Properties

Label 2793.2.a.bf
Level $2793$
Weight $2$
Character orbit 2793.a
Self dual yes
Analytic conductor $22.302$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,2,Mod(1,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2793.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3022172845\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1244416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8x^{3} + 4x^{2} + 14x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - \beta_{4} q^{5} + (\beta_1 - 1) q^{6} + ( - \beta_{3} - 2 \beta_1 + 1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 1) q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - \beta_{4} q^{5} + (\beta_1 - 1) q^{6} + ( - \beta_{3} - 2 \beta_1 + 1) q^{8} + q^{9} + ( - 2 \beta_{4} - \beta_{2} - 2 \beta_1 - 1) q^{10} + 2 q^{11} + ( - \beta_{2} - 2) q^{12} + (\beta_{4} - \beta_{3} + \beta_1) q^{13} + \beta_{4} q^{15} + (\beta_{4} - \beta_{3} + 2 \beta_{2} + \cdots + 3) q^{16}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} - 5 q^{3} + 11 q^{4} + 2 q^{5} - 3 q^{6} + 3 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 3 q^{2} - 5 q^{3} + 11 q^{4} + 2 q^{5} - 3 q^{6} + 3 q^{8} + 5 q^{9} - 6 q^{10} + 10 q^{11} - 11 q^{12} + 2 q^{13} - 2 q^{15} + 19 q^{16} + 2 q^{17} + 3 q^{18} - 5 q^{19} + 14 q^{20} + 6 q^{22} + 14 q^{23} - 3 q^{24} + 3 q^{25} - 10 q^{26} - 5 q^{27} + 6 q^{29} + 6 q^{30} + 8 q^{31} - q^{32} - 10 q^{33} - 6 q^{34} + 11 q^{36} + 14 q^{37} - 3 q^{38} - 2 q^{39} - 14 q^{40} + 8 q^{41} + 16 q^{43} + 22 q^{44} + 2 q^{45} - 6 q^{46} + 4 q^{47} - 19 q^{48} + 13 q^{50} - 2 q^{51} - 2 q^{52} + 10 q^{53} - 3 q^{54} + 4 q^{55} + 5 q^{57} + 30 q^{58} + 4 q^{59} - 14 q^{60} + 56 q^{62} + 27 q^{64} - 20 q^{65} - 6 q^{66} + 2 q^{67} + 14 q^{68} - 14 q^{69} + 16 q^{71} + 3 q^{72} - 8 q^{73} - 6 q^{74} - 3 q^{75} - 11 q^{76} + 10 q^{78} + 6 q^{79} + 6 q^{80} + 5 q^{81} + 24 q^{82} + 16 q^{83} + 28 q^{85} + 16 q^{86} - 6 q^{87} + 6 q^{88} - 8 q^{89} - 6 q^{90} + 50 q^{92} - 8 q^{93} - 24 q^{94} - 2 q^{95} + q^{96} - 26 q^{97} + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 8x^{3} + 4x^{2} + 14x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu^{2} - 3\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 3\nu^{3} - 5\nu^{2} + 8\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 9\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 3\beta_{3} + 14\beta_{2} + 29\beta _1 + 24 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.59118
1.63524
−0.338378
−1.17526
−1.71279
−2.59118 −1.00000 4.71424 2.37338 2.59118 0 −7.03309 1.00000 −6.14986
1.2 −0.635242 −1.00000 −1.59647 0.255770 0.635242 0 2.28463 1.00000 −0.162476
1.3 1.33838 −1.00000 −0.208743 −2.84982 −1.33838 0 −2.95613 1.00000 −3.81413
1.4 2.17526 −1.00000 2.73176 3.53051 −2.17526 0 1.59177 1.00000 7.67979
1.5 2.71279 −1.00000 5.35921 −1.30984 −2.71279 0 9.11283 1.00000 −3.55333
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2793.2.a.bf 5
3.b odd 2 1 8379.2.a.cc 5
7.b odd 2 1 2793.2.a.bh yes 5
21.c even 2 1 8379.2.a.cd 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2793.2.a.bf 5 1.a even 1 1 trivial
2793.2.a.bh yes 5 7.b odd 2 1
8379.2.a.cc 5 3.b odd 2 1
8379.2.a.cd 5 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2793))\):

\( T_{2}^{5} - 3T_{2}^{4} - 6T_{2}^{3} + 22T_{2}^{2} - 5T_{2} - 13 \) Copy content Toggle raw display
\( T_{5}^{5} - 2T_{5}^{4} - 12T_{5}^{3} + 16T_{5}^{2} + 28T_{5} - 8 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13}^{5} - 2T_{13}^{4} - 48T_{13}^{3} + 96T_{13}^{2} + 320T_{13} - 128 \) Copy content Toggle raw display
\( T_{17}^{5} - 2T_{17}^{4} - 12T_{17}^{3} + 16T_{17}^{2} + 28T_{17} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 3 T^{4} + \cdots - 13 \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 2 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$7$ \( T^{5} \) Copy content Toggle raw display
$11$ \( (T - 2)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 2 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$17$ \( T^{5} - 2 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$19$ \( (T + 1)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} - 14 T^{4} + \cdots - 352 \) Copy content Toggle raw display
$29$ \( T^{5} - 6 T^{4} + \cdots - 3608 \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots - 4736 \) Copy content Toggle raw display
$37$ \( T^{5} - 14 T^{4} + \cdots - 352 \) Copy content Toggle raw display
$41$ \( T^{5} - 8 T^{4} + \cdots - 2048 \) Copy content Toggle raw display
$43$ \( T^{5} - 16 T^{4} + \cdots - 6272 \) Copy content Toggle raw display
$47$ \( T^{5} - 4 T^{4} + \cdots + 1952 \) Copy content Toggle raw display
$53$ \( T^{5} - 10 T^{4} + \cdots - 9608 \) Copy content Toggle raw display
$59$ \( T^{5} - 4 T^{4} + \cdots - 12544 \) Copy content Toggle raw display
$61$ \( T^{5} - 176 T^{3} + \cdots - 6656 \) Copy content Toggle raw display
$67$ \( T^{5} - 2 T^{4} + \cdots - 1696 \) Copy content Toggle raw display
$71$ \( T^{5} - 16 T^{4} + \cdots - 5584 \) Copy content Toggle raw display
$73$ \( T^{5} + 8 T^{4} + \cdots - 4096 \) Copy content Toggle raw display
$79$ \( T^{5} - 6 T^{4} + \cdots - 31456 \) Copy content Toggle raw display
$83$ \( T^{5} - 16 T^{4} + \cdots + 11792 \) Copy content Toggle raw display
$89$ \( T^{5} + 8 T^{4} + \cdots + 512 \) Copy content Toggle raw display
$97$ \( T^{5} + 26 T^{4} + \cdots + 23584 \) Copy content Toggle raw display
show more
show less