Properties

Label 275.4.b.f.199.5
Level $275$
Weight $4$
Character 275.199
Analytic conductor $16.226$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(199,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 80x^{8} + 2296x^{6} + 27417x^{4} + 110472x^{2} + 21904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.5
Root \(-0.457079i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.4.b.f.199.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.457079i q^{2} -2.45289i q^{3} +7.79108 q^{4} -1.12116 q^{6} +23.1894i q^{7} -7.21777i q^{8} +20.9833 q^{9} -11.0000 q^{11} -19.1106i q^{12} +75.6462i q^{13} +10.5994 q^{14} +59.0295 q^{16} +40.8029i q^{17} -9.59104i q^{18} -61.5212 q^{19} +56.8809 q^{21} +5.02787i q^{22} +86.3856i q^{23} -17.7044 q^{24} +34.5763 q^{26} -117.698i q^{27} +180.670i q^{28} +236.491 q^{29} -237.800 q^{31} -84.7233i q^{32} +26.9818i q^{33} +18.6501 q^{34} +163.483 q^{36} -251.864i q^{37} +28.1200i q^{38} +185.552 q^{39} +446.841 q^{41} -25.9990i q^{42} +263.646i q^{43} -85.7019 q^{44} +39.4850 q^{46} -438.728i q^{47} -144.793i q^{48} -194.746 q^{49} +100.085 q^{51} +589.365i q^{52} +286.114i q^{53} -53.7971 q^{54} +167.375 q^{56} +150.905i q^{57} -108.095i q^{58} +529.452 q^{59} +75.7253 q^{61} +108.693i q^{62} +486.590i q^{63} +433.511 q^{64} +12.3328 q^{66} +384.462i q^{67} +317.898i q^{68} +211.894 q^{69} +7.15821 q^{71} -151.453i q^{72} -590.216i q^{73} -115.122 q^{74} -479.316 q^{76} -255.083i q^{77} -84.8117i q^{78} +139.112 q^{79} +277.851 q^{81} -204.242i q^{82} -719.121i q^{83} +443.164 q^{84} +120.507 q^{86} -580.086i q^{87} +79.3954i q^{88} -1647.00 q^{89} -1754.19 q^{91} +673.037i q^{92} +583.297i q^{93} -200.533 q^{94} -207.817 q^{96} -939.129i q^{97} +89.0144i q^{98} -230.817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 80 q^{4} - 84 q^{6} - 62 q^{9} - 110 q^{11} + 266 q^{14} + 416 q^{16} - 46 q^{19} + 564 q^{21} + 982 q^{24} + 644 q^{26} + 366 q^{29} - 2 q^{31} + 1300 q^{34} + 2676 q^{36} + 540 q^{39} + 188 q^{41}+ \cdots + 682 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.457079i − 0.161602i −0.996730 0.0808009i \(-0.974252\pi\)
0.996730 0.0808009i \(-0.0257478\pi\)
\(3\) − 2.45289i − 0.472059i −0.971746 0.236029i \(-0.924154\pi\)
0.971746 0.236029i \(-0.0758461\pi\)
\(4\) 7.79108 0.973885
\(5\) 0 0
\(6\) −1.12116 −0.0762855
\(7\) 23.1894i 1.25211i 0.779780 + 0.626054i \(0.215331\pi\)
−0.779780 + 0.626054i \(0.784669\pi\)
\(8\) − 7.21777i − 0.318983i
\(9\) 20.9833 0.777161
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) − 19.1106i − 0.459731i
\(13\) 75.6462i 1.61388i 0.590631 + 0.806941i \(0.298879\pi\)
−0.590631 + 0.806941i \(0.701121\pi\)
\(14\) 10.5994 0.202343
\(15\) 0 0
\(16\) 59.0295 0.922337
\(17\) 40.8029i 0.582126i 0.956704 + 0.291063i \(0.0940090\pi\)
−0.956704 + 0.291063i \(0.905991\pi\)
\(18\) − 9.59104i − 0.125591i
\(19\) −61.5212 −0.742838 −0.371419 0.928465i \(-0.621129\pi\)
−0.371419 + 0.928465i \(0.621129\pi\)
\(20\) 0 0
\(21\) 56.8809 0.591068
\(22\) 5.02787i 0.0487247i
\(23\) 86.3856i 0.783159i 0.920144 + 0.391579i \(0.128071\pi\)
−0.920144 + 0.391579i \(0.871929\pi\)
\(24\) −17.7044 −0.150579
\(25\) 0 0
\(26\) 34.5763 0.260806
\(27\) − 117.698i − 0.838924i
\(28\) 180.670i 1.21941i
\(29\) 236.491 1.51432 0.757160 0.653229i \(-0.226586\pi\)
0.757160 + 0.653229i \(0.226586\pi\)
\(30\) 0 0
\(31\) −237.800 −1.37775 −0.688874 0.724881i \(-0.741895\pi\)
−0.688874 + 0.724881i \(0.741895\pi\)
\(32\) − 84.7233i − 0.468034i
\(33\) 26.9818i 0.142331i
\(34\) 18.6501 0.0940726
\(35\) 0 0
\(36\) 163.483 0.756865
\(37\) − 251.864i − 1.11909i −0.828801 0.559543i \(-0.810976\pi\)
0.828801 0.559543i \(-0.189024\pi\)
\(38\) 28.1200i 0.120044i
\(39\) 185.552 0.761847
\(40\) 0 0
\(41\) 446.841 1.70207 0.851035 0.525108i \(-0.175975\pi\)
0.851035 + 0.525108i \(0.175975\pi\)
\(42\) − 25.9990i − 0.0955176i
\(43\) 263.646i 0.935015i 0.883989 + 0.467507i \(0.154848\pi\)
−0.883989 + 0.467507i \(0.845152\pi\)
\(44\) −85.7019 −0.293637
\(45\) 0 0
\(46\) 39.4850 0.126560
\(47\) − 438.728i − 1.36160i −0.732471 0.680799i \(-0.761633\pi\)
0.732471 0.680799i \(-0.238367\pi\)
\(48\) − 144.793i − 0.435397i
\(49\) −194.746 −0.567773
\(50\) 0 0
\(51\) 100.085 0.274798
\(52\) 589.365i 1.57174i
\(53\) 286.114i 0.741525i 0.928728 + 0.370763i \(0.120904\pi\)
−0.928728 + 0.370763i \(0.879096\pi\)
\(54\) −53.7971 −0.135572
\(55\) 0 0
\(56\) 167.375 0.399401
\(57\) 150.905i 0.350663i
\(58\) − 108.095i − 0.244717i
\(59\) 529.452 1.16828 0.584142 0.811651i \(-0.301431\pi\)
0.584142 + 0.811651i \(0.301431\pi\)
\(60\) 0 0
\(61\) 75.7253 0.158945 0.0794724 0.996837i \(-0.474676\pi\)
0.0794724 + 0.996837i \(0.474676\pi\)
\(62\) 108.693i 0.222646i
\(63\) 486.590i 0.973089i
\(64\) 433.511 0.846702
\(65\) 0 0
\(66\) 12.3328 0.0230009
\(67\) 384.462i 0.701037i 0.936556 + 0.350518i \(0.113995\pi\)
−0.936556 + 0.350518i \(0.886005\pi\)
\(68\) 317.898i 0.566924i
\(69\) 211.894 0.369697
\(70\) 0 0
\(71\) 7.15821 0.0119651 0.00598256 0.999982i \(-0.498096\pi\)
0.00598256 + 0.999982i \(0.498096\pi\)
\(72\) − 151.453i − 0.247901i
\(73\) − 590.216i − 0.946295i −0.880983 0.473148i \(-0.843118\pi\)
0.880983 0.473148i \(-0.156882\pi\)
\(74\) −115.122 −0.180846
\(75\) 0 0
\(76\) −479.316 −0.723439
\(77\) − 255.083i − 0.377525i
\(78\) − 84.8117i − 0.123116i
\(79\) 139.112 0.198118 0.0990589 0.995082i \(-0.468417\pi\)
0.0990589 + 0.995082i \(0.468417\pi\)
\(80\) 0 0
\(81\) 277.851 0.381140
\(82\) − 204.242i − 0.275058i
\(83\) − 719.121i − 0.951009i −0.879713 0.475505i \(-0.842265\pi\)
0.879713 0.475505i \(-0.157735\pi\)
\(84\) 443.164 0.575632
\(85\) 0 0
\(86\) 120.507 0.151100
\(87\) − 580.086i − 0.714848i
\(88\) 79.3954i 0.0961770i
\(89\) −1647.00 −1.96159 −0.980794 0.195046i \(-0.937515\pi\)
−0.980794 + 0.195046i \(0.937515\pi\)
\(90\) 0 0
\(91\) −1754.19 −2.02075
\(92\) 673.037i 0.762706i
\(93\) 583.297i 0.650377i
\(94\) −200.533 −0.220036
\(95\) 0 0
\(96\) −207.817 −0.220940
\(97\) − 939.129i − 0.983032i −0.870868 0.491516i \(-0.836443\pi\)
0.870868 0.491516i \(-0.163557\pi\)
\(98\) 89.0144i 0.0917532i
\(99\) −230.817 −0.234323
\(100\) 0 0
\(101\) −611.529 −0.602470 −0.301235 0.953550i \(-0.597399\pi\)
−0.301235 + 0.953550i \(0.597399\pi\)
\(102\) − 45.7467i − 0.0444078i
\(103\) − 1039.22i − 0.994148i −0.867708 0.497074i \(-0.834408\pi\)
0.867708 0.497074i \(-0.165592\pi\)
\(104\) 545.996 0.514801
\(105\) 0 0
\(106\) 130.777 0.119832
\(107\) 272.253i 0.245979i 0.992408 + 0.122989i \(0.0392481\pi\)
−0.992408 + 0.122989i \(0.960752\pi\)
\(108\) − 916.993i − 0.817015i
\(109\) −1320.39 −1.16028 −0.580139 0.814517i \(-0.697002\pi\)
−0.580139 + 0.814517i \(0.697002\pi\)
\(110\) 0 0
\(111\) −617.795 −0.528275
\(112\) 1368.86i 1.15486i
\(113\) 904.125i 0.752681i 0.926481 + 0.376341i \(0.122818\pi\)
−0.926481 + 0.376341i \(0.877182\pi\)
\(114\) 68.9752 0.0566677
\(115\) 0 0
\(116\) 1842.52 1.47477
\(117\) 1587.31i 1.25425i
\(118\) − 242.001i − 0.188797i
\(119\) −946.192 −0.728885
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) − 34.6124i − 0.0256858i
\(123\) − 1096.05i − 0.803477i
\(124\) −1852.72 −1.34177
\(125\) 0 0
\(126\) 222.410 0.157253
\(127\) − 2059.56i − 1.43903i −0.694478 0.719514i \(-0.744365\pi\)
0.694478 0.719514i \(-0.255635\pi\)
\(128\) − 875.935i − 0.604863i
\(129\) 646.694 0.441382
\(130\) 0 0
\(131\) −1019.17 −0.679737 −0.339868 0.940473i \(-0.610383\pi\)
−0.339868 + 0.940473i \(0.610383\pi\)
\(132\) 210.217i 0.138614i
\(133\) − 1426.64i − 0.930113i
\(134\) 175.729 0.113289
\(135\) 0 0
\(136\) 294.506 0.185689
\(137\) 1924.56i 1.20019i 0.799928 + 0.600096i \(0.204871\pi\)
−0.799928 + 0.600096i \(0.795129\pi\)
\(138\) − 96.8523i − 0.0597436i
\(139\) −814.169 −0.496812 −0.248406 0.968656i \(-0.579907\pi\)
−0.248406 + 0.968656i \(0.579907\pi\)
\(140\) 0 0
\(141\) −1076.15 −0.642754
\(142\) − 3.27186i − 0.00193358i
\(143\) − 832.108i − 0.486604i
\(144\) 1238.64 0.716804
\(145\) 0 0
\(146\) −269.775 −0.152923
\(147\) 477.691i 0.268022i
\(148\) − 1962.29i − 1.08986i
\(149\) 629.177 0.345934 0.172967 0.984928i \(-0.444665\pi\)
0.172967 + 0.984928i \(0.444665\pi\)
\(150\) 0 0
\(151\) 497.025 0.267863 0.133932 0.990991i \(-0.457240\pi\)
0.133932 + 0.990991i \(0.457240\pi\)
\(152\) 444.045i 0.236953i
\(153\) 856.180i 0.452406i
\(154\) −116.593 −0.0610086
\(155\) 0 0
\(156\) 1445.65 0.741951
\(157\) − 1652.41i − 0.839977i −0.907529 0.419989i \(-0.862034\pi\)
0.907529 0.419989i \(-0.137966\pi\)
\(158\) − 63.5851i − 0.0320162i
\(159\) 701.807 0.350043
\(160\) 0 0
\(161\) −2003.23 −0.980599
\(162\) − 127.000i − 0.0615928i
\(163\) 1586.38i 0.762299i 0.924513 + 0.381150i \(0.124472\pi\)
−0.924513 + 0.381150i \(0.875528\pi\)
\(164\) 3481.38 1.65762
\(165\) 0 0
\(166\) −328.695 −0.153685
\(167\) 259.897i 0.120428i 0.998185 + 0.0602139i \(0.0191783\pi\)
−0.998185 + 0.0602139i \(0.980822\pi\)
\(168\) − 410.553i − 0.188541i
\(169\) −3525.35 −1.60462
\(170\) 0 0
\(171\) −1290.92 −0.577305
\(172\) 2054.09i 0.910597i
\(173\) − 896.130i − 0.393824i −0.980421 0.196912i \(-0.936909\pi\)
0.980421 0.196912i \(-0.0630912\pi\)
\(174\) −265.145 −0.115521
\(175\) 0 0
\(176\) −649.325 −0.278095
\(177\) − 1298.69i − 0.551499i
\(178\) 752.807i 0.316996i
\(179\) −3067.24 −1.28076 −0.640381 0.768057i \(-0.721224\pi\)
−0.640381 + 0.768057i \(0.721224\pi\)
\(180\) 0 0
\(181\) 1011.00 0.415179 0.207589 0.978216i \(-0.433438\pi\)
0.207589 + 0.978216i \(0.433438\pi\)
\(182\) 801.801i 0.326557i
\(183\) − 185.746i − 0.0750312i
\(184\) 623.511 0.249814
\(185\) 0 0
\(186\) 266.613 0.105102
\(187\) − 448.832i − 0.175518i
\(188\) − 3418.17i − 1.32604i
\(189\) 2729.34 1.05042
\(190\) 0 0
\(191\) 4659.09 1.76503 0.882514 0.470287i \(-0.155850\pi\)
0.882514 + 0.470287i \(0.155850\pi\)
\(192\) − 1063.35i − 0.399693i
\(193\) 4808.84i 1.79351i 0.442524 + 0.896757i \(0.354083\pi\)
−0.442524 + 0.896757i \(0.645917\pi\)
\(194\) −429.256 −0.158860
\(195\) 0 0
\(196\) −1517.28 −0.552946
\(197\) − 2661.39i − 0.962518i −0.876578 0.481259i \(-0.840180\pi\)
0.876578 0.481259i \(-0.159820\pi\)
\(198\) 105.501i 0.0378670i
\(199\) −745.497 −0.265562 −0.132781 0.991145i \(-0.542391\pi\)
−0.132781 + 0.991145i \(0.542391\pi\)
\(200\) 0 0
\(201\) 943.041 0.330930
\(202\) 279.517i 0.0973601i
\(203\) 5484.08i 1.89609i
\(204\) 779.769 0.267621
\(205\) 0 0
\(206\) −475.005 −0.160656
\(207\) 1812.66i 0.608640i
\(208\) 4465.36i 1.48854i
\(209\) 676.733 0.223974
\(210\) 0 0
\(211\) −3149.89 −1.02771 −0.513856 0.857876i \(-0.671783\pi\)
−0.513856 + 0.857876i \(0.671783\pi\)
\(212\) 2229.14i 0.722160i
\(213\) − 17.5583i − 0.00564823i
\(214\) 124.441 0.0397506
\(215\) 0 0
\(216\) −849.515 −0.267603
\(217\) − 5514.43i − 1.72509i
\(218\) 603.522i 0.187503i
\(219\) −1447.73 −0.446707
\(220\) 0 0
\(221\) −3086.58 −0.939484
\(222\) 282.381i 0.0853701i
\(223\) − 2003.22i − 0.601549i −0.953695 0.300774i \(-0.902755\pi\)
0.953695 0.300774i \(-0.0972451\pi\)
\(224\) 1964.68 0.586029
\(225\) 0 0
\(226\) 413.256 0.121635
\(227\) − 957.035i − 0.279827i −0.990164 0.139913i \(-0.955318\pi\)
0.990164 0.139913i \(-0.0446824\pi\)
\(228\) 1175.71i 0.341505i
\(229\) 3125.34 0.901869 0.450934 0.892557i \(-0.351091\pi\)
0.450934 + 0.892557i \(0.351091\pi\)
\(230\) 0 0
\(231\) −625.690 −0.178214
\(232\) − 1706.94i − 0.483043i
\(233\) 834.501i 0.234635i 0.993094 + 0.117318i \(0.0374295\pi\)
−0.993094 + 0.117318i \(0.962570\pi\)
\(234\) 725.525 0.202688
\(235\) 0 0
\(236\) 4125.00 1.13777
\(237\) − 341.226i − 0.0935232i
\(238\) 432.484i 0.117789i
\(239\) 4590.83 1.24249 0.621247 0.783615i \(-0.286626\pi\)
0.621247 + 0.783615i \(0.286626\pi\)
\(240\) 0 0
\(241\) 4922.60 1.31574 0.657869 0.753132i \(-0.271458\pi\)
0.657869 + 0.753132i \(0.271458\pi\)
\(242\) − 55.3065i − 0.0146911i
\(243\) − 3859.38i − 1.01884i
\(244\) 589.982 0.154794
\(245\) 0 0
\(246\) −500.982 −0.129843
\(247\) − 4653.84i − 1.19885i
\(248\) 1716.39i 0.439478i
\(249\) −1763.92 −0.448932
\(250\) 0 0
\(251\) 4824.17 1.21314 0.606572 0.795029i \(-0.292544\pi\)
0.606572 + 0.795029i \(0.292544\pi\)
\(252\) 3791.06i 0.947677i
\(253\) − 950.242i − 0.236131i
\(254\) −941.382 −0.232549
\(255\) 0 0
\(256\) 3067.72 0.748955
\(257\) − 1571.39i − 0.381404i −0.981648 0.190702i \(-0.938924\pi\)
0.981648 0.190702i \(-0.0610765\pi\)
\(258\) − 295.590i − 0.0713280i
\(259\) 5840.57 1.40122
\(260\) 0 0
\(261\) 4962.37 1.17687
\(262\) 465.842i 0.109847i
\(263\) − 749.271i − 0.175673i −0.996135 0.0878366i \(-0.972005\pi\)
0.996135 0.0878366i \(-0.0279953\pi\)
\(264\) 194.748 0.0454012
\(265\) 0 0
\(266\) −652.085 −0.150308
\(267\) 4039.90i 0.925984i
\(268\) 2995.37i 0.682729i
\(269\) −304.815 −0.0690888 −0.0345444 0.999403i \(-0.510998\pi\)
−0.0345444 + 0.999403i \(0.510998\pi\)
\(270\) 0 0
\(271\) −4172.68 −0.935322 −0.467661 0.883908i \(-0.654903\pi\)
−0.467661 + 0.883908i \(0.654903\pi\)
\(272\) 2408.57i 0.536917i
\(273\) 4302.82i 0.953915i
\(274\) 879.676 0.193953
\(275\) 0 0
\(276\) 1650.88 0.360042
\(277\) − 3788.49i − 0.821763i −0.911689 0.410881i \(-0.865221\pi\)
0.911689 0.410881i \(-0.134779\pi\)
\(278\) 372.139i 0.0802857i
\(279\) −4989.84 −1.07073
\(280\) 0 0
\(281\) 8894.59 1.88828 0.944140 0.329543i \(-0.106895\pi\)
0.944140 + 0.329543i \(0.106895\pi\)
\(282\) 491.886i 0.103870i
\(283\) 8365.30i 1.75712i 0.477631 + 0.878560i \(0.341496\pi\)
−0.477631 + 0.878560i \(0.658504\pi\)
\(284\) 55.7702 0.0116526
\(285\) 0 0
\(286\) −380.339 −0.0786360
\(287\) 10362.0i 2.13118i
\(288\) − 1777.78i − 0.363738i
\(289\) 3248.13 0.661129
\(290\) 0 0
\(291\) −2303.58 −0.464049
\(292\) − 4598.42i − 0.921583i
\(293\) − 7094.63i − 1.41458i −0.706923 0.707291i \(-0.749917\pi\)
0.706923 0.707291i \(-0.250083\pi\)
\(294\) 218.342 0.0433129
\(295\) 0 0
\(296\) −1817.90 −0.356970
\(297\) 1294.68i 0.252945i
\(298\) − 287.583i − 0.0559035i
\(299\) −6534.74 −1.26393
\(300\) 0 0
\(301\) −6113.78 −1.17074
\(302\) − 227.180i − 0.0432872i
\(303\) 1500.01i 0.284401i
\(304\) −3631.57 −0.685147
\(305\) 0 0
\(306\) 391.342 0.0731096
\(307\) 167.179i 0.0310795i 0.999879 + 0.0155397i \(0.00494665\pi\)
−0.999879 + 0.0155397i \(0.995053\pi\)
\(308\) − 1987.37i − 0.367666i
\(309\) −2549.09 −0.469296
\(310\) 0 0
\(311\) −5182.66 −0.944956 −0.472478 0.881342i \(-0.656640\pi\)
−0.472478 + 0.881342i \(0.656640\pi\)
\(312\) − 1339.27i − 0.243016i
\(313\) 7854.87i 1.41848i 0.704968 + 0.709239i \(0.250961\pi\)
−0.704968 + 0.709239i \(0.749039\pi\)
\(314\) −755.280 −0.135742
\(315\) 0 0
\(316\) 1083.83 0.192944
\(317\) − 6898.30i − 1.22223i −0.791542 0.611115i \(-0.790721\pi\)
0.791542 0.611115i \(-0.209279\pi\)
\(318\) − 320.781i − 0.0565676i
\(319\) −2601.40 −0.456585
\(320\) 0 0
\(321\) 667.807 0.116116
\(322\) 915.632i 0.158466i
\(323\) − 2510.24i − 0.432426i
\(324\) 2164.76 0.371186
\(325\) 0 0
\(326\) 725.100 0.123189
\(327\) 3238.77i 0.547719i
\(328\) − 3225.20i − 0.542932i
\(329\) 10173.8 1.70487
\(330\) 0 0
\(331\) −11335.3 −1.88232 −0.941158 0.337967i \(-0.890261\pi\)
−0.941158 + 0.337967i \(0.890261\pi\)
\(332\) − 5602.73i − 0.926174i
\(333\) − 5284.95i − 0.869710i
\(334\) 118.794 0.0194614
\(335\) 0 0
\(336\) 3357.65 0.545164
\(337\) − 5783.14i − 0.934801i −0.884046 0.467400i \(-0.845191\pi\)
0.884046 0.467400i \(-0.154809\pi\)
\(338\) 1611.36i 0.259309i
\(339\) 2217.72 0.355310
\(340\) 0 0
\(341\) 2615.80 0.415407
\(342\) 590.052i 0.0932934i
\(343\) 3437.91i 0.541194i
\(344\) 1902.94 0.298254
\(345\) 0 0
\(346\) −409.602 −0.0636426
\(347\) − 1737.90i − 0.268863i −0.990923 0.134432i \(-0.957079\pi\)
0.990923 0.134432i \(-0.0429208\pi\)
\(348\) − 4519.50i − 0.696180i
\(349\) −6935.84 −1.06380 −0.531901 0.846806i \(-0.678522\pi\)
−0.531901 + 0.846806i \(0.678522\pi\)
\(350\) 0 0
\(351\) 8903.39 1.35392
\(352\) 931.956i 0.141118i
\(353\) − 11417.5i − 1.72151i −0.509023 0.860753i \(-0.669993\pi\)
0.509023 0.860753i \(-0.330007\pi\)
\(354\) −593.602 −0.0891231
\(355\) 0 0
\(356\) −12831.9 −1.91036
\(357\) 2320.90i 0.344076i
\(358\) 1401.97i 0.206973i
\(359\) −8223.54 −1.20897 −0.604487 0.796615i \(-0.706622\pi\)
−0.604487 + 0.796615i \(0.706622\pi\)
\(360\) 0 0
\(361\) −3074.15 −0.448192
\(362\) − 462.108i − 0.0670936i
\(363\) − 296.799i − 0.0429144i
\(364\) −13667.0 −1.96798
\(365\) 0 0
\(366\) −84.9004 −0.0121252
\(367\) − 2235.51i − 0.317963i −0.987282 0.158982i \(-0.949179\pi\)
0.987282 0.158982i \(-0.0508210\pi\)
\(368\) 5099.30i 0.722336i
\(369\) 9376.23 1.32278
\(370\) 0 0
\(371\) −6634.81 −0.928470
\(372\) 4544.51i 0.633393i
\(373\) 5243.63i 0.727895i 0.931420 + 0.363947i \(0.118571\pi\)
−0.931420 + 0.363947i \(0.881429\pi\)
\(374\) −205.151 −0.0283640
\(375\) 0 0
\(376\) −3166.64 −0.434327
\(377\) 17889.7i 2.44394i
\(378\) − 1247.52i − 0.169750i
\(379\) 5262.50 0.713237 0.356618 0.934250i \(-0.383930\pi\)
0.356618 + 0.934250i \(0.383930\pi\)
\(380\) 0 0
\(381\) −5051.87 −0.679305
\(382\) − 2129.57i − 0.285231i
\(383\) − 12845.0i − 1.71370i −0.515564 0.856851i \(-0.672418\pi\)
0.515564 0.856851i \(-0.327582\pi\)
\(384\) −2148.57 −0.285531
\(385\) 0 0
\(386\) 2198.02 0.289835
\(387\) 5532.17i 0.726657i
\(388\) − 7316.83i − 0.957360i
\(389\) 12471.0 1.62546 0.812731 0.582640i \(-0.197980\pi\)
0.812731 + 0.582640i \(0.197980\pi\)
\(390\) 0 0
\(391\) −3524.78 −0.455897
\(392\) 1405.63i 0.181110i
\(393\) 2499.92i 0.320876i
\(394\) −1216.46 −0.155545
\(395\) 0 0
\(396\) −1798.31 −0.228203
\(397\) 4136.07i 0.522880i 0.965220 + 0.261440i \(0.0841974\pi\)
−0.965220 + 0.261440i \(0.915803\pi\)
\(398\) 340.751i 0.0429153i
\(399\) −3499.38 −0.439068
\(400\) 0 0
\(401\) 3334.81 0.415292 0.207646 0.978204i \(-0.433420\pi\)
0.207646 + 0.978204i \(0.433420\pi\)
\(402\) − 431.044i − 0.0534789i
\(403\) − 17988.7i − 2.22352i
\(404\) −4764.47 −0.586736
\(405\) 0 0
\(406\) 2506.65 0.306412
\(407\) 2770.51i 0.337417i
\(408\) − 722.389i − 0.0876559i
\(409\) −11146.6 −1.34758 −0.673792 0.738921i \(-0.735336\pi\)
−0.673792 + 0.738921i \(0.735336\pi\)
\(410\) 0 0
\(411\) 4720.73 0.566561
\(412\) − 8096.63i − 0.968186i
\(413\) 12277.7i 1.46282i
\(414\) 828.528 0.0983573
\(415\) 0 0
\(416\) 6408.99 0.755353
\(417\) 1997.06i 0.234524i
\(418\) − 309.320i − 0.0361946i
\(419\) −8914.70 −1.03941 −0.519703 0.854347i \(-0.673958\pi\)
−0.519703 + 0.854347i \(0.673958\pi\)
\(420\) 0 0
\(421\) 619.364 0.0717006 0.0358503 0.999357i \(-0.488586\pi\)
0.0358503 + 0.999357i \(0.488586\pi\)
\(422\) 1439.75i 0.166080i
\(423\) − 9205.98i − 1.05818i
\(424\) 2065.11 0.236534
\(425\) 0 0
\(426\) −8.02551 −0.000912764 0
\(427\) 1756.02i 0.199016i
\(428\) 2121.15i 0.239555i
\(429\) −2041.07 −0.229706
\(430\) 0 0
\(431\) 9544.05 1.06664 0.533319 0.845914i \(-0.320945\pi\)
0.533319 + 0.845914i \(0.320945\pi\)
\(432\) − 6947.65i − 0.773770i
\(433\) − 2043.50i − 0.226800i −0.993549 0.113400i \(-0.963826\pi\)
0.993549 0.113400i \(-0.0361741\pi\)
\(434\) −2520.53 −0.278777
\(435\) 0 0
\(436\) −10287.3 −1.12998
\(437\) − 5314.54i − 0.581760i
\(438\) 661.728i 0.0721886i
\(439\) 3972.17 0.431848 0.215924 0.976410i \(-0.430724\pi\)
0.215924 + 0.976410i \(0.430724\pi\)
\(440\) 0 0
\(441\) −4086.43 −0.441251
\(442\) 1410.81i 0.151822i
\(443\) − 11124.2i − 1.19306i −0.802589 0.596532i \(-0.796545\pi\)
0.802589 0.596532i \(-0.203455\pi\)
\(444\) −4813.29 −0.514479
\(445\) 0 0
\(446\) −915.628 −0.0972113
\(447\) − 1543.30i − 0.163301i
\(448\) 10052.8i 1.06016i
\(449\) 7023.26 0.738192 0.369096 0.929391i \(-0.379667\pi\)
0.369096 + 0.929391i \(0.379667\pi\)
\(450\) 0 0
\(451\) −4915.26 −0.513194
\(452\) 7044.11i 0.733025i
\(453\) − 1219.15i − 0.126447i
\(454\) −437.440 −0.0452204
\(455\) 0 0
\(456\) 1089.19 0.111856
\(457\) 1723.31i 0.176396i 0.996103 + 0.0881979i \(0.0281108\pi\)
−0.996103 + 0.0881979i \(0.971889\pi\)
\(458\) − 1428.52i − 0.145744i
\(459\) 4802.41 0.488360
\(460\) 0 0
\(461\) 7282.40 0.735738 0.367869 0.929878i \(-0.380088\pi\)
0.367869 + 0.929878i \(0.380088\pi\)
\(462\) 285.989i 0.0287996i
\(463\) − 15632.3i − 1.56910i −0.620065 0.784550i \(-0.712894\pi\)
0.620065 0.784550i \(-0.287106\pi\)
\(464\) 13960.0 1.39671
\(465\) 0 0
\(466\) 381.433 0.0379174
\(467\) 7075.86i 0.701139i 0.936537 + 0.350569i \(0.114012\pi\)
−0.936537 + 0.350569i \(0.885988\pi\)
\(468\) 12366.9i 1.22149i
\(469\) −8915.42 −0.877773
\(470\) 0 0
\(471\) −4053.17 −0.396518
\(472\) − 3821.46i − 0.372663i
\(473\) − 2900.11i − 0.281918i
\(474\) −155.967 −0.0151135
\(475\) 0 0
\(476\) −7371.86 −0.709850
\(477\) 6003.64i 0.576284i
\(478\) − 2098.37i − 0.200789i
\(479\) 4240.40 0.404486 0.202243 0.979335i \(-0.435177\pi\)
0.202243 + 0.979335i \(0.435177\pi\)
\(480\) 0 0
\(481\) 19052.6 1.80608
\(482\) − 2250.02i − 0.212626i
\(483\) 4913.69i 0.462900i
\(484\) 942.721 0.0885350
\(485\) 0 0
\(486\) −1764.04 −0.164647
\(487\) − 19796.8i − 1.84205i −0.389502 0.921026i \(-0.627353\pi\)
0.389502 0.921026i \(-0.372647\pi\)
\(488\) − 546.568i − 0.0507007i
\(489\) 3891.21 0.359850
\(490\) 0 0
\(491\) −7113.02 −0.653780 −0.326890 0.945062i \(-0.606001\pi\)
−0.326890 + 0.945062i \(0.606001\pi\)
\(492\) − 8539.43i − 0.782494i
\(493\) 9649.52i 0.881526i
\(494\) −2127.17 −0.193737
\(495\) 0 0
\(496\) −14037.2 −1.27075
\(497\) 165.994i 0.0149816i
\(498\) 806.251i 0.0725482i
\(499\) −7116.10 −0.638398 −0.319199 0.947688i \(-0.603414\pi\)
−0.319199 + 0.947688i \(0.603414\pi\)
\(500\) 0 0
\(501\) 637.499 0.0568490
\(502\) − 2205.03i − 0.196046i
\(503\) 759.231i 0.0673010i 0.999434 + 0.0336505i \(0.0107133\pi\)
−0.999434 + 0.0336505i \(0.989287\pi\)
\(504\) 3512.09 0.310399
\(505\) 0 0
\(506\) −434.335 −0.0381592
\(507\) 8647.28i 0.757473i
\(508\) − 16046.2i − 1.40145i
\(509\) −4259.50 −0.370922 −0.185461 0.982652i \(-0.559378\pi\)
−0.185461 + 0.982652i \(0.559378\pi\)
\(510\) 0 0
\(511\) 13686.7 1.18486
\(512\) − 8409.67i − 0.725895i
\(513\) 7240.90i 0.623185i
\(514\) −718.251 −0.0616356
\(515\) 0 0
\(516\) 5038.45 0.429855
\(517\) 4826.01i 0.410537i
\(518\) − 2669.60i − 0.226439i
\(519\) −2198.11 −0.185908
\(520\) 0 0
\(521\) −6037.10 −0.507659 −0.253829 0.967249i \(-0.581690\pi\)
−0.253829 + 0.967249i \(0.581690\pi\)
\(522\) − 2268.20i − 0.190184i
\(523\) 20359.6i 1.70222i 0.524987 + 0.851110i \(0.324070\pi\)
−0.524987 + 0.851110i \(0.675930\pi\)
\(524\) −7940.45 −0.661985
\(525\) 0 0
\(526\) −342.476 −0.0283891
\(527\) − 9702.93i − 0.802023i
\(528\) 1592.72i 0.131277i
\(529\) 4704.52 0.386663
\(530\) 0 0
\(531\) 11109.7 0.907945
\(532\) − 11115.0i − 0.905823i
\(533\) 33801.8i 2.74694i
\(534\) 1846.55 0.149641
\(535\) 0 0
\(536\) 2774.95 0.223619
\(537\) 7523.60i 0.604595i
\(538\) 139.324i 0.0111649i
\(539\) 2142.21 0.171190
\(540\) 0 0
\(541\) 9521.19 0.756650 0.378325 0.925673i \(-0.376500\pi\)
0.378325 + 0.925673i \(0.376500\pi\)
\(542\) 1907.24i 0.151150i
\(543\) − 2479.88i − 0.195989i
\(544\) 3456.95 0.272455
\(545\) 0 0
\(546\) 1966.73 0.154154
\(547\) − 408.097i − 0.0318994i −0.999873 0.0159497i \(-0.994923\pi\)
0.999873 0.0159497i \(-0.00507716\pi\)
\(548\) 14994.4i 1.16885i
\(549\) 1588.97 0.123526
\(550\) 0 0
\(551\) −14549.2 −1.12490
\(552\) − 1529.40i − 0.117927i
\(553\) 3225.92i 0.248065i
\(554\) −1731.64 −0.132798
\(555\) 0 0
\(556\) −6343.25 −0.483838
\(557\) 21981.3i 1.67213i 0.548627 + 0.836067i \(0.315151\pi\)
−0.548627 + 0.836067i \(0.684849\pi\)
\(558\) 2280.75i 0.173032i
\(559\) −19943.8 −1.50900
\(560\) 0 0
\(561\) −1100.93 −0.0828546
\(562\) − 4065.53i − 0.305149i
\(563\) 6384.70i 0.477945i 0.971026 + 0.238973i \(0.0768106\pi\)
−0.971026 + 0.238973i \(0.923189\pi\)
\(564\) −8384.38 −0.625968
\(565\) 0 0
\(566\) 3823.60 0.283954
\(567\) 6443.18i 0.477228i
\(568\) − 51.6663i − 0.00381667i
\(569\) 25115.1 1.85040 0.925202 0.379475i \(-0.123896\pi\)
0.925202 + 0.379475i \(0.123896\pi\)
\(570\) 0 0
\(571\) −11128.6 −0.815616 −0.407808 0.913068i \(-0.633707\pi\)
−0.407808 + 0.913068i \(0.633707\pi\)
\(572\) − 6483.02i − 0.473896i
\(573\) − 11428.2i − 0.833196i
\(574\) 4736.23 0.344402
\(575\) 0 0
\(576\) 9096.51 0.658023
\(577\) − 1957.55i − 0.141237i −0.997503 0.0706185i \(-0.977503\pi\)
0.997503 0.0706185i \(-0.0224973\pi\)
\(578\) − 1484.65i − 0.106840i
\(579\) 11795.6 0.846643
\(580\) 0 0
\(581\) 16675.9 1.19077
\(582\) 1052.92i 0.0749911i
\(583\) − 3147.26i − 0.223578i
\(584\) −4260.04 −0.301852
\(585\) 0 0
\(586\) −3242.80 −0.228599
\(587\) 26875.7i 1.88974i 0.327447 + 0.944870i \(0.393812\pi\)
−0.327447 + 0.944870i \(0.606188\pi\)
\(588\) 3721.73i 0.261023i
\(589\) 14629.7 1.02344
\(590\) 0 0
\(591\) −6528.09 −0.454365
\(592\) − 14867.4i − 1.03217i
\(593\) 18231.3i 1.26251i 0.775575 + 0.631255i \(0.217460\pi\)
−0.775575 + 0.631255i \(0.782540\pi\)
\(594\) 591.768 0.0408764
\(595\) 0 0
\(596\) 4901.96 0.336900
\(597\) 1828.62i 0.125361i
\(598\) 2986.89i 0.204253i
\(599\) 24200.0 1.65073 0.825364 0.564601i \(-0.190970\pi\)
0.825364 + 0.564601i \(0.190970\pi\)
\(600\) 0 0
\(601\) −92.5601 −0.00628221 −0.00314110 0.999995i \(-0.501000\pi\)
−0.00314110 + 0.999995i \(0.501000\pi\)
\(602\) 2794.48i 0.189193i
\(603\) 8067.29i 0.544818i
\(604\) 3872.36 0.260868
\(605\) 0 0
\(606\) 685.624 0.0459597
\(607\) − 6711.75i − 0.448800i −0.974497 0.224400i \(-0.927958\pi\)
0.974497 0.224400i \(-0.0720422\pi\)
\(608\) 5212.27i 0.347674i
\(609\) 13451.8 0.895067
\(610\) 0 0
\(611\) 33188.1 2.19746
\(612\) 6670.57i 0.440591i
\(613\) − 1130.01i − 0.0744549i −0.999307 0.0372274i \(-0.988147\pi\)
0.999307 0.0372274i \(-0.0118526\pi\)
\(614\) 76.4139 0.00502250
\(615\) 0 0
\(616\) −1841.13 −0.120424
\(617\) − 19798.5i − 1.29183i −0.763411 0.645913i \(-0.776477\pi\)
0.763411 0.645913i \(-0.223523\pi\)
\(618\) 1165.13i 0.0758390i
\(619\) −7620.34 −0.494810 −0.247405 0.968912i \(-0.579578\pi\)
−0.247405 + 0.968912i \(0.579578\pi\)
\(620\) 0 0
\(621\) 10167.4 0.657010
\(622\) 2368.88i 0.152707i
\(623\) − 38192.8i − 2.45612i
\(624\) 10953.0 0.702680
\(625\) 0 0
\(626\) 3590.30 0.229229
\(627\) − 1659.95i − 0.105729i
\(628\) − 12874.0i − 0.818041i
\(629\) 10276.8 0.651450
\(630\) 0 0
\(631\) 7542.23 0.475834 0.237917 0.971285i \(-0.423535\pi\)
0.237917 + 0.971285i \(0.423535\pi\)
\(632\) − 1004.08i − 0.0631963i
\(633\) 7726.32i 0.485140i
\(634\) −3153.06 −0.197515
\(635\) 0 0
\(636\) 5467.83 0.340902
\(637\) − 14731.8i − 0.916320i
\(638\) 1189.05i 0.0737849i
\(639\) 150.203 0.00929881
\(640\) 0 0
\(641\) −27329.5 −1.68401 −0.842005 0.539470i \(-0.818625\pi\)
−0.842005 + 0.539470i \(0.818625\pi\)
\(642\) − 305.240i − 0.0187646i
\(643\) − 8792.26i − 0.539243i −0.962966 0.269621i \(-0.913101\pi\)
0.962966 0.269621i \(-0.0868985\pi\)
\(644\) −15607.3 −0.954990
\(645\) 0 0
\(646\) −1147.38 −0.0698807
\(647\) − 8420.01i − 0.511630i −0.966726 0.255815i \(-0.917656\pi\)
0.966726 0.255815i \(-0.0823438\pi\)
\(648\) − 2005.46i − 0.121577i
\(649\) −5823.97 −0.352251
\(650\) 0 0
\(651\) −13526.3 −0.814343
\(652\) 12359.6i 0.742392i
\(653\) 23596.6i 1.41410i 0.707164 + 0.707050i \(0.249974\pi\)
−0.707164 + 0.707050i \(0.750026\pi\)
\(654\) 1480.37 0.0885124
\(655\) 0 0
\(656\) 26376.8 1.56988
\(657\) − 12384.7i − 0.735424i
\(658\) − 4650.24i − 0.275509i
\(659\) 804.250 0.0475404 0.0237702 0.999717i \(-0.492433\pi\)
0.0237702 + 0.999717i \(0.492433\pi\)
\(660\) 0 0
\(661\) 17912.6 1.05404 0.527019 0.849854i \(-0.323310\pi\)
0.527019 + 0.849854i \(0.323310\pi\)
\(662\) 5181.14i 0.304186i
\(663\) 7571.04i 0.443491i
\(664\) −5190.45 −0.303356
\(665\) 0 0
\(666\) −2415.64 −0.140547
\(667\) 20429.4i 1.18595i
\(668\) 2024.88i 0.117283i
\(669\) −4913.67 −0.283966
\(670\) 0 0
\(671\) −832.978 −0.0479237
\(672\) − 4819.14i − 0.276640i
\(673\) 942.349i 0.0539746i 0.999636 + 0.0269873i \(0.00859137\pi\)
−0.999636 + 0.0269873i \(0.991409\pi\)
\(674\) −2643.35 −0.151065
\(675\) 0 0
\(676\) −27466.2 −1.56271
\(677\) − 13681.1i − 0.776673i −0.921518 0.388336i \(-0.873050\pi\)
0.921518 0.388336i \(-0.126950\pi\)
\(678\) − 1013.67i − 0.0574186i
\(679\) 21777.8 1.23086
\(680\) 0 0
\(681\) −2347.50 −0.132094
\(682\) − 1195.63i − 0.0671304i
\(683\) − 7909.32i − 0.443107i −0.975148 0.221553i \(-0.928887\pi\)
0.975148 0.221553i \(-0.0711127\pi\)
\(684\) −10057.7 −0.562228
\(685\) 0 0
\(686\) 1571.39 0.0874579
\(687\) − 7666.10i − 0.425735i
\(688\) 15562.9i 0.862399i
\(689\) −21643.5 −1.19674
\(690\) 0 0
\(691\) −11314.6 −0.622903 −0.311452 0.950262i \(-0.600815\pi\)
−0.311452 + 0.950262i \(0.600815\pi\)
\(692\) − 6981.82i − 0.383539i
\(693\) − 5352.49i − 0.293397i
\(694\) −794.358 −0.0434487
\(695\) 0 0
\(696\) −4186.93 −0.228024
\(697\) 18232.4i 0.990820i
\(698\) 3170.23i 0.171912i
\(699\) 2046.94 0.110762
\(700\) 0 0
\(701\) −5833.23 −0.314291 −0.157146 0.987575i \(-0.550229\pi\)
−0.157146 + 0.987575i \(0.550229\pi\)
\(702\) − 4069.55i − 0.218797i
\(703\) 15495.0i 0.831300i
\(704\) −4768.62 −0.255290
\(705\) 0 0
\(706\) −5218.69 −0.278198
\(707\) − 14181.0i − 0.754357i
\(708\) − 10118.2i − 0.537096i
\(709\) −31717.5 −1.68008 −0.840038 0.542527i \(-0.817468\pi\)
−0.840038 + 0.542527i \(0.817468\pi\)
\(710\) 0 0
\(711\) 2919.03 0.153969
\(712\) 11887.6i 0.625714i
\(713\) − 20542.5i − 1.07899i
\(714\) 1060.84 0.0556033
\(715\) 0 0
\(716\) −23897.1 −1.24731
\(717\) − 11260.8i − 0.586530i
\(718\) 3758.80i 0.195372i
\(719\) −20176.6 −1.04654 −0.523269 0.852167i \(-0.675288\pi\)
−0.523269 + 0.852167i \(0.675288\pi\)
\(720\) 0 0
\(721\) 24098.8 1.24478
\(722\) 1405.13i 0.0724285i
\(723\) − 12074.6i − 0.621105i
\(724\) 7876.81 0.404336
\(725\) 0 0
\(726\) −135.661 −0.00693504
\(727\) 23555.4i 1.20168i 0.799370 + 0.600839i \(0.205167\pi\)
−0.799370 + 0.600839i \(0.794833\pi\)
\(728\) 12661.3i 0.644587i
\(729\) −1964.65 −0.0998144
\(730\) 0 0
\(731\) −10757.5 −0.544297
\(732\) − 1447.16i − 0.0730718i
\(733\) 32919.2i 1.65880i 0.558656 + 0.829399i \(0.311317\pi\)
−0.558656 + 0.829399i \(0.688683\pi\)
\(734\) −1021.80 −0.0513834
\(735\) 0 0
\(736\) 7318.87 0.366545
\(737\) − 4229.08i − 0.211370i
\(738\) − 4285.67i − 0.213764i
\(739\) −7979.80 −0.397215 −0.198607 0.980079i \(-0.563642\pi\)
−0.198607 + 0.980079i \(0.563642\pi\)
\(740\) 0 0
\(741\) −11415.4 −0.565929
\(742\) 3032.63i 0.150042i
\(743\) − 36491.6i − 1.80181i −0.434013 0.900907i \(-0.642903\pi\)
0.434013 0.900907i \(-0.357097\pi\)
\(744\) 4210.10 0.207459
\(745\) 0 0
\(746\) 2396.75 0.117629
\(747\) − 15089.6i − 0.739087i
\(748\) − 3496.88i − 0.170934i
\(749\) −6313.38 −0.307992
\(750\) 0 0
\(751\) −8064.10 −0.391828 −0.195914 0.980621i \(-0.562767\pi\)
−0.195914 + 0.980621i \(0.562767\pi\)
\(752\) − 25897.9i − 1.25585i
\(753\) − 11833.2i − 0.572675i
\(754\) 8176.98 0.394944
\(755\) 0 0
\(756\) 21264.5 1.02299
\(757\) 164.260i 0.00788659i 0.999992 + 0.00394329i \(0.00125519\pi\)
−0.999992 + 0.00394329i \(0.998745\pi\)
\(758\) − 2405.38i − 0.115260i
\(759\) −2330.84 −0.111468
\(760\) 0 0
\(761\) 6387.72 0.304277 0.152138 0.988359i \(-0.451384\pi\)
0.152138 + 0.988359i \(0.451384\pi\)
\(762\) 2309.10i 0.109777i
\(763\) − 30619.0i − 1.45279i
\(764\) 36299.4 1.71893
\(765\) 0 0
\(766\) −5871.17 −0.276937
\(767\) 40051.0i 1.88547i
\(768\) − 7524.77i − 0.353550i
\(769\) 4920.10 0.230719 0.115360 0.993324i \(-0.463198\pi\)
0.115360 + 0.993324i \(0.463198\pi\)
\(770\) 0 0
\(771\) −3854.46 −0.180045
\(772\) 37466.1i 1.74668i
\(773\) − 25930.2i − 1.20653i −0.797542 0.603264i \(-0.793867\pi\)
0.797542 0.603264i \(-0.206133\pi\)
\(774\) 2528.64 0.117429
\(775\) 0 0
\(776\) −6778.41 −0.313571
\(777\) − 14326.3i − 0.661457i
\(778\) − 5700.22i − 0.262677i
\(779\) −27490.2 −1.26436
\(780\) 0 0
\(781\) −78.7403 −0.00360762
\(782\) 1611.10i 0.0736738i
\(783\) − 27834.5i − 1.27040i
\(784\) −11495.8 −0.523678
\(785\) 0 0
\(786\) 1142.66 0.0518540
\(787\) − 876.332i − 0.0396923i −0.999803 0.0198462i \(-0.993682\pi\)
0.999803 0.0198462i \(-0.00631764\pi\)
\(788\) − 20735.1i − 0.937382i
\(789\) −1837.88 −0.0829280
\(790\) 0 0
\(791\) −20966.1 −0.942438
\(792\) 1665.98i 0.0747450i
\(793\) 5728.33i 0.256518i
\(794\) 1890.51 0.0844983
\(795\) 0 0
\(796\) −5808.22 −0.258627
\(797\) − 20900.9i − 0.928917i −0.885595 0.464458i \(-0.846249\pi\)
0.885595 0.464458i \(-0.153751\pi\)
\(798\) 1599.49i 0.0709541i
\(799\) 17901.4 0.792622
\(800\) 0 0
\(801\) −34559.5 −1.52447
\(802\) − 1524.27i − 0.0671120i
\(803\) 6492.38i 0.285319i
\(804\) 7347.31 0.322288
\(805\) 0 0
\(806\) −8222.24 −0.359325
\(807\) 747.676i 0.0326139i
\(808\) 4413.87i 0.192178i
\(809\) −7164.89 −0.311377 −0.155689 0.987806i \(-0.549760\pi\)
−0.155689 + 0.987806i \(0.549760\pi\)
\(810\) 0 0
\(811\) −4229.19 −0.183116 −0.0915580 0.995800i \(-0.529185\pi\)
−0.0915580 + 0.995800i \(0.529185\pi\)
\(812\) 42726.9i 1.84658i
\(813\) 10235.1i 0.441527i
\(814\) 1266.34 0.0545272
\(815\) 0 0
\(816\) 5907.96 0.253456
\(817\) − 16219.8i − 0.694565i
\(818\) 5094.85i 0.217772i
\(819\) −36808.7 −1.57045
\(820\) 0 0
\(821\) −31556.0 −1.34143 −0.670713 0.741717i \(-0.734012\pi\)
−0.670713 + 0.741717i \(0.734012\pi\)
\(822\) − 2157.75i − 0.0915572i
\(823\) 36827.7i 1.55982i 0.625891 + 0.779910i \(0.284735\pi\)
−0.625891 + 0.779910i \(0.715265\pi\)
\(824\) −7500.83 −0.317116
\(825\) 0 0
\(826\) 5611.85 0.236394
\(827\) 1188.45i 0.0499714i 0.999688 + 0.0249857i \(0.00795402\pi\)
−0.999688 + 0.0249857i \(0.992046\pi\)
\(828\) 14122.6i 0.592745i
\(829\) 37008.8 1.55051 0.775253 0.631651i \(-0.217622\pi\)
0.775253 + 0.631651i \(0.217622\pi\)
\(830\) 0 0
\(831\) −9292.74 −0.387920
\(832\) 32793.5i 1.36648i
\(833\) − 7946.21i − 0.330516i
\(834\) 912.815 0.0378995
\(835\) 0 0
\(836\) 5272.48 0.218125
\(837\) 27988.5i 1.15583i
\(838\) 4074.72i 0.167970i
\(839\) 11427.0 0.470206 0.235103 0.971970i \(-0.424457\pi\)
0.235103 + 0.971970i \(0.424457\pi\)
\(840\) 0 0
\(841\) 31539.1 1.29317
\(842\) − 283.098i − 0.0115869i
\(843\) − 21817.4i − 0.891379i
\(844\) −24541.0 −1.00087
\(845\) 0 0
\(846\) −4207.86 −0.171004
\(847\) 2805.91i 0.113828i
\(848\) 16889.2i 0.683936i
\(849\) 20519.1 0.829464
\(850\) 0 0
\(851\) 21757.4 0.876423
\(852\) − 136.798i − 0.00550073i
\(853\) 5084.37i 0.204086i 0.994780 + 0.102043i \(0.0325379\pi\)
−0.994780 + 0.102043i \(0.967462\pi\)
\(854\) 802.640 0.0321613
\(855\) 0 0
\(856\) 1965.06 0.0784631
\(857\) 36268.5i 1.44563i 0.691040 + 0.722816i \(0.257153\pi\)
−0.691040 + 0.722816i \(0.742847\pi\)
\(858\) 932.929i 0.0371208i
\(859\) −36158.6 −1.43622 −0.718111 0.695928i \(-0.754993\pi\)
−0.718111 + 0.695928i \(0.754993\pi\)
\(860\) 0 0
\(861\) 25416.7 1.00604
\(862\) − 4362.38i − 0.172370i
\(863\) − 5105.14i − 0.201368i −0.994918 0.100684i \(-0.967897\pi\)
0.994918 0.100684i \(-0.0321032\pi\)
\(864\) −9971.74 −0.392645
\(865\) 0 0
\(866\) −934.039 −0.0366512
\(867\) − 7967.29i − 0.312091i
\(868\) − 42963.4i − 1.68004i
\(869\) −1530.23 −0.0597348
\(870\) 0 0
\(871\) −29083.0 −1.13139
\(872\) 9530.26i 0.370109i
\(873\) − 19706.1i − 0.763974i
\(874\) −2429.16 −0.0940134
\(875\) 0 0
\(876\) −11279.4 −0.435041
\(877\) − 33922.6i − 1.30614i −0.757297 0.653071i \(-0.773480\pi\)
0.757297 0.653071i \(-0.226520\pi\)
\(878\) − 1815.59i − 0.0697874i
\(879\) −17402.3 −0.667765
\(880\) 0 0
\(881\) 12610.2 0.482235 0.241117 0.970496i \(-0.422486\pi\)
0.241117 + 0.970496i \(0.422486\pi\)
\(882\) 1867.82i 0.0713070i
\(883\) − 40762.8i − 1.55354i −0.629783 0.776771i \(-0.716856\pi\)
0.629783 0.776771i \(-0.283144\pi\)
\(884\) −24047.8 −0.914949
\(885\) 0 0
\(886\) −5084.64 −0.192801
\(887\) − 29954.3i − 1.13390i −0.823753 0.566949i \(-0.808123\pi\)
0.823753 0.566949i \(-0.191877\pi\)
\(888\) 4459.10i 0.168511i
\(889\) 47759.9 1.80182
\(890\) 0 0
\(891\) −3056.36 −0.114918
\(892\) − 15607.2i − 0.585839i
\(893\) 26991.1i 1.01145i
\(894\) −705.409 −0.0263897
\(895\) 0 0
\(896\) 20312.4 0.757353
\(897\) 16029.0i 0.596647i
\(898\) − 3210.18i − 0.119293i
\(899\) −56237.6 −2.08635
\(900\) 0 0
\(901\) −11674.3 −0.431662
\(902\) 2246.66i 0.0829330i
\(903\) 14996.4i 0.552657i
\(904\) 6525.76 0.240093
\(905\) 0 0
\(906\) −557.246 −0.0204341
\(907\) 29053.0i 1.06360i 0.846869 + 0.531802i \(0.178485\pi\)
−0.846869 + 0.531802i \(0.821515\pi\)
\(908\) − 7456.33i − 0.272519i
\(909\) −12831.9 −0.468216
\(910\) 0 0
\(911\) −3562.14 −0.129549 −0.0647744 0.997900i \(-0.520633\pi\)
−0.0647744 + 0.997900i \(0.520633\pi\)
\(912\) 8907.83i 0.323429i
\(913\) 7910.33i 0.286740i
\(914\) 787.687 0.0285059
\(915\) 0 0
\(916\) 24349.7 0.878317
\(917\) − 23634.0i − 0.851104i
\(918\) − 2195.08i − 0.0789198i
\(919\) −2936.50 −0.105404 −0.0527020 0.998610i \(-0.516783\pi\)
−0.0527020 + 0.998610i \(0.516783\pi\)
\(920\) 0 0
\(921\) 410.071 0.0146713
\(922\) − 3328.63i − 0.118896i
\(923\) 541.491i 0.0193103i
\(924\) −4874.80 −0.173560
\(925\) 0 0
\(926\) −7145.18 −0.253569
\(927\) − 21806.3i − 0.772613i
\(928\) − 20036.3i − 0.708754i
\(929\) 16941.3 0.598306 0.299153 0.954205i \(-0.403296\pi\)
0.299153 + 0.954205i \(0.403296\pi\)
\(930\) 0 0
\(931\) 11981.0 0.421764
\(932\) 6501.66i 0.228508i
\(933\) 12712.5i 0.446075i
\(934\) 3234.22 0.113305
\(935\) 0 0
\(936\) 11456.8 0.400084
\(937\) − 19863.3i − 0.692537i −0.938135 0.346269i \(-0.887449\pi\)
0.938135 0.346269i \(-0.112551\pi\)
\(938\) 4075.05i 0.141850i
\(939\) 19267.1 0.669605
\(940\) 0 0
\(941\) −39408.8 −1.36524 −0.682620 0.730773i \(-0.739160\pi\)
−0.682620 + 0.730773i \(0.739160\pi\)
\(942\) 1852.62i 0.0640781i
\(943\) 38600.7i 1.33299i
\(944\) 31253.3 1.07755
\(945\) 0 0
\(946\) −1325.58 −0.0455584
\(947\) − 40190.4i − 1.37910i −0.724236 0.689552i \(-0.757807\pi\)
0.724236 0.689552i \(-0.242193\pi\)
\(948\) − 2658.52i − 0.0910809i
\(949\) 44647.6 1.52721
\(950\) 0 0
\(951\) −16920.8 −0.576964
\(952\) 6829.39i 0.232502i
\(953\) 43114.9i 1.46551i 0.680493 + 0.732754i \(0.261765\pi\)
−0.680493 + 0.732754i \(0.738235\pi\)
\(954\) 2744.13 0.0931286
\(955\) 0 0
\(956\) 35767.5 1.21005
\(957\) 6380.95i 0.215535i
\(958\) − 1938.20i − 0.0653657i
\(959\) −44629.3 −1.50277
\(960\) 0 0
\(961\) 26757.9 0.898188
\(962\) − 8708.52i − 0.291865i
\(963\) 5712.78i 0.191165i
\(964\) 38352.4 1.28138
\(965\) 0 0
\(966\) 2245.94 0.0748054
\(967\) 15536.2i 0.516659i 0.966057 + 0.258330i \(0.0831721\pi\)
−0.966057 + 0.258330i \(0.916828\pi\)
\(968\) − 873.350i − 0.0289985i
\(969\) −6157.34 −0.204130
\(970\) 0 0
\(971\) −18466.6 −0.610320 −0.305160 0.952301i \(-0.598710\pi\)
−0.305160 + 0.952301i \(0.598710\pi\)
\(972\) − 30068.7i − 0.992237i
\(973\) − 18880.0i − 0.622062i
\(974\) −9048.70 −0.297679
\(975\) 0 0
\(976\) 4470.03 0.146601
\(977\) − 13352.4i − 0.437236i −0.975810 0.218618i \(-0.929845\pi\)
0.975810 0.218618i \(-0.0701549\pi\)
\(978\) − 1778.59i − 0.0581524i
\(979\) 18117.0 0.591441
\(980\) 0 0
\(981\) −27706.2 −0.901723
\(982\) 3251.21i 0.105652i
\(983\) 9970.61i 0.323513i 0.986831 + 0.161756i \(0.0517159\pi\)
−0.986831 + 0.161756i \(0.948284\pi\)
\(984\) −7911.05 −0.256296
\(985\) 0 0
\(986\) 4410.59 0.142456
\(987\) − 24955.3i − 0.804797i
\(988\) − 36258.4i − 1.16755i
\(989\) −22775.2 −0.732265
\(990\) 0 0
\(991\) 36094.5 1.15699 0.578496 0.815685i \(-0.303640\pi\)
0.578496 + 0.815685i \(0.303640\pi\)
\(992\) 20147.2i 0.644833i
\(993\) 27804.3i 0.888563i
\(994\) 75.8724 0.00242105
\(995\) 0 0
\(996\) −13742.9 −0.437208
\(997\) − 51210.1i − 1.62672i −0.581760 0.813360i \(-0.697636\pi\)
0.581760 0.813360i \(-0.302364\pi\)
\(998\) 3252.62i 0.103166i
\(999\) −29643.9 −0.938829
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.b.f.199.5 10
5.2 odd 4 275.4.a.h.1.3 yes 5
5.3 odd 4 275.4.a.g.1.3 5
5.4 even 2 inner 275.4.b.f.199.6 10
15.2 even 4 2475.4.a.bh.1.3 5
15.8 even 4 2475.4.a.bl.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.4.a.g.1.3 5 5.3 odd 4
275.4.a.h.1.3 yes 5 5.2 odd 4
275.4.b.f.199.5 10 1.1 even 1 trivial
275.4.b.f.199.6 10 5.4 even 2 inner
2475.4.a.bh.1.3 5 15.2 even 4
2475.4.a.bl.1.3 5 15.8 even 4