Properties

Label 275.8.a.c.1.4
Level $275$
Weight $8$
Character 275.1
Self dual yes
Analytic conductor $85.906$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,8,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.9058820081\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 200x^{2} + 471x + 2765 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(5.54688\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.3206 q^{2} -23.7588 q^{3} +284.925 q^{4} -482.793 q^{6} +57.2967 q^{7} +3188.81 q^{8} -1622.52 q^{9} +1331.00 q^{11} -6769.50 q^{12} -15352.8 q^{13} +1164.30 q^{14} +28328.0 q^{16} +19940.6 q^{17} -32970.5 q^{18} +3263.67 q^{19} -1361.30 q^{21} +27046.7 q^{22} -49400.9 q^{23} -75762.5 q^{24} -311978. q^{26} +90509.7 q^{27} +16325.3 q^{28} -177002. q^{29} -283819. q^{31} +167474. q^{32} -31623.0 q^{33} +405204. q^{34} -462296. q^{36} +29849.2 q^{37} +66319.6 q^{38} +364766. q^{39} -22206.2 q^{41} -27662.5 q^{42} -230466. q^{43} +379236. q^{44} -1.00385e6 q^{46} +660596. q^{47} -673041. q^{48} -820260. q^{49} -473766. q^{51} -4.37441e6 q^{52} +1.29865e6 q^{53} +1.83921e6 q^{54} +182709. q^{56} -77540.9 q^{57} -3.59679e6 q^{58} -1.46020e6 q^{59} +653316. q^{61} -5.76737e6 q^{62} -92965.0 q^{63} -222831. q^{64} -642598. q^{66} +2.93609e6 q^{67} +5.68159e6 q^{68} +1.17371e6 q^{69} -5.63522e6 q^{71} -5.17390e6 q^{72} -1.04096e6 q^{73} +606553. q^{74} +929902. q^{76} +76261.9 q^{77} +7.41225e6 q^{78} +1.40438e6 q^{79} +1.39804e6 q^{81} -451243. q^{82} +643837. q^{83} -387870. q^{84} -4.68320e6 q^{86} +4.20537e6 q^{87} +4.24431e6 q^{88} +4.81454e6 q^{89} -879668. q^{91} -1.40756e7 q^{92} +6.74322e6 q^{93} +1.34237e7 q^{94} -3.97898e6 q^{96} -1.35697e7 q^{97} -1.66681e7 q^{98} -2.15957e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 21 q^{2} + 189 q^{4} + 411 q^{6} - 1262 q^{7} + 2367 q^{8} - 2706 q^{9} + 5324 q^{11} - 4353 q^{12} - 2696 q^{13} - 16259 q^{14} + 7633 q^{16} + 24824 q^{17} + 13470 q^{18} - 22730 q^{19} + 5544 q^{21}+ \cdots - 3601686 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 20.3206 1.79610 0.898051 0.439892i \(-0.144983\pi\)
0.898051 + 0.439892i \(0.144983\pi\)
\(3\) −23.7588 −0.508043 −0.254022 0.967199i \(-0.581753\pi\)
−0.254022 + 0.967199i \(0.581753\pi\)
\(4\) 284.925 2.22598
\(5\) 0 0
\(6\) −482.793 −0.912497
\(7\) 57.2967 0.0631374 0.0315687 0.999502i \(-0.489950\pi\)
0.0315687 + 0.999502i \(0.489950\pi\)
\(8\) 3188.81 2.20198
\(9\) −1622.52 −0.741892
\(10\) 0 0
\(11\) 1331.00 0.301511
\(12\) −6769.50 −1.13089
\(13\) −15352.8 −1.93815 −0.969074 0.246769i \(-0.920631\pi\)
−0.969074 + 0.246769i \(0.920631\pi\)
\(14\) 1164.30 0.113401
\(15\) 0 0
\(16\) 28328.0 1.72901
\(17\) 19940.6 0.984390 0.492195 0.870485i \(-0.336195\pi\)
0.492195 + 0.870485i \(0.336195\pi\)
\(18\) −32970.5 −1.33251
\(19\) 3263.67 0.109161 0.0545806 0.998509i \(-0.482618\pi\)
0.0545806 + 0.998509i \(0.482618\pi\)
\(20\) 0 0
\(21\) −1361.30 −0.0320765
\(22\) 27046.7 0.541545
\(23\) −49400.9 −0.846618 −0.423309 0.905985i \(-0.639132\pi\)
−0.423309 + 0.905985i \(0.639132\pi\)
\(24\) −75762.5 −1.11870
\(25\) 0 0
\(26\) −311978. −3.48111
\(27\) 90509.7 0.884957
\(28\) 16325.3 0.140543
\(29\) −177002. −1.34768 −0.673839 0.738879i \(-0.735356\pi\)
−0.673839 + 0.738879i \(0.735356\pi\)
\(30\) 0 0
\(31\) −283819. −1.71110 −0.855551 0.517718i \(-0.826782\pi\)
−0.855551 + 0.517718i \(0.826782\pi\)
\(32\) 167474. 0.903486
\(33\) −31623.0 −0.153181
\(34\) 405204. 1.76806
\(35\) 0 0
\(36\) −462296. −1.65144
\(37\) 29849.2 0.0968784 0.0484392 0.998826i \(-0.484575\pi\)
0.0484392 + 0.998826i \(0.484575\pi\)
\(38\) 66319.6 0.196065
\(39\) 364766. 0.984664
\(40\) 0 0
\(41\) −22206.2 −0.0503189 −0.0251595 0.999683i \(-0.508009\pi\)
−0.0251595 + 0.999683i \(0.508009\pi\)
\(42\) −27662.5 −0.0576127
\(43\) −230466. −0.442046 −0.221023 0.975269i \(-0.570940\pi\)
−0.221023 + 0.975269i \(0.570940\pi\)
\(44\) 379236. 0.671158
\(45\) 0 0
\(46\) −1.00385e6 −1.52061
\(47\) 660596. 0.928097 0.464048 0.885810i \(-0.346396\pi\)
0.464048 + 0.885810i \(0.346396\pi\)
\(48\) −673041. −0.878410
\(49\) −820260. −0.996014
\(50\) 0 0
\(51\) −473766. −0.500113
\(52\) −4.37441e6 −4.31428
\(53\) 1.29865e6 1.19819 0.599094 0.800678i \(-0.295527\pi\)
0.599094 + 0.800678i \(0.295527\pi\)
\(54\) 1.83921e6 1.58947
\(55\) 0 0
\(56\) 182709. 0.139028
\(57\) −77540.9 −0.0554586
\(58\) −3.59679e6 −2.42056
\(59\) −1.46020e6 −0.925618 −0.462809 0.886458i \(-0.653158\pi\)
−0.462809 + 0.886458i \(0.653158\pi\)
\(60\) 0 0
\(61\) 653316. 0.368526 0.184263 0.982877i \(-0.441010\pi\)
0.184263 + 0.982877i \(0.441010\pi\)
\(62\) −5.76737e6 −3.07331
\(63\) −92965.0 −0.0468411
\(64\) −222831. −0.106254
\(65\) 0 0
\(66\) −642598. −0.275128
\(67\) 2.93609e6 1.19263 0.596317 0.802749i \(-0.296630\pi\)
0.596317 + 0.802749i \(0.296630\pi\)
\(68\) 5.68159e6 2.19123
\(69\) 1.17371e6 0.430119
\(70\) 0 0
\(71\) −5.63522e6 −1.86856 −0.934279 0.356543i \(-0.883955\pi\)
−0.934279 + 0.356543i \(0.883955\pi\)
\(72\) −5.17390e6 −1.63363
\(73\) −1.04096e6 −0.313186 −0.156593 0.987663i \(-0.550051\pi\)
−0.156593 + 0.987663i \(0.550051\pi\)
\(74\) 606553. 0.174003
\(75\) 0 0
\(76\) 929902. 0.242991
\(77\) 76261.9 0.0190366
\(78\) 7.41225e6 1.76856
\(79\) 1.40438e6 0.320472 0.160236 0.987079i \(-0.448774\pi\)
0.160236 + 0.987079i \(0.448774\pi\)
\(80\) 0 0
\(81\) 1.39804e6 0.292295
\(82\) −451243. −0.0903778
\(83\) 643837. 0.123596 0.0617978 0.998089i \(-0.480317\pi\)
0.0617978 + 0.998089i \(0.480317\pi\)
\(84\) −387870. −0.0714017
\(85\) 0 0
\(86\) −4.68320e6 −0.793959
\(87\) 4.20537e6 0.684679
\(88\) 4.24431e6 0.663923
\(89\) 4.81454e6 0.723919 0.361960 0.932194i \(-0.382108\pi\)
0.361960 + 0.932194i \(0.382108\pi\)
\(90\) 0 0
\(91\) −879668. −0.122370
\(92\) −1.40756e7 −1.88455
\(93\) 6.74322e6 0.869314
\(94\) 1.34237e7 1.66696
\(95\) 0 0
\(96\) −3.97898e6 −0.459010
\(97\) −1.35697e7 −1.50963 −0.754814 0.655939i \(-0.772273\pi\)
−0.754814 + 0.655939i \(0.772273\pi\)
\(98\) −1.66681e7 −1.78894
\(99\) −2.15957e6 −0.223689
\(100\) 0 0
\(101\) −1.47531e7 −1.42482 −0.712409 0.701765i \(-0.752396\pi\)
−0.712409 + 0.701765i \(0.752396\pi\)
\(102\) −9.62719e6 −0.898253
\(103\) −8.75997e6 −0.789900 −0.394950 0.918703i \(-0.629238\pi\)
−0.394950 + 0.918703i \(0.629238\pi\)
\(104\) −4.89573e7 −4.26777
\(105\) 0 0
\(106\) 2.63892e7 2.15207
\(107\) −1.48202e7 −1.16953 −0.584764 0.811204i \(-0.698813\pi\)
−0.584764 + 0.811204i \(0.698813\pi\)
\(108\) 2.57885e7 1.96990
\(109\) −1.10204e6 −0.0815085 −0.0407542 0.999169i \(-0.512976\pi\)
−0.0407542 + 0.999169i \(0.512976\pi\)
\(110\) 0 0
\(111\) −709183. −0.0492184
\(112\) 1.62310e6 0.109165
\(113\) −418341. −0.0272744 −0.0136372 0.999907i \(-0.504341\pi\)
−0.0136372 + 0.999907i \(0.504341\pi\)
\(114\) −1.57568e6 −0.0996093
\(115\) 0 0
\(116\) −5.04324e7 −2.99990
\(117\) 2.49103e7 1.43790
\(118\) −2.96722e7 −1.66250
\(119\) 1.14253e6 0.0621518
\(120\) 0 0
\(121\) 1.77156e6 0.0909091
\(122\) 1.32757e7 0.661911
\(123\) 527594. 0.0255642
\(124\) −8.08673e7 −3.80888
\(125\) 0 0
\(126\) −1.88910e6 −0.0841314
\(127\) 2.80475e7 1.21501 0.607506 0.794315i \(-0.292170\pi\)
0.607506 + 0.794315i \(0.292170\pi\)
\(128\) −2.59647e7 −1.09433
\(129\) 5.47560e6 0.224578
\(130\) 0 0
\(131\) 1.61684e7 0.628373 0.314187 0.949361i \(-0.398268\pi\)
0.314187 + 0.949361i \(0.398268\pi\)
\(132\) −9.01020e6 −0.340977
\(133\) 186997. 0.00689215
\(134\) 5.96630e7 2.14209
\(135\) 0 0
\(136\) 6.35869e7 2.16761
\(137\) −1.88648e7 −0.626803 −0.313402 0.949621i \(-0.601469\pi\)
−0.313402 + 0.949621i \(0.601469\pi\)
\(138\) 2.38504e7 0.772537
\(139\) −3.61313e7 −1.14112 −0.570560 0.821256i \(-0.693274\pi\)
−0.570560 + 0.821256i \(0.693274\pi\)
\(140\) 0 0
\(141\) −1.56950e7 −0.471513
\(142\) −1.14511e8 −3.35612
\(143\) −2.04346e7 −0.584374
\(144\) −4.59627e7 −1.28274
\(145\) 0 0
\(146\) −2.11528e7 −0.562515
\(147\) 1.94884e7 0.506018
\(148\) 8.50480e6 0.215649
\(149\) −3.60326e6 −0.0892367 −0.0446183 0.999004i \(-0.514207\pi\)
−0.0446183 + 0.999004i \(0.514207\pi\)
\(150\) 0 0
\(151\) 3.09419e7 0.731354 0.365677 0.930742i \(-0.380837\pi\)
0.365677 + 0.930742i \(0.380837\pi\)
\(152\) 1.04072e7 0.240371
\(153\) −3.23540e7 −0.730311
\(154\) 1.54969e6 0.0341917
\(155\) 0 0
\(156\) 1.03931e8 2.19184
\(157\) 7.23162e7 1.49137 0.745687 0.666296i \(-0.232121\pi\)
0.745687 + 0.666296i \(0.232121\pi\)
\(158\) 2.85379e7 0.575601
\(159\) −3.08543e7 −0.608732
\(160\) 0 0
\(161\) −2.83051e6 −0.0534533
\(162\) 2.84090e7 0.524992
\(163\) 1.03076e8 1.86424 0.932118 0.362154i \(-0.117959\pi\)
0.932118 + 0.362154i \(0.117959\pi\)
\(164\) −6.32712e6 −0.112009
\(165\) 0 0
\(166\) 1.30831e7 0.221990
\(167\) −1.39849e7 −0.232355 −0.116177 0.993228i \(-0.537064\pi\)
−0.116177 + 0.993228i \(0.537064\pi\)
\(168\) −4.34094e6 −0.0706320
\(169\) 1.72961e8 2.75642
\(170\) 0 0
\(171\) −5.29536e6 −0.0809858
\(172\) −6.56656e7 −0.983984
\(173\) 1.05233e8 1.54523 0.772614 0.634876i \(-0.218949\pi\)
0.772614 + 0.634876i \(0.218949\pi\)
\(174\) 8.54555e7 1.22975
\(175\) 0 0
\(176\) 3.77046e7 0.521315
\(177\) 3.46928e7 0.470254
\(178\) 9.78342e7 1.30023
\(179\) −1.70572e7 −0.222291 −0.111146 0.993804i \(-0.535452\pi\)
−0.111146 + 0.993804i \(0.535452\pi\)
\(180\) 0 0
\(181\) 1.42099e8 1.78122 0.890609 0.454770i \(-0.150279\pi\)
0.890609 + 0.454770i \(0.150279\pi\)
\(182\) −1.78753e7 −0.219788
\(183\) −1.55220e7 −0.187227
\(184\) −1.57530e8 −1.86424
\(185\) 0 0
\(186\) 1.37026e8 1.56138
\(187\) 2.65410e7 0.296805
\(188\) 1.88221e8 2.06592
\(189\) 5.18591e6 0.0558739
\(190\) 0 0
\(191\) 1.15805e7 0.120257 0.0601285 0.998191i \(-0.480849\pi\)
0.0601285 + 0.998191i \(0.480849\pi\)
\(192\) 5.29420e6 0.0539816
\(193\) 1.25212e8 1.25370 0.626851 0.779139i \(-0.284344\pi\)
0.626851 + 0.779139i \(0.284344\pi\)
\(194\) −2.75744e8 −2.71144
\(195\) 0 0
\(196\) −2.33713e8 −2.21711
\(197\) −8.53930e7 −0.795775 −0.397888 0.917434i \(-0.630257\pi\)
−0.397888 + 0.917434i \(0.630257\pi\)
\(198\) −4.38837e7 −0.401768
\(199\) −7.61982e7 −0.685424 −0.342712 0.939441i \(-0.611345\pi\)
−0.342712 + 0.939441i \(0.611345\pi\)
\(200\) 0 0
\(201\) −6.97580e7 −0.605910
\(202\) −2.99792e8 −2.55912
\(203\) −1.01417e7 −0.0850888
\(204\) −1.34988e8 −1.11324
\(205\) 0 0
\(206\) −1.78008e8 −1.41874
\(207\) 8.01538e7 0.628099
\(208\) −4.34916e8 −3.35107
\(209\) 4.34394e6 0.0329133
\(210\) 0 0
\(211\) 2.37773e7 0.174251 0.0871253 0.996197i \(-0.472232\pi\)
0.0871253 + 0.996197i \(0.472232\pi\)
\(212\) 3.70017e8 2.66714
\(213\) 1.33886e8 0.949308
\(214\) −3.01155e8 −2.10059
\(215\) 0 0
\(216\) 2.88619e8 1.94866
\(217\) −1.62619e7 −0.108035
\(218\) −2.23940e7 −0.146397
\(219\) 2.47319e7 0.159112
\(220\) 0 0
\(221\) −3.06145e8 −1.90789
\(222\) −1.44110e7 −0.0884013
\(223\) −2.38876e8 −1.44247 −0.721233 0.692692i \(-0.756425\pi\)
−0.721233 + 0.692692i \(0.756425\pi\)
\(224\) 9.59569e6 0.0570437
\(225\) 0 0
\(226\) −8.50093e6 −0.0489877
\(227\) −1.74334e8 −0.989220 −0.494610 0.869115i \(-0.664689\pi\)
−0.494610 + 0.869115i \(0.664689\pi\)
\(228\) −2.20934e7 −0.123450
\(229\) 3.22965e8 1.77718 0.888591 0.458700i \(-0.151685\pi\)
0.888591 + 0.458700i \(0.151685\pi\)
\(230\) 0 0
\(231\) −1.81190e6 −0.00967144
\(232\) −5.64427e8 −2.96756
\(233\) 1.81022e8 0.937529 0.468764 0.883323i \(-0.344699\pi\)
0.468764 + 0.883323i \(0.344699\pi\)
\(234\) 5.06191e8 2.58261
\(235\) 0 0
\(236\) −4.16049e8 −2.06041
\(237\) −3.33665e7 −0.162814
\(238\) 2.32169e7 0.111631
\(239\) 3.45882e8 1.63884 0.819419 0.573196i \(-0.194296\pi\)
0.819419 + 0.573196i \(0.194296\pi\)
\(240\) 0 0
\(241\) −2.76641e8 −1.27308 −0.636541 0.771243i \(-0.719635\pi\)
−0.636541 + 0.771243i \(0.719635\pi\)
\(242\) 3.59991e7 0.163282
\(243\) −2.31161e8 −1.03346
\(244\) 1.86146e8 0.820332
\(245\) 0 0
\(246\) 1.07210e7 0.0459159
\(247\) −5.01066e7 −0.211571
\(248\) −9.05047e8 −3.76782
\(249\) −1.52968e7 −0.0627919
\(250\) 0 0
\(251\) −7.09109e7 −0.283045 −0.141522 0.989935i \(-0.545200\pi\)
−0.141522 + 0.989935i \(0.545200\pi\)
\(252\) −2.64881e7 −0.104267
\(253\) −6.57526e7 −0.255265
\(254\) 5.69940e8 2.18228
\(255\) 0 0
\(256\) −4.99094e8 −1.85927
\(257\) 2.56446e8 0.942390 0.471195 0.882029i \(-0.343823\pi\)
0.471195 + 0.882029i \(0.343823\pi\)
\(258\) 1.11267e8 0.403365
\(259\) 1.71026e6 0.00611665
\(260\) 0 0
\(261\) 2.87189e8 0.999831
\(262\) 3.28551e8 1.12862
\(263\) −8.81699e7 −0.298865 −0.149433 0.988772i \(-0.547745\pi\)
−0.149433 + 0.988772i \(0.547745\pi\)
\(264\) −1.00840e8 −0.337302
\(265\) 0 0
\(266\) 3.79989e6 0.0123790
\(267\) −1.14388e8 −0.367782
\(268\) 8.36566e8 2.65478
\(269\) −1.58440e8 −0.496287 −0.248143 0.968723i \(-0.579820\pi\)
−0.248143 + 0.968723i \(0.579820\pi\)
\(270\) 0 0
\(271\) −4.31603e8 −1.31732 −0.658661 0.752440i \(-0.728877\pi\)
−0.658661 + 0.752440i \(0.728877\pi\)
\(272\) 5.64878e8 1.70202
\(273\) 2.08999e7 0.0621691
\(274\) −3.83344e8 −1.12580
\(275\) 0 0
\(276\) 3.34419e8 0.957436
\(277\) 1.10453e8 0.312248 0.156124 0.987737i \(-0.450100\pi\)
0.156124 + 0.987737i \(0.450100\pi\)
\(278\) −7.34208e8 −2.04957
\(279\) 4.60502e8 1.26945
\(280\) 0 0
\(281\) 6.00166e8 1.61361 0.806807 0.590815i \(-0.201194\pi\)
0.806807 + 0.590815i \(0.201194\pi\)
\(282\) −3.18931e8 −0.846886
\(283\) 1.93403e8 0.507237 0.253619 0.967304i \(-0.418379\pi\)
0.253619 + 0.967304i \(0.418379\pi\)
\(284\) −1.60562e9 −4.15937
\(285\) 0 0
\(286\) −4.15243e8 −1.04959
\(287\) −1.27234e6 −0.00317700
\(288\) −2.71729e8 −0.670289
\(289\) −1.27108e7 −0.0309764
\(290\) 0 0
\(291\) 3.22401e8 0.766956
\(292\) −2.96595e8 −0.697147
\(293\) 1.38457e7 0.0321571 0.0160786 0.999871i \(-0.494882\pi\)
0.0160786 + 0.999871i \(0.494882\pi\)
\(294\) 3.96016e8 0.908860
\(295\) 0 0
\(296\) 9.51836e7 0.213325
\(297\) 1.20468e8 0.266824
\(298\) −7.32203e7 −0.160278
\(299\) 7.58444e8 1.64087
\(300\) 0 0
\(301\) −1.32049e7 −0.0279096
\(302\) 6.28757e8 1.31359
\(303\) 3.50517e8 0.723869
\(304\) 9.24532e7 0.188740
\(305\) 0 0
\(306\) −6.57451e8 −1.31171
\(307\) −1.20833e8 −0.238343 −0.119172 0.992874i \(-0.538024\pi\)
−0.119172 + 0.992874i \(0.538024\pi\)
\(308\) 2.17290e7 0.0423752
\(309\) 2.08127e8 0.401304
\(310\) 0 0
\(311\) 4.07456e7 0.0768103 0.0384051 0.999262i \(-0.487772\pi\)
0.0384051 + 0.999262i \(0.487772\pi\)
\(312\) 1.16317e9 2.16821
\(313\) 7.97906e8 1.47078 0.735388 0.677646i \(-0.237000\pi\)
0.735388 + 0.677646i \(0.237000\pi\)
\(314\) 1.46951e9 2.67866
\(315\) 0 0
\(316\) 4.00144e8 0.713365
\(317\) −8.47170e8 −1.49370 −0.746850 0.664993i \(-0.768434\pi\)
−0.746850 + 0.664993i \(0.768434\pi\)
\(318\) −6.26977e8 −1.09334
\(319\) −2.35590e8 −0.406340
\(320\) 0 0
\(321\) 3.52110e8 0.594171
\(322\) −5.75176e7 −0.0960075
\(323\) 6.50795e7 0.107457
\(324\) 3.98337e8 0.650644
\(325\) 0 0
\(326\) 2.09456e9 3.34836
\(327\) 2.61831e7 0.0414098
\(328\) −7.08115e7 −0.110801
\(329\) 3.78500e7 0.0585976
\(330\) 0 0
\(331\) −5.52693e8 −0.837695 −0.418847 0.908057i \(-0.637566\pi\)
−0.418847 + 0.908057i \(0.637566\pi\)
\(332\) 1.83446e8 0.275121
\(333\) −4.84309e7 −0.0718733
\(334\) −2.84181e8 −0.417333
\(335\) 0 0
\(336\) −3.85631e7 −0.0554605
\(337\) 6.07500e8 0.864653 0.432326 0.901717i \(-0.357693\pi\)
0.432326 + 0.901717i \(0.357693\pi\)
\(338\) 3.51467e9 4.95081
\(339\) 9.93930e6 0.0138566
\(340\) 0 0
\(341\) −3.77764e8 −0.515917
\(342\) −1.07605e8 −0.145459
\(343\) −9.41845e7 −0.126023
\(344\) −7.34913e8 −0.973377
\(345\) 0 0
\(346\) 2.13840e9 2.77539
\(347\) 5.55344e8 0.713524 0.356762 0.934195i \(-0.383881\pi\)
0.356762 + 0.934195i \(0.383881\pi\)
\(348\) 1.19822e9 1.52408
\(349\) −1.06059e9 −1.33554 −0.667770 0.744367i \(-0.732751\pi\)
−0.667770 + 0.744367i \(0.732751\pi\)
\(350\) 0 0
\(351\) −1.38958e9 −1.71518
\(352\) 2.22907e8 0.272411
\(353\) −7.87057e8 −0.952346 −0.476173 0.879351i \(-0.657976\pi\)
−0.476173 + 0.879351i \(0.657976\pi\)
\(354\) 7.04977e8 0.844624
\(355\) 0 0
\(356\) 1.37179e9 1.61143
\(357\) −2.71452e7 −0.0315758
\(358\) −3.46612e8 −0.399258
\(359\) 7.81980e8 0.892001 0.446000 0.895033i \(-0.352848\pi\)
0.446000 + 0.895033i \(0.352848\pi\)
\(360\) 0 0
\(361\) −8.83220e8 −0.988084
\(362\) 2.88754e9 3.19925
\(363\) −4.20902e7 −0.0461858
\(364\) −2.50640e8 −0.272392
\(365\) 0 0
\(366\) −3.15416e8 −0.336279
\(367\) −1.34965e9 −1.42525 −0.712623 0.701547i \(-0.752493\pi\)
−0.712623 + 0.701547i \(0.752493\pi\)
\(368\) −1.39943e9 −1.46381
\(369\) 3.60300e7 0.0373312
\(370\) 0 0
\(371\) 7.44082e7 0.0756505
\(372\) 1.92131e9 1.93508
\(373\) −4.42171e8 −0.441173 −0.220587 0.975367i \(-0.570797\pi\)
−0.220587 + 0.975367i \(0.570797\pi\)
\(374\) 5.39327e8 0.533091
\(375\) 0 0
\(376\) 2.10652e9 2.04365
\(377\) 2.71749e9 2.61200
\(378\) 1.05381e8 0.100355
\(379\) 1.77496e9 1.67475 0.837377 0.546626i \(-0.184088\pi\)
0.837377 + 0.546626i \(0.184088\pi\)
\(380\) 0 0
\(381\) −6.66375e8 −0.617279
\(382\) 2.35322e8 0.215994
\(383\) −1.97521e9 −1.79646 −0.898229 0.439528i \(-0.855146\pi\)
−0.898229 + 0.439528i \(0.855146\pi\)
\(384\) 6.16890e8 0.555966
\(385\) 0 0
\(386\) 2.54437e9 2.25177
\(387\) 3.73935e8 0.327950
\(388\) −3.86636e9 −3.36040
\(389\) −1.62341e9 −1.39832 −0.699158 0.714967i \(-0.746442\pi\)
−0.699158 + 0.714967i \(0.746442\pi\)
\(390\) 0 0
\(391\) −9.85084e8 −0.833402
\(392\) −2.61566e9 −2.19321
\(393\) −3.84143e8 −0.319241
\(394\) −1.73523e9 −1.42929
\(395\) 0 0
\(396\) −6.15317e8 −0.497927
\(397\) −7.31101e6 −0.00586422 −0.00293211 0.999996i \(-0.500933\pi\)
−0.00293211 + 0.999996i \(0.500933\pi\)
\(398\) −1.54839e9 −1.23109
\(399\) −4.44284e6 −0.00350151
\(400\) 0 0
\(401\) −2.16086e9 −1.67348 −0.836742 0.547597i \(-0.815543\pi\)
−0.836742 + 0.547597i \(0.815543\pi\)
\(402\) −1.41752e9 −1.08828
\(403\) 4.35743e9 3.31637
\(404\) −4.20354e9 −3.17161
\(405\) 0 0
\(406\) −2.06084e8 −0.152828
\(407\) 3.97293e7 0.0292099
\(408\) −1.51075e9 −1.10124
\(409\) −1.38777e9 −1.00297 −0.501483 0.865168i \(-0.667212\pi\)
−0.501483 + 0.865168i \(0.667212\pi\)
\(410\) 0 0
\(411\) 4.48207e8 0.318443
\(412\) −2.49594e9 −1.75830
\(413\) −8.36650e7 −0.0584411
\(414\) 1.62877e9 1.12813
\(415\) 0 0
\(416\) −2.57119e9 −1.75109
\(417\) 8.58437e8 0.579739
\(418\) 8.82713e7 0.0591157
\(419\) −8.21601e8 −0.545647 −0.272824 0.962064i \(-0.587958\pi\)
−0.272824 + 0.962064i \(0.587958\pi\)
\(420\) 0 0
\(421\) −1.37924e9 −0.900850 −0.450425 0.892814i \(-0.648727\pi\)
−0.450425 + 0.892814i \(0.648727\pi\)
\(422\) 4.83168e8 0.312972
\(423\) −1.07183e9 −0.688548
\(424\) 4.14114e9 2.63839
\(425\) 0 0
\(426\) 2.72064e9 1.70505
\(427\) 3.74329e7 0.0232678
\(428\) −4.22265e9 −2.60334
\(429\) 4.85503e8 0.296887
\(430\) 0 0
\(431\) 3.10998e9 1.87106 0.935528 0.353253i \(-0.114925\pi\)
0.935528 + 0.353253i \(0.114925\pi\)
\(432\) 2.56396e9 1.53010
\(433\) 1.87998e9 1.11287 0.556436 0.830891i \(-0.312169\pi\)
0.556436 + 0.830891i \(0.312169\pi\)
\(434\) −3.30451e8 −0.194041
\(435\) 0 0
\(436\) −3.13998e8 −0.181436
\(437\) −1.61228e8 −0.0924178
\(438\) 5.02567e8 0.285782
\(439\) 3.55542e8 0.200570 0.100285 0.994959i \(-0.468025\pi\)
0.100285 + 0.994959i \(0.468025\pi\)
\(440\) 0 0
\(441\) 1.33089e9 0.738934
\(442\) −6.22104e9 −3.42677
\(443\) −1.10119e9 −0.601795 −0.300897 0.953657i \(-0.597286\pi\)
−0.300897 + 0.953657i \(0.597286\pi\)
\(444\) −2.02064e8 −0.109559
\(445\) 0 0
\(446\) −4.85410e9 −2.59082
\(447\) 8.56092e7 0.0453361
\(448\) −1.27675e7 −0.00670860
\(449\) 1.58190e9 0.824737 0.412369 0.911017i \(-0.364702\pi\)
0.412369 + 0.911017i \(0.364702\pi\)
\(450\) 0 0
\(451\) −2.95565e7 −0.0151717
\(452\) −1.19196e8 −0.0607124
\(453\) −7.35144e8 −0.371560
\(454\) −3.54258e9 −1.77674
\(455\) 0 0
\(456\) −2.47264e8 −0.122119
\(457\) −2.03131e9 −0.995562 −0.497781 0.867303i \(-0.665852\pi\)
−0.497781 + 0.867303i \(0.665852\pi\)
\(458\) 6.56284e9 3.19200
\(459\) 1.80482e9 0.871143
\(460\) 0 0
\(461\) −3.41126e9 −1.62167 −0.810834 0.585276i \(-0.800986\pi\)
−0.810834 + 0.585276i \(0.800986\pi\)
\(462\) −3.68187e7 −0.0173709
\(463\) 8.70628e8 0.407661 0.203830 0.979006i \(-0.434661\pi\)
0.203830 + 0.979006i \(0.434661\pi\)
\(464\) −5.01413e9 −2.33014
\(465\) 0 0
\(466\) 3.67846e9 1.68390
\(467\) 3.03420e9 1.37859 0.689294 0.724482i \(-0.257921\pi\)
0.689294 + 0.724482i \(0.257921\pi\)
\(468\) 7.09756e9 3.20073
\(469\) 1.68228e8 0.0752998
\(470\) 0 0
\(471\) −1.71815e9 −0.757683
\(472\) −4.65632e9 −2.03820
\(473\) −3.06750e8 −0.133282
\(474\) −6.78026e8 −0.292430
\(475\) 0 0
\(476\) 3.25536e8 0.138349
\(477\) −2.10708e9 −0.888927
\(478\) 7.02853e9 2.94352
\(479\) 2.57353e8 0.106993 0.0534964 0.998568i \(-0.482963\pi\)
0.0534964 + 0.998568i \(0.482963\pi\)
\(480\) 0 0
\(481\) −4.58270e8 −0.187765
\(482\) −5.62149e9 −2.28658
\(483\) 6.72496e7 0.0271566
\(484\) 5.04763e8 0.202362
\(485\) 0 0
\(486\) −4.69731e9 −1.85619
\(487\) 2.20542e9 0.865246 0.432623 0.901575i \(-0.357588\pi\)
0.432623 + 0.901575i \(0.357588\pi\)
\(488\) 2.08330e9 0.811489
\(489\) −2.44897e9 −0.947113
\(490\) 0 0
\(491\) 2.54808e9 0.971467 0.485734 0.874107i \(-0.338552\pi\)
0.485734 + 0.874107i \(0.338552\pi\)
\(492\) 1.50325e8 0.0569054
\(493\) −3.52953e9 −1.32664
\(494\) −1.01819e9 −0.380002
\(495\) 0 0
\(496\) −8.04004e9 −2.95851
\(497\) −3.22880e8 −0.117976
\(498\) −3.10840e8 −0.112781
\(499\) 2.57194e9 0.926636 0.463318 0.886192i \(-0.346659\pi\)
0.463318 + 0.886192i \(0.346659\pi\)
\(500\) 0 0
\(501\) 3.32265e8 0.118046
\(502\) −1.44095e9 −0.508377
\(503\) −3.82351e9 −1.33960 −0.669798 0.742543i \(-0.733619\pi\)
−0.669798 + 0.742543i \(0.733619\pi\)
\(504\) −2.96448e8 −0.103143
\(505\) 0 0
\(506\) −1.33613e9 −0.458482
\(507\) −4.10936e9 −1.40038
\(508\) 7.99143e9 2.70459
\(509\) −1.06710e9 −0.358668 −0.179334 0.983788i \(-0.557394\pi\)
−0.179334 + 0.983788i \(0.557394\pi\)
\(510\) 0 0
\(511\) −5.96435e7 −0.0197738
\(512\) −6.81840e9 −2.24511
\(513\) 2.95394e8 0.0966029
\(514\) 5.21113e9 1.69263
\(515\) 0 0
\(516\) 1.56014e9 0.499907
\(517\) 8.79253e8 0.279832
\(518\) 3.47535e7 0.0109861
\(519\) −2.50023e9 −0.785043
\(520\) 0 0
\(521\) 1.83762e9 0.569277 0.284638 0.958635i \(-0.408126\pi\)
0.284638 + 0.958635i \(0.408126\pi\)
\(522\) 5.83585e9 1.79580
\(523\) −6.20406e9 −1.89636 −0.948179 0.317737i \(-0.897077\pi\)
−0.948179 + 0.317737i \(0.897077\pi\)
\(524\) 4.60679e9 1.39875
\(525\) 0 0
\(526\) −1.79166e9 −0.536792
\(527\) −5.65953e9 −1.68439
\(528\) −8.95818e8 −0.264851
\(529\) −9.64375e8 −0.283238
\(530\) 0 0
\(531\) 2.36921e9 0.686708
\(532\) 5.32803e7 0.0153418
\(533\) 3.40929e8 0.0975255
\(534\) −2.32443e9 −0.660574
\(535\) 0 0
\(536\) 9.36264e9 2.62616
\(537\) 4.05260e8 0.112934
\(538\) −3.21960e9 −0.891381
\(539\) −1.09177e9 −0.300309
\(540\) 0 0
\(541\) 1.26501e9 0.343481 0.171740 0.985142i \(-0.445061\pi\)
0.171740 + 0.985142i \(0.445061\pi\)
\(542\) −8.77042e9 −2.36604
\(543\) −3.37611e9 −0.904936
\(544\) 3.33952e9 0.889382
\(545\) 0 0
\(546\) 4.24697e8 0.111662
\(547\) 8.11886e8 0.212099 0.106050 0.994361i \(-0.466180\pi\)
0.106050 + 0.994361i \(0.466180\pi\)
\(548\) −5.37507e9 −1.39525
\(549\) −1.06002e9 −0.273407
\(550\) 0 0
\(551\) −5.77676e8 −0.147114
\(552\) 3.74274e9 0.947114
\(553\) 8.04665e7 0.0202338
\(554\) 2.24448e9 0.560829
\(555\) 0 0
\(556\) −1.02947e10 −2.54011
\(557\) −3.31656e9 −0.813194 −0.406597 0.913608i \(-0.633285\pi\)
−0.406597 + 0.913608i \(0.633285\pi\)
\(558\) 9.35766e9 2.28007
\(559\) 3.53831e9 0.856750
\(560\) 0 0
\(561\) −6.30582e8 −0.150790
\(562\) 1.21957e10 2.89821
\(563\) −1.83459e9 −0.433272 −0.216636 0.976252i \(-0.569508\pi\)
−0.216636 + 0.976252i \(0.569508\pi\)
\(564\) −4.47190e9 −1.04958
\(565\) 0 0
\(566\) 3.93006e9 0.911049
\(567\) 8.01031e7 0.0184548
\(568\) −1.79697e10 −4.11453
\(569\) −2.66945e9 −0.607475 −0.303738 0.952756i \(-0.598235\pi\)
−0.303738 + 0.952756i \(0.598235\pi\)
\(570\) 0 0
\(571\) −2.52473e9 −0.567530 −0.283765 0.958894i \(-0.591584\pi\)
−0.283765 + 0.958894i \(0.591584\pi\)
\(572\) −5.82235e9 −1.30080
\(573\) −2.75139e8 −0.0610958
\(574\) −2.58547e7 −0.00570622
\(575\) 0 0
\(576\) 3.61547e8 0.0788289
\(577\) 6.76103e9 1.46520 0.732601 0.680658i \(-0.238306\pi\)
0.732601 + 0.680658i \(0.238306\pi\)
\(578\) −2.58291e8 −0.0556367
\(579\) −2.97488e9 −0.636935
\(580\) 0 0
\(581\) 3.68898e7 0.00780350
\(582\) 6.55137e9 1.37753
\(583\) 1.72850e9 0.361268
\(584\) −3.31942e9 −0.689631
\(585\) 0 0
\(586\) 2.81352e8 0.0577574
\(587\) 3.20998e9 0.655041 0.327520 0.944844i \(-0.393787\pi\)
0.327520 + 0.944844i \(0.393787\pi\)
\(588\) 5.55275e9 1.12639
\(589\) −9.26292e8 −0.186786
\(590\) 0 0
\(591\) 2.02884e9 0.404288
\(592\) 8.45569e8 0.167503
\(593\) −5.05111e9 −0.994707 −0.497354 0.867548i \(-0.665695\pi\)
−0.497354 + 0.867548i \(0.665695\pi\)
\(594\) 2.44799e9 0.479244
\(595\) 0 0
\(596\) −1.02666e9 −0.198639
\(597\) 1.81038e9 0.348225
\(598\) 1.54120e10 2.94717
\(599\) −6.69582e9 −1.27295 −0.636473 0.771299i \(-0.719607\pi\)
−0.636473 + 0.771299i \(0.719607\pi\)
\(600\) 0 0
\(601\) −5.51275e9 −1.03587 −0.517937 0.855418i \(-0.673300\pi\)
−0.517937 + 0.855418i \(0.673300\pi\)
\(602\) −2.68332e8 −0.0501285
\(603\) −4.76385e9 −0.884806
\(604\) 8.81614e9 1.62798
\(605\) 0 0
\(606\) 7.12270e9 1.30014
\(607\) 7.73610e8 0.140398 0.0701992 0.997533i \(-0.477637\pi\)
0.0701992 + 0.997533i \(0.477637\pi\)
\(608\) 5.46578e8 0.0986256
\(609\) 2.40954e8 0.0432288
\(610\) 0 0
\(611\) −1.01420e10 −1.79879
\(612\) −9.21847e9 −1.62566
\(613\) −6.16150e9 −1.08038 −0.540188 0.841544i \(-0.681647\pi\)
−0.540188 + 0.841544i \(0.681647\pi\)
\(614\) −2.45540e9 −0.428088
\(615\) 0 0
\(616\) 2.43185e8 0.0419184
\(617\) −3.20717e9 −0.549698 −0.274849 0.961487i \(-0.588628\pi\)
−0.274849 + 0.961487i \(0.588628\pi\)
\(618\) 4.22925e9 0.720782
\(619\) −7.43852e9 −1.26058 −0.630288 0.776361i \(-0.717063\pi\)
−0.630288 + 0.776361i \(0.717063\pi\)
\(620\) 0 0
\(621\) −4.47126e9 −0.749220
\(622\) 8.27974e8 0.137959
\(623\) 2.75858e8 0.0457064
\(624\) 1.03331e10 1.70249
\(625\) 0 0
\(626\) 1.62139e10 2.64166
\(627\) −1.03207e8 −0.0167214
\(628\) 2.06047e10 3.31977
\(629\) 5.95211e8 0.0953661
\(630\) 0 0
\(631\) 8.48900e9 1.34510 0.672549 0.740053i \(-0.265200\pi\)
0.672549 + 0.740053i \(0.265200\pi\)
\(632\) 4.47831e9 0.705675
\(633\) −5.64921e8 −0.0885268
\(634\) −1.72150e10 −2.68283
\(635\) 0 0
\(636\) −8.79118e9 −1.35502
\(637\) 1.25933e10 1.93042
\(638\) −4.78732e9 −0.729828
\(639\) 9.14324e9 1.38627
\(640\) 0 0
\(641\) 8.52855e9 1.27900 0.639502 0.768789i \(-0.279140\pi\)
0.639502 + 0.768789i \(0.279140\pi\)
\(642\) 7.15508e9 1.06719
\(643\) −3.63341e9 −0.538985 −0.269492 0.963003i \(-0.586856\pi\)
−0.269492 + 0.963003i \(0.586856\pi\)
\(644\) −8.06484e8 −0.118986
\(645\) 0 0
\(646\) 1.32245e9 0.193004
\(647\) −7.40964e9 −1.07555 −0.537777 0.843087i \(-0.680736\pi\)
−0.537777 + 0.843087i \(0.680736\pi\)
\(648\) 4.45809e9 0.643630
\(649\) −1.94353e9 −0.279084
\(650\) 0 0
\(651\) 3.86364e8 0.0548863
\(652\) 2.93690e10 4.14975
\(653\) −1.05796e10 −1.48687 −0.743434 0.668809i \(-0.766804\pi\)
−0.743434 + 0.668809i \(0.766804\pi\)
\(654\) 5.32055e8 0.0743763
\(655\) 0 0
\(656\) −6.29058e8 −0.0870017
\(657\) 1.68897e9 0.232350
\(658\) 7.69133e8 0.105247
\(659\) −1.32221e10 −1.79971 −0.899855 0.436190i \(-0.856328\pi\)
−0.899855 + 0.436190i \(0.856328\pi\)
\(660\) 0 0
\(661\) −1.00271e10 −1.35043 −0.675215 0.737621i \(-0.735949\pi\)
−0.675215 + 0.737621i \(0.735949\pi\)
\(662\) −1.12310e10 −1.50458
\(663\) 7.27365e9 0.969293
\(664\) 2.05308e9 0.272155
\(665\) 0 0
\(666\) −9.84143e8 −0.129092
\(667\) 8.74407e9 1.14097
\(668\) −3.98465e9 −0.517217
\(669\) 5.67542e9 0.732836
\(670\) 0 0
\(671\) 8.69563e8 0.111115
\(672\) −2.27982e8 −0.0289807
\(673\) −1.32089e9 −0.167037 −0.0835186 0.996506i \(-0.526616\pi\)
−0.0835186 + 0.996506i \(0.526616\pi\)
\(674\) 1.23447e10 1.55300
\(675\) 0 0
\(676\) 4.92811e10 6.13573
\(677\) 4.98616e9 0.617598 0.308799 0.951127i \(-0.400073\pi\)
0.308799 + 0.951127i \(0.400073\pi\)
\(678\) 2.01972e8 0.0248879
\(679\) −7.77500e8 −0.0953139
\(680\) 0 0
\(681\) 4.14199e9 0.502567
\(682\) −7.67637e9 −0.926639
\(683\) −1.20350e10 −1.44535 −0.722674 0.691189i \(-0.757087\pi\)
−0.722674 + 0.691189i \(0.757087\pi\)
\(684\) −1.50878e9 −0.180273
\(685\) 0 0
\(686\) −1.91388e9 −0.226350
\(687\) −7.67329e9 −0.902886
\(688\) −6.52864e9 −0.764299
\(689\) −1.99379e10 −2.32227
\(690\) 0 0
\(691\) 5.99590e9 0.691324 0.345662 0.938359i \(-0.387654\pi\)
0.345662 + 0.938359i \(0.387654\pi\)
\(692\) 2.99837e10 3.43965
\(693\) −1.23736e8 −0.0141231
\(694\) 1.12849e10 1.28156
\(695\) 0 0
\(696\) 1.34101e10 1.50765
\(697\) −4.42806e8 −0.0495334
\(698\) −2.15517e10 −2.39877
\(699\) −4.30086e9 −0.476305
\(700\) 0 0
\(701\) 6.71224e9 0.735961 0.367980 0.929834i \(-0.380049\pi\)
0.367980 + 0.929834i \(0.380049\pi\)
\(702\) −2.82371e10 −3.08063
\(703\) 9.74179e7 0.0105754
\(704\) −2.96588e8 −0.0320368
\(705\) 0 0
\(706\) −1.59935e10 −1.71051
\(707\) −8.45306e8 −0.0899592
\(708\) 9.88485e9 1.04678
\(709\) −2.95266e9 −0.311137 −0.155569 0.987825i \(-0.549721\pi\)
−0.155569 + 0.987825i \(0.549721\pi\)
\(710\) 0 0
\(711\) −2.27864e9 −0.237756
\(712\) 1.53527e10 1.59406
\(713\) 1.40209e10 1.44865
\(714\) −5.51606e8 −0.0567134
\(715\) 0 0
\(716\) −4.86004e9 −0.494816
\(717\) −8.21776e9 −0.832600
\(718\) 1.58903e10 1.60212
\(719\) 5.39647e9 0.541451 0.270725 0.962657i \(-0.412737\pi\)
0.270725 + 0.962657i \(0.412737\pi\)
\(720\) 0 0
\(721\) −5.01918e8 −0.0498722
\(722\) −1.79475e10 −1.77470
\(723\) 6.57266e9 0.646781
\(724\) 4.04877e10 3.96495
\(725\) 0 0
\(726\) −8.55297e8 −0.0829543
\(727\) 9.97938e9 0.963237 0.481618 0.876381i \(-0.340049\pi\)
0.481618 + 0.876381i \(0.340049\pi\)
\(728\) −2.80510e9 −0.269456
\(729\) 2.43459e9 0.232745
\(730\) 0 0
\(731\) −4.59563e9 −0.435145
\(732\) −4.42262e9 −0.416764
\(733\) −1.31032e10 −1.22889 −0.614444 0.788960i \(-0.710620\pi\)
−0.614444 + 0.788960i \(0.710620\pi\)
\(734\) −2.74257e10 −2.55989
\(735\) 0 0
\(736\) −8.27335e9 −0.764907
\(737\) 3.90793e9 0.359593
\(738\) 7.32150e8 0.0670506
\(739\) 1.61664e10 1.47352 0.736762 0.676152i \(-0.236354\pi\)
0.736762 + 0.676152i \(0.236354\pi\)
\(740\) 0 0
\(741\) 1.19047e9 0.107487
\(742\) 1.51202e9 0.135876
\(743\) 8.25837e9 0.738641 0.369321 0.929302i \(-0.379590\pi\)
0.369321 + 0.929302i \(0.379590\pi\)
\(744\) 2.15029e10 1.91422
\(745\) 0 0
\(746\) −8.98516e9 −0.792392
\(747\) −1.04464e9 −0.0916946
\(748\) 7.56219e9 0.660681
\(749\) −8.49148e8 −0.0738409
\(750\) 0 0
\(751\) 3.14594e9 0.271026 0.135513 0.990776i \(-0.456732\pi\)
0.135513 + 0.990776i \(0.456732\pi\)
\(752\) 1.87134e10 1.60468
\(753\) 1.68476e9 0.143799
\(754\) 5.52209e10 4.69141
\(755\) 0 0
\(756\) 1.47760e9 0.124374
\(757\) −5.42952e9 −0.454911 −0.227455 0.973789i \(-0.573041\pi\)
−0.227455 + 0.973789i \(0.573041\pi\)
\(758\) 3.60681e10 3.00803
\(759\) 1.56221e9 0.129686
\(760\) 0 0
\(761\) 7.44500e9 0.612377 0.306188 0.951971i \(-0.400946\pi\)
0.306188 + 0.951971i \(0.400946\pi\)
\(762\) −1.35411e10 −1.10869
\(763\) −6.31430e7 −0.00514623
\(764\) 3.29958e9 0.267690
\(765\) 0 0
\(766\) −4.01373e10 −3.22662
\(767\) 2.24183e10 1.79398
\(768\) 1.18579e10 0.944590
\(769\) −8.46082e9 −0.670919 −0.335460 0.942055i \(-0.608892\pi\)
−0.335460 + 0.942055i \(0.608892\pi\)
\(770\) 0 0
\(771\) −6.09287e9 −0.478775
\(772\) 3.56760e10 2.79071
\(773\) −4.75174e9 −0.370020 −0.185010 0.982737i \(-0.559232\pi\)
−0.185010 + 0.982737i \(0.559232\pi\)
\(774\) 7.59857e9 0.589031
\(775\) 0 0
\(776\) −4.32713e10 −3.32417
\(777\) −4.06338e7 −0.00310752
\(778\) −3.29887e10 −2.51152
\(779\) −7.24737e7 −0.00549287
\(780\) 0 0
\(781\) −7.50048e9 −0.563391
\(782\) −2.00175e10 −1.49688
\(783\) −1.60204e10 −1.19264
\(784\) −2.32364e10 −1.72211
\(785\) 0 0
\(786\) −7.80600e9 −0.573389
\(787\) −2.48057e10 −1.81401 −0.907005 0.421120i \(-0.861637\pi\)
−0.907005 + 0.421120i \(0.861637\pi\)
\(788\) −2.43306e10 −1.77138
\(789\) 2.09482e9 0.151837
\(790\) 0 0
\(791\) −2.39696e7 −0.00172204
\(792\) −6.88647e9 −0.492559
\(793\) −1.00303e10 −0.714259
\(794\) −1.48564e8 −0.0105327
\(795\) 0 0
\(796\) −2.17108e10 −1.52574
\(797\) 1.77931e9 0.124494 0.0622469 0.998061i \(-0.480173\pi\)
0.0622469 + 0.998061i \(0.480173\pi\)
\(798\) −9.02811e7 −0.00628907
\(799\) 1.31727e10 0.913609
\(800\) 0 0
\(801\) −7.81168e9 −0.537070
\(802\) −4.39099e10 −3.00575
\(803\) −1.38551e9 −0.0944293
\(804\) −1.98758e10 −1.34874
\(805\) 0 0
\(806\) 8.85455e10 5.95654
\(807\) 3.76436e9 0.252135
\(808\) −4.70449e10 −3.13742
\(809\) −3.20050e9 −0.212519 −0.106259 0.994338i \(-0.533887\pi\)
−0.106259 + 0.994338i \(0.533887\pi\)
\(810\) 0 0
\(811\) −1.04039e10 −0.684896 −0.342448 0.939537i \(-0.611256\pi\)
−0.342448 + 0.939537i \(0.611256\pi\)
\(812\) −2.88961e9 −0.189406
\(813\) 1.02544e10 0.669257
\(814\) 8.07322e8 0.0524640
\(815\) 0 0
\(816\) −1.34208e10 −0.864698
\(817\) −7.52164e8 −0.0482542
\(818\) −2.82003e10 −1.80143
\(819\) 1.42728e9 0.0907851
\(820\) 0 0
\(821\) −2.10942e10 −1.33034 −0.665168 0.746694i \(-0.731640\pi\)
−0.665168 + 0.746694i \(0.731640\pi\)
\(822\) 9.10781e9 0.571956
\(823\) −6.82999e9 −0.427091 −0.213546 0.976933i \(-0.568501\pi\)
−0.213546 + 0.976933i \(0.568501\pi\)
\(824\) −2.79339e10 −1.73935
\(825\) 0 0
\(826\) −1.70012e9 −0.104966
\(827\) 4.91661e8 0.0302271 0.0151135 0.999886i \(-0.495189\pi\)
0.0151135 + 0.999886i \(0.495189\pi\)
\(828\) 2.28379e10 1.39814
\(829\) −7.00436e9 −0.427000 −0.213500 0.976943i \(-0.568486\pi\)
−0.213500 + 0.976943i \(0.568486\pi\)
\(830\) 0 0
\(831\) −2.62424e9 −0.158636
\(832\) 3.42108e9 0.205936
\(833\) −1.63565e10 −0.980466
\(834\) 1.74439e10 1.04127
\(835\) 0 0
\(836\) 1.23770e9 0.0732644
\(837\) −2.56884e10 −1.51425
\(838\) −1.66954e10 −0.980038
\(839\) −1.25484e10 −0.733534 −0.366767 0.930313i \(-0.619535\pi\)
−0.366767 + 0.930313i \(0.619535\pi\)
\(840\) 0 0
\(841\) 1.40799e10 0.816234
\(842\) −2.80269e10 −1.61802
\(843\) −1.42593e10 −0.819786
\(844\) 6.77476e9 0.387878
\(845\) 0 0
\(846\) −2.17802e10 −1.23670
\(847\) 1.01505e8 0.00573976
\(848\) 3.67881e10 2.07168
\(849\) −4.59503e9 −0.257698
\(850\) 0 0
\(851\) −1.47458e9 −0.0820190
\(852\) 3.81476e10 2.11314
\(853\) 7.63040e9 0.420945 0.210473 0.977600i \(-0.432500\pi\)
0.210473 + 0.977600i \(0.432500\pi\)
\(854\) 7.60657e8 0.0417913
\(855\) 0 0
\(856\) −4.72588e10 −2.57528
\(857\) 4.02621e9 0.218506 0.109253 0.994014i \(-0.465154\pi\)
0.109253 + 0.994014i \(0.465154\pi\)
\(858\) 9.86570e9 0.533240
\(859\) −8.90118e9 −0.479150 −0.239575 0.970878i \(-0.577008\pi\)
−0.239575 + 0.970878i \(0.577008\pi\)
\(860\) 0 0
\(861\) 3.02294e7 0.00161406
\(862\) 6.31965e10 3.36061
\(863\) 1.83195e10 0.970234 0.485117 0.874449i \(-0.338777\pi\)
0.485117 + 0.874449i \(0.338777\pi\)
\(864\) 1.51580e10 0.799546
\(865\) 0 0
\(866\) 3.82022e10 1.99883
\(867\) 3.01994e8 0.0157373
\(868\) −4.63343e9 −0.240483
\(869\) 1.86923e9 0.0966261
\(870\) 0 0
\(871\) −4.50773e10 −2.31150
\(872\) −3.51418e9 −0.179480
\(873\) 2.20171e10 1.11998
\(874\) −3.27625e9 −0.165992
\(875\) 0 0
\(876\) 7.04676e9 0.354181
\(877\) −1.13275e10 −0.567068 −0.283534 0.958962i \(-0.591507\pi\)
−0.283534 + 0.958962i \(0.591507\pi\)
\(878\) 7.22482e9 0.360244
\(879\) −3.28957e8 −0.0163372
\(880\) 0 0
\(881\) 9.78821e9 0.482267 0.241134 0.970492i \(-0.422481\pi\)
0.241134 + 0.970492i \(0.422481\pi\)
\(882\) 2.70444e10 1.32720
\(883\) 2.76210e10 1.35013 0.675067 0.737757i \(-0.264115\pi\)
0.675067 + 0.737757i \(0.264115\pi\)
\(884\) −8.72285e10 −4.24693
\(885\) 0 0
\(886\) −2.23768e10 −1.08088
\(887\) 1.15423e10 0.555343 0.277671 0.960676i \(-0.410437\pi\)
0.277671 + 0.960676i \(0.410437\pi\)
\(888\) −2.26145e9 −0.108378
\(889\) 1.60703e9 0.0767127
\(890\) 0 0
\(891\) 1.86079e9 0.0881304
\(892\) −6.80619e10 −3.21090
\(893\) 2.15596e9 0.101312
\(894\) 1.73963e9 0.0814283
\(895\) 0 0
\(896\) −1.48769e9 −0.0690931
\(897\) −1.80198e10 −0.833634
\(898\) 3.21450e10 1.48131
\(899\) 5.02367e10 2.30601
\(900\) 0 0
\(901\) 2.58958e10 1.17949
\(902\) −6.00604e8 −0.0272499
\(903\) 3.13734e8 0.0141793
\(904\) −1.33401e9 −0.0600579
\(905\) 0 0
\(906\) −1.49385e10 −0.667359
\(907\) 1.95036e10 0.867939 0.433970 0.900928i \(-0.357113\pi\)
0.433970 + 0.900928i \(0.357113\pi\)
\(908\) −4.96723e10 −2.20198
\(909\) 2.39372e10 1.05706
\(910\) 0 0
\(911\) −1.90061e9 −0.0832874 −0.0416437 0.999133i \(-0.513259\pi\)
−0.0416437 + 0.999133i \(0.513259\pi\)
\(912\) −2.19658e9 −0.0958883
\(913\) 8.56948e8 0.0372655
\(914\) −4.12773e10 −1.78813
\(915\) 0 0
\(916\) 9.20211e10 3.95597
\(917\) 9.26397e8 0.0396739
\(918\) 3.66749e10 1.56466
\(919\) 2.07615e10 0.882379 0.441189 0.897414i \(-0.354557\pi\)
0.441189 + 0.897414i \(0.354557\pi\)
\(920\) 0 0
\(921\) 2.87086e9 0.121089
\(922\) −6.93188e10 −2.91268
\(923\) 8.65166e10 3.62154
\(924\) −5.16255e8 −0.0215284
\(925\) 0 0
\(926\) 1.76916e10 0.732200
\(927\) 1.42132e10 0.586021
\(928\) −2.96432e10 −1.21761
\(929\) 1.59072e9 0.0650939 0.0325469 0.999470i \(-0.489638\pi\)
0.0325469 + 0.999470i \(0.489638\pi\)
\(930\) 0 0
\(931\) −2.67706e9 −0.108726
\(932\) 5.15776e10 2.08692
\(933\) −9.68068e8 −0.0390230
\(934\) 6.16566e10 2.47608
\(935\) 0 0
\(936\) 7.94341e10 3.16622
\(937\) −1.79557e10 −0.713039 −0.356519 0.934288i \(-0.616037\pi\)
−0.356519 + 0.934288i \(0.616037\pi\)
\(938\) 3.41849e9 0.135246
\(939\) −1.89573e10 −0.747218
\(940\) 0 0
\(941\) −3.41831e10 −1.33736 −0.668680 0.743550i \(-0.733140\pi\)
−0.668680 + 0.743550i \(0.733140\pi\)
\(942\) −3.49138e10 −1.36088
\(943\) 1.09701e9 0.0426009
\(944\) −4.13647e10 −1.60040
\(945\) 0 0
\(946\) −6.23334e9 −0.239388
\(947\) 3.28823e10 1.25817 0.629083 0.777338i \(-0.283431\pi\)
0.629083 + 0.777338i \(0.283431\pi\)
\(948\) −9.50696e9 −0.362420
\(949\) 1.59817e10 0.607002
\(950\) 0 0
\(951\) 2.01278e10 0.758864
\(952\) 3.64332e9 0.136857
\(953\) 4.90002e9 0.183389 0.0916943 0.995787i \(-0.470772\pi\)
0.0916943 + 0.995787i \(0.470772\pi\)
\(954\) −4.28170e10 −1.59660
\(955\) 0 0
\(956\) 9.85507e10 3.64802
\(957\) 5.59735e9 0.206438
\(958\) 5.22956e9 0.192170
\(959\) −1.08089e9 −0.0395747
\(960\) 0 0
\(961\) 5.30408e10 1.92787
\(962\) −9.31231e9 −0.337244
\(963\) 2.40460e10 0.867663
\(964\) −7.88219e10 −2.83385
\(965\) 0 0
\(966\) 1.36655e9 0.0487760
\(967\) 4.47636e9 0.159196 0.0795981 0.996827i \(-0.474636\pi\)
0.0795981 + 0.996827i \(0.474636\pi\)
\(968\) 5.64918e9 0.200180
\(969\) −1.54621e9 −0.0545929
\(970\) 0 0
\(971\) −1.90189e9 −0.0666679 −0.0333340 0.999444i \(-0.510612\pi\)
−0.0333340 + 0.999444i \(0.510612\pi\)
\(972\) −6.58635e10 −2.30045
\(973\) −2.07020e9 −0.0720474
\(974\) 4.48154e10 1.55407
\(975\) 0 0
\(976\) 1.85071e10 0.637184
\(977\) 1.69401e10 0.581146 0.290573 0.956853i \(-0.406154\pi\)
0.290573 + 0.956853i \(0.406154\pi\)
\(978\) −4.97644e10 −1.70111
\(979\) 6.40816e9 0.218270
\(980\) 0 0
\(981\) 1.78807e9 0.0604705
\(982\) 5.17785e10 1.74485
\(983\) −4.84911e10 −1.62827 −0.814133 0.580679i \(-0.802787\pi\)
−0.814133 + 0.580679i \(0.802787\pi\)
\(984\) 1.68240e9 0.0562919
\(985\) 0 0
\(986\) −7.17221e10 −2.38278
\(987\) −8.99272e8 −0.0297701
\(988\) −1.42766e10 −0.470952
\(989\) 1.13852e10 0.374244
\(990\) 0 0
\(991\) 6.50917e9 0.212455 0.106228 0.994342i \(-0.466123\pi\)
0.106228 + 0.994342i \(0.466123\pi\)
\(992\) −4.75322e10 −1.54596
\(993\) 1.31313e10 0.425585
\(994\) −6.56110e9 −0.211897
\(995\) 0 0
\(996\) −4.35846e9 −0.139774
\(997\) −4.00286e10 −1.27920 −0.639598 0.768709i \(-0.720899\pi\)
−0.639598 + 0.768709i \(0.720899\pi\)
\(998\) 5.22633e10 1.66433
\(999\) 2.70164e9 0.0857332
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.8.a.c.1.4 4
5.4 even 2 55.8.a.a.1.1 4
15.14 odd 2 495.8.a.c.1.4 4
55.54 odd 2 605.8.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.8.a.a.1.1 4 5.4 even 2
275.8.a.c.1.4 4 1.1 even 1 trivial
495.8.a.c.1.4 4 15.14 odd 2
605.8.a.e.1.4 4 55.54 odd 2