pi\)
−0.392123 + 0.919913i \(0.628259\pi\)
\(810\) 0 0
\(811\) 914.961 0.0396161 0.0198080 0.999804i \(-0.493694\pi\)
0.0198080 + 0.999804i \(0.493694\pi\)
\(812\) 35659.5 1.54114
\(813\) 0 0
\(814\) −11675.8 −0.502750
\(815\) −5767.63 −0.247891
\(816\) 0 0
\(817\) −27489.3 −1.17715
\(818\) 84016.3 3.59115
\(819\) 0 0
\(820\) 28618.0 1.21876
\(821\) −15188.9 −0.645672 −0.322836 0.946455i \(-0.604636\pi\)
−0.322836 + 0.946455i \(0.604636\pi\)
\(822\) 0 0
\(823\) −37930.3 −1.60652 −0.803261 0.595628i \(-0.796903\pi\)
−0.803261 + 0.595628i \(0.796903\pi\)
\(824\) −72610.7 −3.06980
\(825\) 0 0
\(826\) −9519.22 −0.400988
\(827\) −29679.9 −1.24797 −0.623985 0.781437i \(-0.714487\pi\)
−0.623985 + 0.781437i \(0.714487\pi\)
\(828\) 0 0
\(829\) 29094.2 1.21892 0.609458 0.792818i \(-0.291387\pi\)
0.609458 + 0.792818i \(0.291387\pi\)
\(830\) 7719.97 0.322848
\(831\) 0 0
\(832\) −11789.2 −0.491245
\(833\) −33865.8 −1.40862
\(834\) 0 0
\(835\) −5504.67 −0.228140
\(836\) −23778.6 −0.983732
\(837\) 0 0
\(838\) 8443.41 0.348058
\(839\) −38791.2 −1.59621 −0.798105 0.602519i \(-0.794164\pi\)
−0.798105 + 0.602519i \(0.794164\pi\)
\(840\) 0 0
\(841\) 41593.3 1.70541
\(842\) 25789.2 1.05553
\(843\) 0 0
\(844\) −68838.7 −2.80749
\(845\) 10888.9 0.443301
\(846\) 0 0
\(847\) 732.531 0.0297167
\(848\) 80702.4 3.26808
\(849\) 0 0
\(850\) 15370.2 0.620229
\(851\) 3006.66 0.121113
\(852\) 0 0
\(853\) −42933.7 −1.72335 −0.861677 0.507458i \(-0.830585\pi\)
−0.861677 + 0.507458i \(0.830585\pi\)
\(854\) 5650.58 0.226415
\(855\) 0 0
\(856\) −9951.76 −0.397365
\(857\) 2664.36 0.106199 0.0530997 0.998589i \(-0.483090\pi\)
0.0530997 + 0.998589i \(0.483090\pi\)
\(858\) 0 0
\(859\) −25002.7 −0.993111 −0.496556 0.868005i \(-0.665402\pi\)
−0.496556 + 0.868005i \(0.665402\pi\)
\(860\) −33433.5 −1.32566
\(861\) 0 0
\(862\) 63834.8 2.52230
\(863\) −27509.8 −1.08510 −0.542551 0.840023i \(-0.682541\pi\)
−0.542551 + 0.840023i \(0.682541\pi\)
\(864\) 0 0
\(865\) −11846.2 −0.465647
\(866\) 56753.1 2.22696
\(867\) 0 0
\(868\) −23697.3 −0.926658
\(869\) −9702.19 −0.378739
\(870\) 0 0
\(871\) 772.688 0.0300592
\(872\) 34429.6 1.33708
\(873\) 0 0
\(874\) 8259.51 0.319659
\(875\) −756.747 −0.0292374
\(876\) 0 0
\(877\) −25993.8 −1.00085 −0.500426 0.865779i \(-0.666823\pi\)
−0.500426 + 0.865779i \(0.666823\pi\)
\(878\) −38480.7 −1.47911
\(879\) 0 0
\(880\) −15310.8 −0.586507
\(881\) 29528.7 1.12922 0.564612 0.825357i \(-0.309026\pi\)
0.564612 + 0.825357i \(0.309026\pi\)
\(882\) 0 0
\(883\) −50497.5 −1.92455 −0.962274 0.272081i \(-0.912288\pi\)
−0.962274 + 0.272081i \(0.912288\pi\)
\(884\) −11114.3 −0.422867
\(885\) 0 0
\(886\) 16198.2 0.614208
\(887\) −36471.9 −1.38062 −0.690309 0.723515i \(-0.742525\pi\)
−0.690309 + 0.723515i \(0.742525\pi\)
\(888\) 0 0
\(889\) 3875.28 0.146201
\(890\) −27172.3 −1.02339
\(891\) 0 0
\(892\) 19596.6 0.735586
\(893\) 17171.8 0.643484
\(894\) 0 0
\(895\) 6133.83 0.229085
\(896\) 47723.2 1.77937
\(897\) 0 0
\(898\) 6426.54 0.238816
\(899\) −43848.2 −1.62672
\(900\) 0 0
\(901\) 32047.7 1.18498
\(902\) −15269.9 −0.563673
\(903\) 0 0
\(904\) −44380.3 −1.63282
\(905\) 2198.03 0.0807348
\(906\) 0 0
\(907\) 15130.2 0.553902 0.276951 0.960884i \(-0.410676\pi\)
0.276951 + 0.960884i \(0.410676\pi\)
\(908\) −9034.81 −0.330210
\(909\) 0 0
\(910\) 738.115 0.0268882
\(911\) −13937.0 −0.506864 −0.253432 0.967353i \(-0.581559\pi\)
−0.253432 + 0.967353i \(0.581559\pi\)
\(912\) 0 0
\(913\) −3053.81 −0.110697
\(914\) 15269.9 0.552608
\(915\) 0 0
\(916\) −11277.9 −0.406804
\(917\) −6363.04 −0.229145
\(918\) 0 0
\(919\) −40897.5 −1.46799 −0.733996 0.679153i \(-0.762347\pi\)
−0.733996 + 0.679153i \(0.762347\pi\)
\(920\) 6540.88 0.234398
\(921\) 0 0
\(922\) −62423.5 −2.22973
\(923\) 4030.45 0.143731
\(924\) 0 0
\(925\) −4771.33 −0.169600
\(926\) 88955.7 3.15688
\(927\) 0 0
\(928\) 227048. 8.03149
\(929\) 12154.1 0.429239 0.214620 0.976698i \(-0.431149\pi\)
0.214620 + 0.976698i \(0.431149\pi\)
\(930\) 0 0
\(931\) 28879.5 1.01664
\(932\) 157870. 5.54852
\(933\) 0 0
\(934\) −37121.1 −1.30047
\(935\) −6080.05 −0.212662
\(936\) 0 0
\(937\) −15754.1 −0.549267 −0.274634 0.961549i \(-0.588557\pi\)
−0.274634 + 0.961549i \(0.588557\pi\)
\(938\) −5933.67 −0.206547
\(939\) 0 0
\(940\) 20884.9 0.724670
\(941\) 4217.53 0.146108 0.0730539 0.997328i \(-0.476725\pi\)
0.0730539 + 0.997328i \(0.476725\pi\)
\(942\) 0 0
\(943\) 3932.18 0.135789
\(944\) −78704.5 −2.71357
\(945\) 0 0
\(946\) 17839.4 0.613116
\(947\) −49839.0 −1.71019 −0.855095 0.518471i \(-0.826502\pi\)
−0.855095 + 0.518471i \(0.826502\pi\)
\(948\) 0 0
\(949\) −677.708 −0.0231816
\(950\) −13107.2 −0.447635
\(951\) 0 0
\(952\) 55573.3 1.89196
\(953\) 12845.7 0.436635 0.218318 0.975878i \(-0.429943\pi\)
0.218318 + 0.975878i \(0.429943\pi\)
\(954\) 0 0
\(955\) −24844.8 −0.841841
\(956\) −69085.4 −2.33722
\(957\) 0 0
\(958\) 64413.9 2.17236
\(959\) −10235.3 −0.344646
\(960\) 0 0
\(961\) −651.937 −0.0218837
\(962\) 4653.86 0.155973
\(963\) 0 0
\(964\) 71245.7 2.38036
\(965\) 6811.08 0.227209
\(966\) 0 0
\(967\) −38829.6 −1.29129 −0.645645 0.763638i \(-0.723411\pi\)
−0.645645 + 0.763638i \(0.723411\pi\)
\(968\) 10047.7 0.333621
\(969\) 0 0
\(970\) 30670.4 1.01523
\(971\) 11438.8 0.378053 0.189026 0.981972i \(-0.439467\pi\)
0.189026 + 0.981972i \(0.439467\pi\)
\(972\) 0 0
\(973\) 16887.1 0.556400
\(974\) −59056.4 −1.94280
\(975\) 0 0
\(976\) 46718.7 1.53220
\(977\) 12084.1 0.395706 0.197853 0.980232i \(-0.436603\pi\)
0.197853 + 0.980232i \(0.436603\pi\)
\(978\) 0 0
\(979\) 10748.6 0.350896
\(980\) 35124.3 1.14490
\(981\) 0 0
\(982\) 99818.8 3.24373
\(983\) 23502.2 0.762569 0.381284 0.924458i \(-0.375482\pi\)
0.381284 + 0.924458i \(0.375482\pi\)
\(984\) 0 0
\(985\) 10979.6 0.355165
\(986\) 157926. 5.10081
\(987\) 0 0
\(988\) 9477.87 0.305194
\(989\) −4593.84 −0.147700
\(990\) 0 0
\(991\) −18664.1 −0.598268 −0.299134 0.954211i \(-0.596698\pi\)
−0.299134 + 0.954211i \(0.596698\pi\)
\(992\) −150884. −4.82919
\(993\) 0 0
\(994\) −30950.9 −0.987627
\(995\) 2790.94 0.0889234
\(996\) 0 0
\(997\) 24528.4 0.779158 0.389579 0.920993i \(-0.372620\pi\)
0.389579 + 0.920993i \(0.372620\pi\)
\(998\) −57893.7 −1.83626
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.4.a.e.1.2 2
3.2 odd 2 55.4.a.b.1.1 2
5.4 even 2 2475.4.a.l.1.1 2
12.11 even 2 880.4.a.r.1.2 2
15.2 even 4 275.4.b.b.199.1 4
15.8 even 4 275.4.b.b.199.4 4
15.14 odd 2 275.4.a.c.1.2 2
33.32 even 2 605.4.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.1 2 3.2 odd 2
275.4.a.c.1.2 2 15.14 odd 2
275.4.b.b.199.1 4 15.2 even 4
275.4.b.b.199.4 4 15.8 even 4
495.4.a.e.1.2 2 1.1 even 1 trivial
605.4.a.g.1.2 2 33.32 even 2
880.4.a.r.1.2 2 12.11 even 2
2475.4.a.l.1.1 2 5.4 even 2