Properties

Label 275.4.b.f.199.2
Level $275$
Weight $4$
Character 275.199
Analytic conductor $16.226$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(199,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 80x^{8} + 2296x^{6} + 27417x^{4} + 110472x^{2} + 21904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(-4.78071i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.4.b.f.199.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.78071i q^{2} +5.99252i q^{3} -14.8552 q^{4} +28.6485 q^{6} -11.9641i q^{7} +32.7728i q^{8} -8.91034 q^{9} -11.0000 q^{11} -89.0202i q^{12} +22.4142i q^{13} -57.1967 q^{14} +37.8357 q^{16} +131.986i q^{17} +42.5978i q^{18} -99.0508 q^{19} +71.6949 q^{21} +52.5878i q^{22} -0.206447i q^{23} -196.392 q^{24} +107.156 q^{26} +108.403i q^{27} +177.729i q^{28} +163.714 q^{29} +217.432 q^{31} +81.3008i q^{32} -65.9178i q^{33} +630.987 q^{34} +132.365 q^{36} -17.8883i q^{37} +473.533i q^{38} -134.318 q^{39} -32.3119 q^{41} -342.753i q^{42} +490.270i q^{43} +163.407 q^{44} -0.986965 q^{46} +518.924i q^{47} +226.731i q^{48} +199.861 q^{49} -790.929 q^{51} -332.968i q^{52} +110.670i q^{53} +518.242 q^{54} +392.096 q^{56} -593.564i q^{57} -782.669i q^{58} -242.866 q^{59} -713.857 q^{61} -1039.48i q^{62} +106.604i q^{63} +691.362 q^{64} -315.134 q^{66} -571.193i q^{67} -1960.68i q^{68} +1.23714 q^{69} -113.267 q^{71} -292.017i q^{72} +767.158i q^{73} -85.5187 q^{74} +1471.42 q^{76} +131.605i q^{77} +642.135i q^{78} -470.874 q^{79} -890.185 q^{81} +154.474i q^{82} -1158.67i q^{83} -1065.04 q^{84} +2343.84 q^{86} +981.059i q^{87} -360.501i q^{88} -719.465 q^{89} +268.165 q^{91} +3.06682i q^{92} +1302.96i q^{93} +2480.83 q^{94} -487.197 q^{96} +510.721i q^{97} -955.480i q^{98} +98.0137 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 80 q^{4} - 84 q^{6} - 62 q^{9} - 110 q^{11} + 266 q^{14} + 416 q^{16} - 46 q^{19} + 564 q^{21} + 982 q^{24} + 644 q^{26} + 366 q^{29} - 2 q^{31} + 1300 q^{34} + 2676 q^{36} + 540 q^{39} + 188 q^{41}+ \cdots + 682 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.78071i − 1.69024i −0.534579 0.845119i \(-0.679530\pi\)
0.534579 0.845119i \(-0.320470\pi\)
\(3\) 5.99252i 1.15326i 0.817005 + 0.576631i \(0.195633\pi\)
−0.817005 + 0.576631i \(0.804367\pi\)
\(4\) −14.8552 −1.85690
\(5\) 0 0
\(6\) 28.6485 1.94929
\(7\) − 11.9641i − 0.645998i −0.946399 0.322999i \(-0.895309\pi\)
0.946399 0.322999i \(-0.104691\pi\)
\(8\) 32.7728i 1.44837i
\(9\) −8.91034 −0.330013
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) − 89.0202i − 2.14149i
\(13\) 22.4142i 0.478199i 0.970995 + 0.239100i \(0.0768523\pi\)
−0.970995 + 0.239100i \(0.923148\pi\)
\(14\) −57.1967 −1.09189
\(15\) 0 0
\(16\) 37.8357 0.591183
\(17\) 131.986i 1.88302i 0.336989 + 0.941509i \(0.390592\pi\)
−0.336989 + 0.941509i \(0.609408\pi\)
\(18\) 42.5978i 0.557800i
\(19\) −99.0508 −1.19599 −0.597995 0.801500i \(-0.704036\pi\)
−0.597995 + 0.801500i \(0.704036\pi\)
\(20\) 0 0
\(21\) 71.6949 0.745005
\(22\) 52.5878i 0.509626i
\(23\) − 0.206447i − 0.00187162i −1.00000 0.000935809i \(-0.999702\pi\)
1.00000 0.000935809i \(-0.000297877\pi\)
\(24\) −196.392 −1.67035
\(25\) 0 0
\(26\) 107.156 0.808270
\(27\) 108.403i 0.772671i
\(28\) 177.729i 1.19956i
\(29\) 163.714 1.04831 0.524154 0.851624i \(-0.324382\pi\)
0.524154 + 0.851624i \(0.324382\pi\)
\(30\) 0 0
\(31\) 217.432 1.25974 0.629869 0.776702i \(-0.283109\pi\)
0.629869 + 0.776702i \(0.283109\pi\)
\(32\) 81.3008i 0.449128i
\(33\) − 65.9178i − 0.347721i
\(34\) 630.987 3.18275
\(35\) 0 0
\(36\) 132.365 0.612801
\(37\) − 17.8883i − 0.0794814i −0.999210 0.0397407i \(-0.987347\pi\)
0.999210 0.0397407i \(-0.0126532\pi\)
\(38\) 473.533i 2.02151i
\(39\) −134.318 −0.551489
\(40\) 0 0
\(41\) −32.3119 −0.123080 −0.0615399 0.998105i \(-0.519601\pi\)
−0.0615399 + 0.998105i \(0.519601\pi\)
\(42\) − 342.753i − 1.25924i
\(43\) 490.270i 1.73873i 0.494169 + 0.869366i \(0.335472\pi\)
−0.494169 + 0.869366i \(0.664528\pi\)
\(44\) 163.407 0.559877
\(45\) 0 0
\(46\) −0.986965 −0.00316348
\(47\) 518.924i 1.61049i 0.592944 + 0.805244i \(0.297965\pi\)
−0.592944 + 0.805244i \(0.702035\pi\)
\(48\) 226.731i 0.681789i
\(49\) 199.861 0.582686
\(50\) 0 0
\(51\) −790.929 −2.17161
\(52\) − 332.968i − 0.887969i
\(53\) 110.670i 0.286825i 0.989663 + 0.143413i \(0.0458076\pi\)
−0.989663 + 0.143413i \(0.954192\pi\)
\(54\) 518.242 1.30600
\(55\) 0 0
\(56\) 392.096 0.935643
\(57\) − 593.564i − 1.37929i
\(58\) − 782.669i − 1.77189i
\(59\) −242.866 −0.535906 −0.267953 0.963432i \(-0.586347\pi\)
−0.267953 + 0.963432i \(0.586347\pi\)
\(60\) 0 0
\(61\) −713.857 −1.49836 −0.749180 0.662366i \(-0.769552\pi\)
−0.749180 + 0.662366i \(0.769552\pi\)
\(62\) − 1039.48i − 2.12926i
\(63\) 106.604i 0.213188i
\(64\) 691.362 1.35032
\(65\) 0 0
\(66\) −315.134 −0.587732
\(67\) − 571.193i − 1.04153i −0.853701 0.520764i \(-0.825647\pi\)
0.853701 0.520764i \(-0.174353\pi\)
\(68\) − 1960.68i − 3.49658i
\(69\) 1.23714 0.00215847
\(70\) 0 0
\(71\) −113.267 −0.189329 −0.0946644 0.995509i \(-0.530178\pi\)
−0.0946644 + 0.995509i \(0.530178\pi\)
\(72\) − 292.017i − 0.477980i
\(73\) 767.158i 1.22999i 0.788532 + 0.614994i \(0.210841\pi\)
−0.788532 + 0.614994i \(0.789159\pi\)
\(74\) −85.5187 −0.134342
\(75\) 0 0
\(76\) 1471.42 2.22084
\(77\) 131.605i 0.194776i
\(78\) 642.135i 0.932147i
\(79\) −470.874 −0.670601 −0.335300 0.942111i \(-0.608838\pi\)
−0.335300 + 0.942111i \(0.608838\pi\)
\(80\) 0 0
\(81\) −890.185 −1.22110
\(82\) 154.474i 0.208034i
\(83\) − 1158.67i − 1.53230i −0.642661 0.766151i \(-0.722170\pi\)
0.642661 0.766151i \(-0.277830\pi\)
\(84\) −1065.04 −1.38340
\(85\) 0 0
\(86\) 2343.84 2.93887
\(87\) 981.059i 1.20897i
\(88\) − 360.501i − 0.436699i
\(89\) −719.465 −0.856889 −0.428444 0.903568i \(-0.640938\pi\)
−0.428444 + 0.903568i \(0.640938\pi\)
\(90\) 0 0
\(91\) 268.165 0.308916
\(92\) 3.06682i 0.00347541i
\(93\) 1302.96i 1.45281i
\(94\) 2480.83 2.72211
\(95\) 0 0
\(96\) −487.197 −0.517962
\(97\) 510.721i 0.534596i 0.963614 + 0.267298i \(0.0861308\pi\)
−0.963614 + 0.267298i \(0.913869\pi\)
\(98\) − 955.480i − 0.984878i
\(99\) 98.0137 0.0995025
\(100\) 0 0
\(101\) −806.012 −0.794072 −0.397036 0.917803i \(-0.629961\pi\)
−0.397036 + 0.917803i \(0.629961\pi\)
\(102\) 3781.20i 3.67054i
\(103\) 1851.44i 1.77114i 0.464506 + 0.885570i \(0.346232\pi\)
−0.464506 + 0.885570i \(0.653768\pi\)
\(104\) −734.578 −0.692609
\(105\) 0 0
\(106\) 529.083 0.484803
\(107\) − 1429.22i − 1.29129i −0.763637 0.645646i \(-0.776588\pi\)
0.763637 0.645646i \(-0.223412\pi\)
\(108\) − 1610.35i − 1.43477i
\(109\) 1027.59 0.902984 0.451492 0.892275i \(-0.350892\pi\)
0.451492 + 0.892275i \(0.350892\pi\)
\(110\) 0 0
\(111\) 107.196 0.0916629
\(112\) − 452.669i − 0.381903i
\(113\) − 604.312i − 0.503087i −0.967846 0.251544i \(-0.919062\pi\)
0.967846 0.251544i \(-0.0809382\pi\)
\(114\) −2837.66 −2.33133
\(115\) 0 0
\(116\) −2432.01 −1.94660
\(117\) − 199.719i − 0.157812i
\(118\) 1161.07i 0.905808i
\(119\) 1579.09 1.21643
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 3412.74i 2.53258i
\(123\) − 193.630i − 0.141943i
\(124\) −3229.99 −2.33921
\(125\) 0 0
\(126\) 509.642 0.360337
\(127\) − 1150.51i − 0.803871i −0.915668 0.401936i \(-0.868338\pi\)
0.915668 0.401936i \(-0.131662\pi\)
\(128\) − 2654.80i − 1.83323i
\(129\) −2937.95 −2.00521
\(130\) 0 0
\(131\) 744.407 0.496482 0.248241 0.968698i \(-0.420148\pi\)
0.248241 + 0.968698i \(0.420148\pi\)
\(132\) 979.223i 0.645685i
\(133\) 1185.05i 0.772607i
\(134\) −2730.71 −1.76043
\(135\) 0 0
\(136\) −4325.55 −2.72730
\(137\) − 1216.87i − 0.758862i −0.925220 0.379431i \(-0.876120\pi\)
0.925220 0.379431i \(-0.123880\pi\)
\(138\) − 5.91441i − 0.00364832i
\(139\) −2180.15 −1.33035 −0.665173 0.746689i \(-0.731642\pi\)
−0.665173 + 0.746689i \(0.731642\pi\)
\(140\) 0 0
\(141\) −3109.67 −1.85731
\(142\) 541.498i 0.320010i
\(143\) − 246.557i − 0.144183i
\(144\) −337.129 −0.195098
\(145\) 0 0
\(146\) 3667.56 2.07897
\(147\) 1197.67i 0.671990i
\(148\) 265.734i 0.147589i
\(149\) 2465.36 1.35551 0.677753 0.735289i \(-0.262954\pi\)
0.677753 + 0.735289i \(0.262954\pi\)
\(150\) 0 0
\(151\) −1568.89 −0.845528 −0.422764 0.906240i \(-0.638940\pi\)
−0.422764 + 0.906240i \(0.638940\pi\)
\(152\) − 3246.17i − 1.73223i
\(153\) − 1176.04i − 0.621419i
\(154\) 629.164 0.329217
\(155\) 0 0
\(156\) 1995.32 1.02406
\(157\) 3091.06i 1.57130i 0.618672 + 0.785649i \(0.287671\pi\)
−0.618672 + 0.785649i \(0.712329\pi\)
\(158\) 2251.11i 1.13347i
\(159\) −663.195 −0.330785
\(160\) 0 0
\(161\) −2.46995 −0.00120906
\(162\) 4255.72i 2.06396i
\(163\) − 2402.69i − 1.15456i −0.816547 0.577279i \(-0.804114\pi\)
0.816547 0.577279i \(-0.195886\pi\)
\(164\) 480.000 0.228547
\(165\) 0 0
\(166\) −5539.29 −2.58995
\(167\) − 3771.51i − 1.74759i −0.486290 0.873797i \(-0.661650\pi\)
0.486290 0.873797i \(-0.338350\pi\)
\(168\) 2349.64i 1.07904i
\(169\) 1694.60 0.771325
\(170\) 0 0
\(171\) 882.576 0.394692
\(172\) − 7283.07i − 3.22865i
\(173\) 1744.46i 0.766642i 0.923615 + 0.383321i \(0.125220\pi\)
−0.923615 + 0.383321i \(0.874780\pi\)
\(174\) 4690.16 2.04345
\(175\) 0 0
\(176\) −416.193 −0.178248
\(177\) − 1455.38i − 0.618039i
\(178\) 3439.55i 1.44835i
\(179\) 503.463 0.210227 0.105113 0.994460i \(-0.466479\pi\)
0.105113 + 0.994460i \(0.466479\pi\)
\(180\) 0 0
\(181\) 1994.94 0.819240 0.409620 0.912256i \(-0.365661\pi\)
0.409620 + 0.912256i \(0.365661\pi\)
\(182\) − 1282.02i − 0.522141i
\(183\) − 4277.80i − 1.72800i
\(184\) 6.76586 0.00271079
\(185\) 0 0
\(186\) 6229.10 2.45559
\(187\) − 1451.85i − 0.567751i
\(188\) − 7708.73i − 2.99052i
\(189\) 1296.94 0.499144
\(190\) 0 0
\(191\) 1385.75 0.524972 0.262486 0.964936i \(-0.415458\pi\)
0.262486 + 0.964936i \(0.415458\pi\)
\(192\) 4143.00i 1.55727i
\(193\) 1215.82i 0.453454i 0.973958 + 0.226727i \(0.0728025\pi\)
−0.973958 + 0.226727i \(0.927198\pi\)
\(194\) 2441.61 0.903594
\(195\) 0 0
\(196\) −2968.98 −1.08199
\(197\) − 1113.77i − 0.402806i −0.979508 0.201403i \(-0.935450\pi\)
0.979508 0.201403i \(-0.0645501\pi\)
\(198\) − 468.576i − 0.168183i
\(199\) 988.791 0.352229 0.176114 0.984370i \(-0.443647\pi\)
0.176114 + 0.984370i \(0.443647\pi\)
\(200\) 0 0
\(201\) 3422.89 1.20115
\(202\) 3853.31i 1.34217i
\(203\) − 1958.68i − 0.677204i
\(204\) 11749.4 4.03247
\(205\) 0 0
\(206\) 8851.18 2.99365
\(207\) 1.83951i 0 0.000617658i
\(208\) 848.059i 0.282703i
\(209\) 1089.56 0.360605
\(210\) 0 0
\(211\) 798.252 0.260445 0.130223 0.991485i \(-0.458431\pi\)
0.130223 + 0.991485i \(0.458431\pi\)
\(212\) − 1644.03i − 0.532607i
\(213\) − 678.756i − 0.218346i
\(214\) −6832.70 −2.18259
\(215\) 0 0
\(216\) −3552.66 −1.11911
\(217\) − 2601.36i − 0.813788i
\(218\) − 4912.61i − 1.52626i
\(219\) −4597.21 −1.41850
\(220\) 0 0
\(221\) −2958.37 −0.900458
\(222\) − 512.473i − 0.154932i
\(223\) 1836.54i 0.551497i 0.961230 + 0.275749i \(0.0889258\pi\)
−0.961230 + 0.275749i \(0.911074\pi\)
\(224\) 972.688 0.290136
\(225\) 0 0
\(226\) −2889.04 −0.850337
\(227\) − 2009.93i − 0.587681i −0.955854 0.293841i \(-0.905066\pi\)
0.955854 0.293841i \(-0.0949335\pi\)
\(228\) 8817.52i 2.56121i
\(229\) 1063.95 0.307022 0.153511 0.988147i \(-0.450942\pi\)
0.153511 + 0.988147i \(0.450942\pi\)
\(230\) 0 0
\(231\) −788.644 −0.224627
\(232\) 5365.37i 1.51833i
\(233\) 1259.97i 0.354264i 0.984187 + 0.177132i \(0.0566819\pi\)
−0.984187 + 0.177132i \(0.943318\pi\)
\(234\) −954.797 −0.266739
\(235\) 0 0
\(236\) 3607.82 0.995124
\(237\) − 2821.72i − 0.773378i
\(238\) − 7549.16i − 2.05605i
\(239\) −6963.01 −1.88452 −0.942258 0.334887i \(-0.891302\pi\)
−0.942258 + 0.334887i \(0.891302\pi\)
\(240\) 0 0
\(241\) −6364.98 −1.70126 −0.850632 0.525762i \(-0.823780\pi\)
−0.850632 + 0.525762i \(0.823780\pi\)
\(242\) − 578.466i − 0.153658i
\(243\) − 2407.58i − 0.635582i
\(244\) 10604.5 2.78231
\(245\) 0 0
\(246\) −925.688 −0.239918
\(247\) − 2220.15i − 0.571922i
\(248\) 7125.85i 1.82456i
\(249\) 6943.38 1.76714
\(250\) 0 0
\(251\) 3733.69 0.938919 0.469459 0.882954i \(-0.344449\pi\)
0.469459 + 0.882954i \(0.344449\pi\)
\(252\) − 1583.62i − 0.395868i
\(253\) 2.27092i 0 0.000564314i
\(254\) −5500.28 −1.35873
\(255\) 0 0
\(256\) −7160.92 −1.74827
\(257\) 3819.22i 0.926990i 0.886099 + 0.463495i \(0.153405\pi\)
−0.886099 + 0.463495i \(0.846595\pi\)
\(258\) 14045.5i 3.38929i
\(259\) −214.016 −0.0513448
\(260\) 0 0
\(261\) −1458.75 −0.345955
\(262\) − 3558.79i − 0.839172i
\(263\) 5634.49i 1.32106i 0.750802 + 0.660528i \(0.229667\pi\)
−0.750802 + 0.660528i \(0.770333\pi\)
\(264\) 2160.31 0.503629
\(265\) 0 0
\(266\) 5665.38 1.30589
\(267\) − 4311.41i − 0.988217i
\(268\) 8485.20i 1.93401i
\(269\) −4313.40 −0.977667 −0.488834 0.872377i \(-0.662577\pi\)
−0.488834 + 0.872377i \(0.662577\pi\)
\(270\) 0 0
\(271\) 2870.96 0.643537 0.321768 0.946818i \(-0.395723\pi\)
0.321768 + 0.946818i \(0.395723\pi\)
\(272\) 4993.78i 1.11321i
\(273\) 1606.99i 0.356261i
\(274\) −5817.50 −1.28266
\(275\) 0 0
\(276\) −18.3780 −0.00400806
\(277\) − 3007.06i − 0.652262i −0.945325 0.326131i \(-0.894255\pi\)
0.945325 0.326131i \(-0.105745\pi\)
\(278\) 10422.7i 2.24860i
\(279\) −1937.39 −0.415729
\(280\) 0 0
\(281\) 4149.04 0.880821 0.440411 0.897796i \(-0.354833\pi\)
0.440411 + 0.897796i \(0.354833\pi\)
\(282\) 14866.4i 3.13930i
\(283\) 3269.92i 0.686844i 0.939181 + 0.343422i \(0.111586\pi\)
−0.939181 + 0.343422i \(0.888414\pi\)
\(284\) 1682.61 0.351565
\(285\) 0 0
\(286\) −1178.72 −0.243703
\(287\) 386.581i 0.0795093i
\(288\) − 724.418i − 0.148218i
\(289\) −12507.3 −2.54575
\(290\) 0 0
\(291\) −3060.51 −0.616529
\(292\) − 11396.3i − 2.28397i
\(293\) 3423.02i 0.682508i 0.939971 + 0.341254i \(0.110852\pi\)
−0.939971 + 0.341254i \(0.889148\pi\)
\(294\) 5725.74 1.13582
\(295\) 0 0
\(296\) 586.249 0.115118
\(297\) − 1192.43i − 0.232969i
\(298\) − 11786.2i − 2.29113i
\(299\) 4.62736 0.000895007 0
\(300\) 0 0
\(301\) 5865.62 1.12322
\(302\) 7500.43i 1.42914i
\(303\) − 4830.05i − 0.915772i
\(304\) −3747.66 −0.707049
\(305\) 0 0
\(306\) −5622.31 −1.05035
\(307\) 60.1063i 0.0111741i 0.999984 + 0.00558705i \(0.00177842\pi\)
−0.999984 + 0.00558705i \(0.998222\pi\)
\(308\) − 1955.01i − 0.361680i
\(309\) −11094.8 −2.04259
\(310\) 0 0
\(311\) 7623.50 1.39000 0.694998 0.719012i \(-0.255405\pi\)
0.694998 + 0.719012i \(0.255405\pi\)
\(312\) − 4401.98i − 0.798759i
\(313\) − 273.026i − 0.0493046i −0.999696 0.0246523i \(-0.992152\pi\)
0.999696 0.0246523i \(-0.00784787\pi\)
\(314\) 14777.5 2.65587
\(315\) 0 0
\(316\) 6994.94 1.24524
\(317\) − 4272.90i − 0.757065i −0.925588 0.378533i \(-0.876429\pi\)
0.925588 0.378533i \(-0.123571\pi\)
\(318\) 3170.54i 0.559105i
\(319\) −1800.85 −0.316076
\(320\) 0 0
\(321\) 8564.65 1.48920
\(322\) 11.8081i 0.00204360i
\(323\) − 13073.3i − 2.25207i
\(324\) 13223.9 2.26747
\(325\) 0 0
\(326\) −11486.6 −1.95148
\(327\) 6157.85i 1.04138i
\(328\) − 1058.95i − 0.178265i
\(329\) 6208.44 1.04037
\(330\) 0 0
\(331\) −7137.75 −1.18528 −0.592638 0.805469i \(-0.701913\pi\)
−0.592638 + 0.805469i \(0.701913\pi\)
\(332\) 17212.4i 2.84533i
\(333\) 159.391i 0.0262299i
\(334\) −18030.5 −2.95385
\(335\) 0 0
\(336\) 2712.63 0.440434
\(337\) 11179.0i 1.80700i 0.428591 + 0.903499i \(0.359010\pi\)
−0.428591 + 0.903499i \(0.640990\pi\)
\(338\) − 8101.40i − 1.30372i
\(339\) 3621.35 0.580191
\(340\) 0 0
\(341\) −2391.75 −0.379825
\(342\) − 4219.34i − 0.667123i
\(343\) − 6494.82i − 1.02241i
\(344\) −16067.5 −2.51832
\(345\) 0 0
\(346\) 8339.78 1.29581
\(347\) − 2203.72i − 0.340928i −0.985364 0.170464i \(-0.945473\pi\)
0.985364 0.170464i \(-0.0545266\pi\)
\(348\) − 14573.8i − 2.24494i
\(349\) 6539.45 1.00300 0.501502 0.865156i \(-0.332781\pi\)
0.501502 + 0.865156i \(0.332781\pi\)
\(350\) 0 0
\(351\) −2429.76 −0.369491
\(352\) − 894.309i − 0.135417i
\(353\) 10811.6i 1.63014i 0.579360 + 0.815072i \(0.303303\pi\)
−0.579360 + 0.815072i \(0.696697\pi\)
\(354\) −6957.75 −1.04463
\(355\) 0 0
\(356\) 10687.8 1.59116
\(357\) 9462.72i 1.40286i
\(358\) − 2406.91i − 0.355333i
\(359\) 611.969 0.0899680 0.0449840 0.998988i \(-0.485676\pi\)
0.0449840 + 0.998988i \(0.485676\pi\)
\(360\) 0 0
\(361\) 2952.06 0.430392
\(362\) − 9537.22i − 1.38471i
\(363\) 725.095i 0.104842i
\(364\) −3983.65 −0.573627
\(365\) 0 0
\(366\) −20451.0 −2.92073
\(367\) 11822.2i 1.68151i 0.541419 + 0.840753i \(0.317887\pi\)
−0.541419 + 0.840753i \(0.682113\pi\)
\(368\) − 7.81108i − 0.00110647i
\(369\) 287.910 0.0406179
\(370\) 0 0
\(371\) 1324.07 0.185289
\(372\) − 19355.8i − 2.69772i
\(373\) 5067.95i 0.703508i 0.936093 + 0.351754i \(0.114415\pi\)
−0.936093 + 0.351754i \(0.885585\pi\)
\(374\) −6940.86 −0.959634
\(375\) 0 0
\(376\) −17006.6 −2.33258
\(377\) 3669.52i 0.501300i
\(378\) − 6200.28i − 0.843672i
\(379\) 10985.2 1.48885 0.744423 0.667708i \(-0.232724\pi\)
0.744423 + 0.667708i \(0.232724\pi\)
\(380\) 0 0
\(381\) 6894.48 0.927074
\(382\) − 6624.89i − 0.887327i
\(383\) − 8682.54i − 1.15837i −0.815195 0.579187i \(-0.803370\pi\)
0.815195 0.579187i \(-0.196630\pi\)
\(384\) 15908.9 2.11419
\(385\) 0 0
\(386\) 5812.48 0.766444
\(387\) − 4368.47i − 0.573803i
\(388\) − 7586.87i − 0.992693i
\(389\) 12420.5 1.61888 0.809440 0.587203i \(-0.199771\pi\)
0.809440 + 0.587203i \(0.199771\pi\)
\(390\) 0 0
\(391\) 27.2481 0.00352429
\(392\) 6550.02i 0.843944i
\(393\) 4460.87i 0.572573i
\(394\) −5324.62 −0.680838
\(395\) 0 0
\(396\) −1456.02 −0.184766
\(397\) − 5449.11i − 0.688875i −0.938809 0.344437i \(-0.888070\pi\)
0.938809 0.344437i \(-0.111930\pi\)
\(398\) − 4727.13i − 0.595350i
\(399\) −7101.43 −0.891018
\(400\) 0 0
\(401\) −11555.1 −1.43899 −0.719495 0.694498i \(-0.755627\pi\)
−0.719495 + 0.694498i \(0.755627\pi\)
\(402\) − 16363.8i − 2.03023i
\(403\) 4873.56i 0.602406i
\(404\) 11973.5 1.47451
\(405\) 0 0
\(406\) −9363.90 −1.14464
\(407\) 196.771i 0.0239645i
\(408\) − 25921.0i − 3.14529i
\(409\) −570.365 −0.0689553 −0.0344776 0.999405i \(-0.510977\pi\)
−0.0344776 + 0.999405i \(0.510977\pi\)
\(410\) 0 0
\(411\) 7292.11 0.875166
\(412\) − 27503.5i − 3.28883i
\(413\) 2905.66i 0.346194i
\(414\) 8.79419 0.00104399
\(415\) 0 0
\(416\) −1822.30 −0.214773
\(417\) − 13064.6i − 1.53424i
\(418\) − 5208.87i − 0.609507i
\(419\) 12273.2 1.43098 0.715492 0.698620i \(-0.246202\pi\)
0.715492 + 0.698620i \(0.246202\pi\)
\(420\) 0 0
\(421\) 733.949 0.0849655 0.0424828 0.999097i \(-0.486473\pi\)
0.0424828 + 0.999097i \(0.486473\pi\)
\(422\) − 3816.21i − 0.440214i
\(423\) − 4623.79i − 0.531481i
\(424\) −3626.98 −0.415429
\(425\) 0 0
\(426\) −3244.94 −0.369056
\(427\) 8540.62i 0.967938i
\(428\) 21231.4i 2.39780i
\(429\) 1477.50 0.166280
\(430\) 0 0
\(431\) −16442.1 −1.83756 −0.918782 0.394765i \(-0.870826\pi\)
−0.918782 + 0.394765i \(0.870826\pi\)
\(432\) 4101.50i 0.456790i
\(433\) 3747.82i 0.415955i 0.978134 + 0.207978i \(0.0666881\pi\)
−0.978134 + 0.207978i \(0.933312\pi\)
\(434\) −12436.4 −1.37550
\(435\) 0 0
\(436\) −15265.1 −1.67675
\(437\) 20.4488i 0.00223844i
\(438\) 21978.0i 2.39760i
\(439\) −1917.83 −0.208504 −0.104252 0.994551i \(-0.533245\pi\)
−0.104252 + 0.994551i \(0.533245\pi\)
\(440\) 0 0
\(441\) −1780.83 −0.192294
\(442\) 14143.1i 1.52199i
\(443\) − 9764.08i − 1.04719i −0.851967 0.523595i \(-0.824590\pi\)
0.851967 0.523595i \(-0.175410\pi\)
\(444\) −1592.42 −0.170209
\(445\) 0 0
\(446\) 8779.98 0.932162
\(447\) 14773.8i 1.56325i
\(448\) − 8271.49i − 0.872302i
\(449\) 9623.06 1.01145 0.505724 0.862695i \(-0.331225\pi\)
0.505724 + 0.862695i \(0.331225\pi\)
\(450\) 0 0
\(451\) 355.431 0.0371099
\(452\) 8977.18i 0.934184i
\(453\) − 9401.63i − 0.975115i
\(454\) −9608.89 −0.993321
\(455\) 0 0
\(456\) 19452.8 1.99772
\(457\) 16210.3i 1.65927i 0.558303 + 0.829637i \(0.311453\pi\)
−0.558303 + 0.829637i \(0.688547\pi\)
\(458\) − 5086.45i − 0.518939i
\(459\) −14307.6 −1.45495
\(460\) 0 0
\(461\) −3932.92 −0.397341 −0.198671 0.980066i \(-0.563662\pi\)
−0.198671 + 0.980066i \(0.563662\pi\)
\(462\) 3770.28i 0.379674i
\(463\) 768.960i 0.0771849i 0.999255 + 0.0385925i \(0.0122874\pi\)
−0.999255 + 0.0385925i \(0.987713\pi\)
\(464\) 6194.23 0.619742
\(465\) 0 0
\(466\) 6023.56 0.598790
\(467\) − 2635.60i − 0.261159i −0.991438 0.130579i \(-0.958316\pi\)
0.991438 0.130579i \(-0.0416838\pi\)
\(468\) 2966.86i 0.293041i
\(469\) −6833.78 −0.672825
\(470\) 0 0
\(471\) −18523.3 −1.81212
\(472\) − 7959.40i − 0.776188i
\(473\) − 5392.97i − 0.524247i
\(474\) −13489.9 −1.30719
\(475\) 0 0
\(476\) −23457.7 −2.25878
\(477\) − 986.111i − 0.0946560i
\(478\) 33288.1i 3.18528i
\(479\) −687.247 −0.0655555 −0.0327778 0.999463i \(-0.510435\pi\)
−0.0327778 + 0.999463i \(0.510435\pi\)
\(480\) 0 0
\(481\) 400.952 0.0380080
\(482\) 30429.2i 2.87554i
\(483\) − 14.8012i − 0.00139436i
\(484\) −1797.48 −0.168809
\(485\) 0 0
\(486\) −11510.0 −1.07428
\(487\) − 5600.80i − 0.521142i −0.965455 0.260571i \(-0.916089\pi\)
0.965455 0.260571i \(-0.0839109\pi\)
\(488\) − 23395.1i − 2.17018i
\(489\) 14398.2 1.33151
\(490\) 0 0
\(491\) −6268.30 −0.576139 −0.288070 0.957609i \(-0.593013\pi\)
−0.288070 + 0.957609i \(0.593013\pi\)
\(492\) 2876.41i 0.263574i
\(493\) 21607.9i 1.97398i
\(494\) −10613.9 −0.966683
\(495\) 0 0
\(496\) 8226.68 0.744736
\(497\) 1355.13i 0.122306i
\(498\) − 33194.3i − 2.98689i
\(499\) 5676.45 0.509244 0.254622 0.967041i \(-0.418049\pi\)
0.254622 + 0.967041i \(0.418049\pi\)
\(500\) 0 0
\(501\) 22600.9 2.01543
\(502\) − 17849.7i − 1.58700i
\(503\) 15475.8i 1.37183i 0.727680 + 0.685917i \(0.240599\pi\)
−0.727680 + 0.685917i \(0.759401\pi\)
\(504\) −3493.71 −0.308774
\(505\) 0 0
\(506\) 10.8566 0.000953825 0
\(507\) 10154.9i 0.889540i
\(508\) 17091.1i 1.49271i
\(509\) 17896.1 1.55841 0.779204 0.626770i \(-0.215623\pi\)
0.779204 + 0.626770i \(0.215623\pi\)
\(510\) 0 0
\(511\) 9178.32 0.794569
\(512\) 12995.9i 1.12177i
\(513\) − 10737.4i − 0.924107i
\(514\) 18258.6 1.56683
\(515\) 0 0
\(516\) 43644.0 3.72348
\(517\) − 5708.17i − 0.485580i
\(518\) 1023.15i 0.0867850i
\(519\) −10453.7 −0.884139
\(520\) 0 0
\(521\) −11719.0 −0.985453 −0.492726 0.870184i \(-0.664000\pi\)
−0.492726 + 0.870184i \(0.664000\pi\)
\(522\) 6973.85i 0.584745i
\(523\) 1263.95i 0.105676i 0.998603 + 0.0528380i \(0.0168267\pi\)
−0.998603 + 0.0528380i \(0.983173\pi\)
\(524\) −11058.3 −0.921918
\(525\) 0 0
\(526\) 26936.9 2.23290
\(527\) 28697.9i 2.37211i
\(528\) − 2494.05i − 0.205567i
\(529\) 12167.0 0.999996
\(530\) 0 0
\(531\) 2164.02 0.176856
\(532\) − 17604.2i − 1.43466i
\(533\) − 724.246i − 0.0588566i
\(534\) −20611.6 −1.67032
\(535\) 0 0
\(536\) 18719.6 1.50851
\(537\) 3017.01i 0.242446i
\(538\) 20621.1i 1.65249i
\(539\) −2198.48 −0.175687
\(540\) 0 0
\(541\) 12341.8 0.980801 0.490401 0.871497i \(-0.336850\pi\)
0.490401 + 0.871497i \(0.336850\pi\)
\(542\) − 13725.2i − 1.08773i
\(543\) 11954.7i 0.944798i
\(544\) −10730.6 −0.845716
\(545\) 0 0
\(546\) 7682.54 0.602165
\(547\) − 6068.31i − 0.474337i −0.971469 0.237168i \(-0.923781\pi\)
0.971469 0.237168i \(-0.0762193\pi\)
\(548\) 18076.8i 1.40913i
\(549\) 6360.71 0.494478
\(550\) 0 0
\(551\) −16216.0 −1.25376
\(552\) 40.5446i 0.00312625i
\(553\) 5633.56i 0.433207i
\(554\) −14375.9 −1.10248
\(555\) 0 0
\(556\) 32386.6 2.47032
\(557\) − 21379.0i − 1.62631i −0.582046 0.813156i \(-0.697748\pi\)
0.582046 0.813156i \(-0.302252\pi\)
\(558\) 9262.10i 0.702681i
\(559\) −10989.0 −0.831461
\(560\) 0 0
\(561\) 8700.22 0.654766
\(562\) − 19835.4i − 1.48880i
\(563\) − 18838.1i − 1.41018i −0.709120 0.705088i \(-0.750907\pi\)
0.709120 0.705088i \(-0.249093\pi\)
\(564\) 46194.8 3.44885
\(565\) 0 0
\(566\) 15632.6 1.16093
\(567\) 10650.2i 0.788831i
\(568\) − 3712.08i − 0.274218i
\(569\) 673.926 0.0496528 0.0248264 0.999692i \(-0.492097\pi\)
0.0248264 + 0.999692i \(0.492097\pi\)
\(570\) 0 0
\(571\) −9663.99 −0.708276 −0.354138 0.935193i \(-0.615226\pi\)
−0.354138 + 0.935193i \(0.615226\pi\)
\(572\) 3662.65i 0.267733i
\(573\) 8304.16i 0.605430i
\(574\) 1848.13 0.134390
\(575\) 0 0
\(576\) −6160.27 −0.445621
\(577\) − 19082.2i − 1.37678i −0.725339 0.688392i \(-0.758317\pi\)
0.725339 0.688392i \(-0.241683\pi\)
\(578\) 59793.8i 4.30293i
\(579\) −7285.82 −0.522951
\(580\) 0 0
\(581\) −13862.4 −0.989864
\(582\) 14631.4i 1.04208i
\(583\) − 1217.37i − 0.0864811i
\(584\) −25141.9 −1.78147
\(585\) 0 0
\(586\) 16364.5 1.15360
\(587\) − 6451.54i − 0.453635i −0.973937 0.226817i \(-0.927168\pi\)
0.973937 0.226817i \(-0.0728321\pi\)
\(588\) − 17791.7i − 1.24782i
\(589\) −21536.8 −1.50663
\(590\) 0 0
\(591\) 6674.29 0.464541
\(592\) − 676.815i − 0.0469881i
\(593\) − 8852.64i − 0.613043i −0.951864 0.306521i \(-0.900835\pi\)
0.951864 0.306521i \(-0.0991651\pi\)
\(594\) −5700.67 −0.393773
\(595\) 0 0
\(596\) −36623.5 −2.51704
\(597\) 5925.35i 0.406212i
\(598\) − 22.1221i − 0.00151277i
\(599\) 13815.2 0.942361 0.471180 0.882037i \(-0.343828\pi\)
0.471180 + 0.882037i \(0.343828\pi\)
\(600\) 0 0
\(601\) −10772.5 −0.731148 −0.365574 0.930782i \(-0.619127\pi\)
−0.365574 + 0.930782i \(0.619127\pi\)
\(602\) − 28041.8i − 1.89850i
\(603\) 5089.52i 0.343717i
\(604\) 23306.2 1.57006
\(605\) 0 0
\(606\) −23091.1 −1.54787
\(607\) − 23470.0i − 1.56938i −0.619886 0.784692i \(-0.712821\pi\)
0.619886 0.784692i \(-0.287179\pi\)
\(608\) − 8052.91i − 0.537152i
\(609\) 11737.4 0.780994
\(610\) 0 0
\(611\) −11631.3 −0.770134
\(612\) 17470.3i 1.15392i
\(613\) − 13362.8i − 0.880455i −0.897886 0.440227i \(-0.854898\pi\)
0.897886 0.440227i \(-0.145102\pi\)
\(614\) 287.351 0.0188869
\(615\) 0 0
\(616\) −4313.05 −0.282107
\(617\) 20357.5i 1.32830i 0.747600 + 0.664149i \(0.231206\pi\)
−0.747600 + 0.664149i \(0.768794\pi\)
\(618\) 53040.9i 3.45246i
\(619\) 6655.61 0.432168 0.216084 0.976375i \(-0.430672\pi\)
0.216084 + 0.976375i \(0.430672\pi\)
\(620\) 0 0
\(621\) 22.3794 0.00144614
\(622\) − 36445.7i − 2.34942i
\(623\) 8607.71i 0.553549i
\(624\) −5082.01 −0.326031
\(625\) 0 0
\(626\) −1305.26 −0.0833365
\(627\) 6529.21i 0.415871i
\(628\) − 45918.4i − 2.91775i
\(629\) 2361.00 0.149665
\(630\) 0 0
\(631\) −10352.0 −0.653104 −0.326552 0.945179i \(-0.605887\pi\)
−0.326552 + 0.945179i \(0.605887\pi\)
\(632\) − 15431.9i − 0.971277i
\(633\) 4783.54i 0.300361i
\(634\) −20427.5 −1.27962
\(635\) 0 0
\(636\) 9851.90 0.614235
\(637\) 4479.74i 0.278640i
\(638\) 8609.36i 0.534244i
\(639\) 1009.25 0.0624809
\(640\) 0 0
\(641\) 27221.5 1.67736 0.838679 0.544626i \(-0.183328\pi\)
0.838679 + 0.544626i \(0.183328\pi\)
\(642\) − 40945.1i − 2.51710i
\(643\) − 4336.49i − 0.265964i −0.991118 0.132982i \(-0.957545\pi\)
0.991118 0.132982i \(-0.0424552\pi\)
\(644\) 36.6916 0.00224511
\(645\) 0 0
\(646\) −62499.8 −3.80653
\(647\) 17128.4i 1.04078i 0.853928 + 0.520391i \(0.174214\pi\)
−0.853928 + 0.520391i \(0.825786\pi\)
\(648\) − 29173.9i − 1.76861i
\(649\) 2671.52 0.161582
\(650\) 0 0
\(651\) 15588.7 0.938511
\(652\) 35692.5i 2.14390i
\(653\) − 19633.3i − 1.17659i −0.808647 0.588294i \(-0.799800\pi\)
0.808647 0.588294i \(-0.200200\pi\)
\(654\) 29438.9 1.76017
\(655\) 0 0
\(656\) −1222.54 −0.0727627
\(657\) − 6835.64i − 0.405911i
\(658\) − 29680.8i − 1.75848i
\(659\) 5824.46 0.344293 0.172146 0.985071i \(-0.444930\pi\)
0.172146 + 0.985071i \(0.444930\pi\)
\(660\) 0 0
\(661\) 11332.2 0.666826 0.333413 0.942781i \(-0.391800\pi\)
0.333413 + 0.942781i \(0.391800\pi\)
\(662\) 34123.5i 2.00340i
\(663\) − 17728.1i − 1.03846i
\(664\) 37973.0 2.21934
\(665\) 0 0
\(666\) 762.000 0.0443347
\(667\) − 33.7983i − 0.00196203i
\(668\) 56026.6i 3.24511i
\(669\) −11005.5 −0.636021
\(670\) 0 0
\(671\) 7852.42 0.451773
\(672\) 5828.85i 0.334603i
\(673\) 7347.26i 0.420826i 0.977613 + 0.210413i \(0.0674809\pi\)
−0.977613 + 0.210413i \(0.932519\pi\)
\(674\) 53443.5 3.05425
\(675\) 0 0
\(676\) −25173.7 −1.43228
\(677\) − 9906.82i − 0.562407i −0.959648 0.281204i \(-0.909266\pi\)
0.959648 0.281204i \(-0.0907337\pi\)
\(678\) − 17312.6i − 0.980661i
\(679\) 6110.29 0.345348
\(680\) 0 0
\(681\) 12044.5 0.677750
\(682\) 11434.3i 0.641995i
\(683\) − 10572.3i − 0.592295i −0.955142 0.296148i \(-0.904298\pi\)
0.955142 0.296148i \(-0.0957021\pi\)
\(684\) −13110.9 −0.732904
\(685\) 0 0
\(686\) −31049.9 −1.72812
\(687\) 6375.76i 0.354076i
\(688\) 18549.7i 1.02791i
\(689\) −2480.59 −0.137160
\(690\) 0 0
\(691\) 9051.54 0.498317 0.249158 0.968463i \(-0.419846\pi\)
0.249158 + 0.968463i \(0.419846\pi\)
\(692\) − 25914.4i − 1.42358i
\(693\) − 1172.64i − 0.0642785i
\(694\) −10535.4 −0.576249
\(695\) 0 0
\(696\) −32152.1 −1.75104
\(697\) − 4264.71i − 0.231761i
\(698\) − 31263.2i − 1.69532i
\(699\) −7550.41 −0.408559
\(700\) 0 0
\(701\) 27429.8 1.47790 0.738950 0.673760i \(-0.235322\pi\)
0.738950 + 0.673760i \(0.235322\pi\)
\(702\) 11616.0i 0.624527i
\(703\) 1771.85i 0.0950590i
\(704\) −7604.98 −0.407136
\(705\) 0 0
\(706\) 51686.9 2.75533
\(707\) 9643.18i 0.512969i
\(708\) 21620.0i 1.14764i
\(709\) 31443.4 1.66556 0.832779 0.553605i \(-0.186748\pi\)
0.832779 + 0.553605i \(0.186748\pi\)
\(710\) 0 0
\(711\) 4195.65 0.221307
\(712\) − 23578.9i − 1.24109i
\(713\) − 44.8881i − 0.00235775i
\(714\) 45238.5 2.37116
\(715\) 0 0
\(716\) −7479.05 −0.390371
\(717\) − 41726.0i − 2.17334i
\(718\) − 2925.65i − 0.152067i
\(719\) −8076.20 −0.418903 −0.209452 0.977819i \(-0.567168\pi\)
−0.209452 + 0.977819i \(0.567168\pi\)
\(720\) 0 0
\(721\) 22150.7 1.14415
\(722\) − 14112.9i − 0.727465i
\(723\) − 38142.3i − 1.96200i
\(724\) −29635.2 −1.52125
\(725\) 0 0
\(726\) 3466.47 0.177208
\(727\) 29837.6i 1.52217i 0.648654 + 0.761084i \(0.275332\pi\)
−0.648654 + 0.761084i \(0.724668\pi\)
\(728\) 8788.53i 0.447424i
\(729\) −9607.51 −0.488112
\(730\) 0 0
\(731\) −64708.8 −3.27406
\(732\) 63547.7i 3.20873i
\(733\) 30839.8i 1.55402i 0.629491 + 0.777008i \(0.283264\pi\)
−0.629491 + 0.777008i \(0.716736\pi\)
\(734\) 56518.4 2.84214
\(735\) 0 0
\(736\) 16.7843 0.000840596 0
\(737\) 6283.12i 0.314032i
\(738\) − 1376.41i − 0.0686538i
\(739\) 19272.1 0.959318 0.479659 0.877455i \(-0.340760\pi\)
0.479659 + 0.877455i \(0.340760\pi\)
\(740\) 0 0
\(741\) 13304.3 0.659575
\(742\) − 6329.98i − 0.313182i
\(743\) − 6929.41i − 0.342147i −0.985258 0.171074i \(-0.945276\pi\)
0.985258 0.171074i \(-0.0547236\pi\)
\(744\) −42701.8 −2.10420
\(745\) 0 0
\(746\) 24228.4 1.18909
\(747\) 10324.2i 0.505679i
\(748\) 21567.5i 1.05426i
\(749\) −17099.3 −0.834172
\(750\) 0 0
\(751\) 7785.84 0.378308 0.189154 0.981947i \(-0.439425\pi\)
0.189154 + 0.981947i \(0.439425\pi\)
\(752\) 19633.9i 0.952093i
\(753\) 22374.2i 1.08282i
\(754\) 17542.9 0.847316
\(755\) 0 0
\(756\) −19266.3 −0.926861
\(757\) 19392.0i 0.931065i 0.885031 + 0.465532i \(0.154137\pi\)
−0.885031 + 0.465532i \(0.845863\pi\)
\(758\) − 52517.2i − 2.51650i
\(759\) −13.6085 −0.000650802 0
\(760\) 0 0
\(761\) 40527.1 1.93050 0.965248 0.261336i \(-0.0841630\pi\)
0.965248 + 0.261336i \(0.0841630\pi\)
\(762\) − 32960.6i − 1.56697i
\(763\) − 12294.1i − 0.583326i
\(764\) −20585.7 −0.974821
\(765\) 0 0
\(766\) −41508.7 −1.95793
\(767\) − 5443.65i − 0.256270i
\(768\) − 42912.0i − 2.01621i
\(769\) −447.221 −0.0209716 −0.0104858 0.999945i \(-0.503338\pi\)
−0.0104858 + 0.999945i \(0.503338\pi\)
\(770\) 0 0
\(771\) −22886.8 −1.06906
\(772\) − 18061.3i − 0.842019i
\(773\) 13950.3i 0.649105i 0.945868 + 0.324553i \(0.105214\pi\)
−0.945868 + 0.324553i \(0.894786\pi\)
\(774\) −20884.4 −0.969864
\(775\) 0 0
\(776\) −16737.8 −0.774292
\(777\) − 1282.50i − 0.0592140i
\(778\) − 59378.8i − 2.73629i
\(779\) 3200.52 0.147202
\(780\) 0 0
\(781\) 1245.94 0.0570848
\(782\) − 130.265i − 0.00595689i
\(783\) 17747.0i 0.809996i
\(784\) 7561.90 0.344474
\(785\) 0 0
\(786\) 21326.2 0.967785
\(787\) 24643.3i 1.11619i 0.829778 + 0.558093i \(0.188467\pi\)
−0.829778 + 0.558093i \(0.811533\pi\)
\(788\) 16545.3i 0.747972i
\(789\) −33764.8 −1.52352
\(790\) 0 0
\(791\) −7230.02 −0.324993
\(792\) 3212.19i 0.144116i
\(793\) − 16000.6i − 0.716515i
\(794\) −26050.7 −1.16436
\(795\) 0 0
\(796\) −14688.7 −0.654054
\(797\) − 973.804i − 0.0432797i −0.999766 0.0216398i \(-0.993111\pi\)
0.999766 0.0216398i \(-0.00688871\pi\)
\(798\) 33949.9i 1.50603i
\(799\) −68490.7 −3.03258
\(800\) 0 0
\(801\) 6410.67 0.282784
\(802\) 55241.7i 2.43223i
\(803\) − 8438.74i − 0.370855i
\(804\) −50847.7 −2.23042
\(805\) 0 0
\(806\) 23299.1 1.01821
\(807\) − 25848.1i − 1.12751i
\(808\) − 26415.3i − 1.15011i
\(809\) −10386.8 −0.451396 −0.225698 0.974197i \(-0.572466\pi\)
−0.225698 + 0.974197i \(0.572466\pi\)
\(810\) 0 0
\(811\) 1009.30 0.0437007 0.0218503 0.999761i \(-0.493044\pi\)
0.0218503 + 0.999761i \(0.493044\pi\)
\(812\) 29096.6i 1.25750i
\(813\) 17204.3i 0.742166i
\(814\) 940.705 0.0405058
\(815\) 0 0
\(816\) −29925.4 −1.28382
\(817\) − 48561.6i − 2.07951i
\(818\) 2726.75i 0.116551i
\(819\) −2389.44 −0.101946
\(820\) 0 0
\(821\) −25309.9 −1.07591 −0.537955 0.842973i \(-0.680803\pi\)
−0.537955 + 0.842973i \(0.680803\pi\)
\(822\) − 34861.5i − 1.47924i
\(823\) 13675.7i 0.579230i 0.957143 + 0.289615i \(0.0935272\pi\)
−0.957143 + 0.289615i \(0.906473\pi\)
\(824\) −60676.8 −2.56526
\(825\) 0 0
\(826\) 13891.1 0.585150
\(827\) − 28106.0i − 1.18179i −0.806747 0.590897i \(-0.798774\pi\)
0.806747 0.590897i \(-0.201226\pi\)
\(828\) − 27.3264i − 0.00114693i
\(829\) −971.943 −0.0407201 −0.0203601 0.999793i \(-0.506481\pi\)
−0.0203601 + 0.999793i \(0.506481\pi\)
\(830\) 0 0
\(831\) 18019.9 0.752228
\(832\) 15496.3i 0.645720i
\(833\) 26378.9i 1.09721i
\(834\) −62458.2 −2.59323
\(835\) 0 0
\(836\) −16185.6 −0.669607
\(837\) 23570.2i 0.973362i
\(838\) − 58674.4i − 2.41870i
\(839\) −17858.3 −0.734847 −0.367423 0.930054i \(-0.619760\pi\)
−0.367423 + 0.930054i \(0.619760\pi\)
\(840\) 0 0
\(841\) 2413.24 0.0989479
\(842\) − 3508.80i − 0.143612i
\(843\) 24863.2i 1.01582i
\(844\) −11858.2 −0.483621
\(845\) 0 0
\(846\) −22105.0 −0.898329
\(847\) − 1447.65i − 0.0587271i
\(848\) 4187.29i 0.169566i
\(849\) −19595.1 −0.792111
\(850\) 0 0
\(851\) −3.69298 −0.000148759 0
\(852\) 10083.1i 0.405446i
\(853\) − 3010.35i − 0.120835i −0.998173 0.0604176i \(-0.980757\pi\)
0.998173 0.0604176i \(-0.0192432\pi\)
\(854\) 40830.3 1.63605
\(855\) 0 0
\(856\) 46839.7 1.87026
\(857\) − 39487.8i − 1.57395i −0.616984 0.786976i \(-0.711645\pi\)
0.616984 0.786976i \(-0.288355\pi\)
\(858\) − 7063.49i − 0.281053i
\(859\) 2338.21 0.0928741 0.0464370 0.998921i \(-0.485213\pi\)
0.0464370 + 0.998921i \(0.485213\pi\)
\(860\) 0 0
\(861\) −2316.60 −0.0916950
\(862\) 78605.2i 3.10592i
\(863\) − 25637.9i − 1.01127i −0.862748 0.505635i \(-0.831258\pi\)
0.862748 0.505635i \(-0.168742\pi\)
\(864\) −8813.23 −0.347028
\(865\) 0 0
\(866\) 17917.2 0.703063
\(867\) − 74950.2i − 2.93592i
\(868\) 38643.8i 1.51112i
\(869\) 5179.61 0.202194
\(870\) 0 0
\(871\) 12802.9 0.498058
\(872\) 33677.0i 1.30785i
\(873\) − 4550.69i − 0.176423i
\(874\) 97.7596 0.00378349
\(875\) 0 0
\(876\) 68292.6 2.63401
\(877\) 48054.8i 1.85028i 0.379624 + 0.925141i \(0.376053\pi\)
−0.379624 + 0.925141i \(0.623947\pi\)
\(878\) 9168.62i 0.352421i
\(879\) −20512.5 −0.787111
\(880\) 0 0
\(881\) 16092.9 0.615418 0.307709 0.951481i \(-0.400438\pi\)
0.307709 + 0.951481i \(0.400438\pi\)
\(882\) 8513.65i 0.325022i
\(883\) − 39499.4i − 1.50539i −0.658369 0.752696i \(-0.728753\pi\)
0.658369 0.752696i \(-0.271247\pi\)
\(884\) 43947.2 1.67206
\(885\) 0 0
\(886\) −46679.3 −1.77000
\(887\) − 17421.1i − 0.659461i −0.944075 0.329730i \(-0.893042\pi\)
0.944075 0.329730i \(-0.106958\pi\)
\(888\) 3513.11i 0.132762i
\(889\) −13764.8 −0.519299
\(890\) 0 0
\(891\) 9792.04 0.368177
\(892\) − 27282.2i − 1.02408i
\(893\) − 51399.9i − 1.92613i
\(894\) 70629.1 2.64227
\(895\) 0 0
\(896\) −31762.1 −1.18426
\(897\) 27.7295i 0.00103218i
\(898\) − 46005.1i − 1.70959i
\(899\) 35596.6 1.32059
\(900\) 0 0
\(901\) −14606.9 −0.540097
\(902\) − 1699.21i − 0.0627246i
\(903\) 35149.8i 1.29536i
\(904\) 19805.0 0.728656
\(905\) 0 0
\(906\) −44946.5 −1.64818
\(907\) 21501.9i 0.787164i 0.919290 + 0.393582i \(0.128764\pi\)
−0.919290 + 0.393582i \(0.871236\pi\)
\(908\) 29857.9i 1.09127i
\(909\) 7181.84 0.262054
\(910\) 0 0
\(911\) −20432.4 −0.743092 −0.371546 0.928415i \(-0.621172\pi\)
−0.371546 + 0.928415i \(0.621172\pi\)
\(912\) − 22457.9i − 0.815413i
\(913\) 12745.4i 0.462006i
\(914\) 77497.0 2.80457
\(915\) 0 0
\(916\) −15805.2 −0.570109
\(917\) − 8906.12i − 0.320726i
\(918\) 68400.7i 2.45922i
\(919\) −34960.0 −1.25487 −0.627434 0.778670i \(-0.715895\pi\)
−0.627434 + 0.778670i \(0.715895\pi\)
\(920\) 0 0
\(921\) −360.188 −0.0128867
\(922\) 18802.1i 0.671601i
\(923\) − 2538.80i − 0.0905369i
\(924\) 11715.5 0.417111
\(925\) 0 0
\(926\) 3676.18 0.130461
\(927\) − 16496.9i − 0.584498i
\(928\) 13310.1i 0.470824i
\(929\) −3925.52 −0.138635 −0.0693176 0.997595i \(-0.522082\pi\)
−0.0693176 + 0.997595i \(0.522082\pi\)
\(930\) 0 0
\(931\) −19796.4 −0.696887
\(932\) − 18717.1i − 0.657833i
\(933\) 45684.0i 1.60303i
\(934\) −12600.1 −0.441420
\(935\) 0 0
\(936\) 6545.34 0.228570
\(937\) − 10607.3i − 0.369826i −0.982755 0.184913i \(-0.940800\pi\)
0.982755 0.184913i \(-0.0592003\pi\)
\(938\) 32670.4i 1.13723i
\(939\) 1636.11 0.0568611
\(940\) 0 0
\(941\) −4209.94 −0.145845 −0.0729224 0.997338i \(-0.523233\pi\)
−0.0729224 + 0.997338i \(0.523233\pi\)
\(942\) 88554.5i 3.06291i
\(943\) 6.67070i 0 0.000230358i
\(944\) −9189.00 −0.316818
\(945\) 0 0
\(946\) −25782.2 −0.886103
\(947\) 6133.98i 0.210483i 0.994447 + 0.105242i \(0.0335616\pi\)
−0.994447 + 0.105242i \(0.966438\pi\)
\(948\) 41917.3i 1.43609i
\(949\) −17195.3 −0.588179
\(950\) 0 0
\(951\) 25605.4 0.873094
\(952\) 51751.1i 1.76183i
\(953\) − 15745.6i − 0.535203i −0.963530 0.267602i \(-0.913769\pi\)
0.963530 0.267602i \(-0.0862311\pi\)
\(954\) −4714.31 −0.159991
\(955\) 0 0
\(956\) 103437. 3.49936
\(957\) − 10791.7i − 0.364519i
\(958\) 3285.53i 0.110804i
\(959\) −14558.7 −0.490223
\(960\) 0 0
\(961\) 17485.5 0.586939
\(962\) − 1916.84i − 0.0642425i
\(963\) 12734.9i 0.426142i
\(964\) 94553.2 3.15908
\(965\) 0 0
\(966\) −70.7603 −0.00235681
\(967\) − 12077.7i − 0.401649i −0.979627 0.200824i \(-0.935638\pi\)
0.979627 0.200824i \(-0.0643620\pi\)
\(968\) 3965.51i 0.131670i
\(969\) 78342.1 2.59723
\(970\) 0 0
\(971\) −11513.5 −0.380519 −0.190260 0.981734i \(-0.560933\pi\)
−0.190260 + 0.981734i \(0.560933\pi\)
\(972\) 35765.1i 1.18021i
\(973\) 26083.5i 0.859401i
\(974\) −26775.8 −0.880854
\(975\) 0 0
\(976\) −27009.3 −0.885806
\(977\) 14847.9i 0.486208i 0.970000 + 0.243104i \(0.0781657\pi\)
−0.970000 + 0.243104i \(0.921834\pi\)
\(978\) − 68833.5i − 2.25056i
\(979\) 7914.11 0.258362
\(980\) 0 0
\(981\) −9156.17 −0.297996
\(982\) 29966.9i 0.973812i
\(983\) − 11752.3i − 0.381322i −0.981656 0.190661i \(-0.938937\pi\)
0.981656 0.190661i \(-0.0610631\pi\)
\(984\) 6345.79 0.205586
\(985\) 0 0
\(986\) 103301. 3.33650
\(987\) 37204.2i 1.19982i
\(988\) 32980.8i 1.06200i
\(989\) 101.215 0.00325424
\(990\) 0 0
\(991\) −32455.8 −1.04036 −0.520179 0.854058i \(-0.674135\pi\)
−0.520179 + 0.854058i \(0.674135\pi\)
\(992\) 17677.4i 0.565783i
\(993\) − 42773.1i − 1.36693i
\(994\) 6478.51 0.206726
\(995\) 0 0
\(996\) −103145. −3.28142
\(997\) − 35177.9i − 1.11745i −0.829354 0.558723i \(-0.811291\pi\)
0.829354 0.558723i \(-0.188709\pi\)
\(998\) − 27137.5i − 0.860744i
\(999\) 1939.14 0.0614130
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.b.f.199.2 10
5.2 odd 4 275.4.a.h.1.5 yes 5
5.3 odd 4 275.4.a.g.1.1 5
5.4 even 2 inner 275.4.b.f.199.9 10
15.2 even 4 2475.4.a.bh.1.1 5
15.8 even 4 2475.4.a.bl.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.4.a.g.1.1 5 5.3 odd 4
275.4.a.h.1.5 yes 5 5.2 odd 4
275.4.b.f.199.2 10 1.1 even 1 trivial
275.4.b.f.199.9 10 5.4 even 2 inner
2475.4.a.bh.1.1 5 15.2 even 4
2475.4.a.bl.1.5 5 15.8 even 4