Properties

Label 2793.2.a.bf
Level 27932793
Weight 22
Character orbit 2793.a
Self dual yes
Analytic conductor 22.30222.302
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,2,Mod(1,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2793=37219 2793 = 3 \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2793.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 22.302217284522.3022172845
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.1244416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x52x48x3+4x2+14x+4 x^{5} - 2x^{4} - 8x^{3} + 4x^{2} + 14x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q2q3+(β2+2)q4β4q5+(β11)q6+(β32β1+1)q8+q9+(2β4β22β11)q10++2q99+O(q100) q + ( - \beta_1 + 1) q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - \beta_{4} q^{5} + (\beta_1 - 1) q^{6} + ( - \beta_{3} - 2 \beta_1 + 1) q^{8} + q^{9} + ( - 2 \beta_{4} - \beta_{2} - 2 \beta_1 - 1) q^{10}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+3q25q3+11q4+2q53q6+3q8+5q96q10+10q1111q12+2q132q15+19q16+2q17+3q185q19+14q20+6q22+14q23++10q99+O(q100) 5 q + 3 q^{2} - 5 q^{3} + 11 q^{4} + 2 q^{5} - 3 q^{6} + 3 q^{8} + 5 q^{9} - 6 q^{10} + 10 q^{11} - 11 q^{12} + 2 q^{13} - 2 q^{15} + 19 q^{16} + 2 q^{17} + 3 q^{18} - 5 q^{19} + 14 q^{20} + 6 q^{22} + 14 q^{23}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x48x3+4x2+14x+4 x^{5} - 2x^{4} - 8x^{3} + 4x^{2} + 14x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22ν3 \nu^{2} - 2\nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν33ν23ν+4 \nu^{3} - 3\nu^{2} - 3\nu + 4 Copy content Toggle raw display
β4\beta_{4}== ν43ν35ν2+8ν+6 \nu^{4} - 3\nu^{3} - 5\nu^{2} + 8\nu + 6 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2β1+3 \beta_{2} + 2\beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+3β2+9β1+5 \beta_{3} + 3\beta_{2} + 9\beta _1 + 5 Copy content Toggle raw display
ν4\nu^{4}== β4+3β3+14β2+29β1+24 \beta_{4} + 3\beta_{3} + 14\beta_{2} + 29\beta _1 + 24 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.59118
1.63524
−0.338378
−1.17526
−1.71279
−2.59118 −1.00000 4.71424 2.37338 2.59118 0 −7.03309 1.00000 −6.14986
1.2 −0.635242 −1.00000 −1.59647 0.255770 0.635242 0 2.28463 1.00000 −0.162476
1.3 1.33838 −1.00000 −0.208743 −2.84982 −1.33838 0 −2.95613 1.00000 −3.81413
1.4 2.17526 −1.00000 2.73176 3.53051 −2.17526 0 1.59177 1.00000 7.67979
1.5 2.71279 −1.00000 5.35921 −1.30984 −2.71279 0 9.11283 1.00000 −3.55333
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2793.2.a.bf 5
3.b odd 2 1 8379.2.a.cc 5
7.b odd 2 1 2793.2.a.bh yes 5
21.c even 2 1 8379.2.a.cd 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2793.2.a.bf 5 1.a even 1 1 trivial
2793.2.a.bh yes 5 7.b odd 2 1
8379.2.a.cc 5 3.b odd 2 1
8379.2.a.cd 5 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2793))S_{2}^{\mathrm{new}}(\Gamma_0(2793)):

T253T246T23+22T225T213 T_{2}^{5} - 3T_{2}^{4} - 6T_{2}^{3} + 22T_{2}^{2} - 5T_{2} - 13 Copy content Toggle raw display
T552T5412T53+16T52+28T58 T_{5}^{5} - 2T_{5}^{4} - 12T_{5}^{3} + 16T_{5}^{2} + 28T_{5} - 8 Copy content Toggle raw display
T112 T_{11} - 2 Copy content Toggle raw display
T1352T13448T133+96T132+320T13128 T_{13}^{5} - 2T_{13}^{4} - 48T_{13}^{3} + 96T_{13}^{2} + 320T_{13} - 128 Copy content Toggle raw display
T1752T17412T173+16T172+28T178 T_{17}^{5} - 2T_{17}^{4} - 12T_{17}^{3} + 16T_{17}^{2} + 28T_{17} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T53T4+13 T^{5} - 3 T^{4} + \cdots - 13 Copy content Toggle raw display
33 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
55 T52T4+8 T^{5} - 2 T^{4} + \cdots - 8 Copy content Toggle raw display
77 T5 T^{5} Copy content Toggle raw display
1111 (T2)5 (T - 2)^{5} Copy content Toggle raw display
1313 T52T4+128 T^{5} - 2 T^{4} + \cdots - 128 Copy content Toggle raw display
1717 T52T4+8 T^{5} - 2 T^{4} + \cdots - 8 Copy content Toggle raw display
1919 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
2323 T514T4+352 T^{5} - 14 T^{4} + \cdots - 352 Copy content Toggle raw display
2929 T56T4+3608 T^{5} - 6 T^{4} + \cdots - 3608 Copy content Toggle raw display
3131 T58T4+4736 T^{5} - 8 T^{4} + \cdots - 4736 Copy content Toggle raw display
3737 T514T4+352 T^{5} - 14 T^{4} + \cdots - 352 Copy content Toggle raw display
4141 T58T4+2048 T^{5} - 8 T^{4} + \cdots - 2048 Copy content Toggle raw display
4343 T516T4+6272 T^{5} - 16 T^{4} + \cdots - 6272 Copy content Toggle raw display
4747 T54T4++1952 T^{5} - 4 T^{4} + \cdots + 1952 Copy content Toggle raw display
5353 T510T4+9608 T^{5} - 10 T^{4} + \cdots - 9608 Copy content Toggle raw display
5959 T54T4+12544 T^{5} - 4 T^{4} + \cdots - 12544 Copy content Toggle raw display
6161 T5176T3+6656 T^{5} - 176 T^{3} + \cdots - 6656 Copy content Toggle raw display
6767 T52T4+1696 T^{5} - 2 T^{4} + \cdots - 1696 Copy content Toggle raw display
7171 T516T4+5584 T^{5} - 16 T^{4} + \cdots - 5584 Copy content Toggle raw display
7373 T5+8T4+4096 T^{5} + 8 T^{4} + \cdots - 4096 Copy content Toggle raw display
7979 T56T4+31456 T^{5} - 6 T^{4} + \cdots - 31456 Copy content Toggle raw display
8383 T516T4++11792 T^{5} - 16 T^{4} + \cdots + 11792 Copy content Toggle raw display
8989 T5+8T4++512 T^{5} + 8 T^{4} + \cdots + 512 Copy content Toggle raw display
9797 T5+26T4++23584 T^{5} + 26 T^{4} + \cdots + 23584 Copy content Toggle raw display
show more
show less