Properties

Label 280.6.a.b
Level $280$
Weight $6$
Character orbit 280.a
Self dual yes
Analytic conductor $44.907$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,6,Mod(1,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.9074695476\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{3} + 25 q^{5} - 49 q^{7} - 227 q^{9} + 124 q^{11} + 766 q^{13} + 100 q^{15} - 1102 q^{17} - 764 q^{19} - 196 q^{21} + 168 q^{23} + 625 q^{25} - 1880 q^{27} - 6866 q^{29} - 4096 q^{31} + 496 q^{33}+ \cdots - 28148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 4.00000 0 25.0000 0 −49.0000 0 −227.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.6.a.b 1
4.b odd 2 1 560.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.6.a.b 1 1.a even 1 1 trivial
560.6.a.b 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 4 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(280))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 4 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T - 124 \) Copy content Toggle raw display
$13$ \( T - 766 \) Copy content Toggle raw display
$17$ \( T + 1102 \) Copy content Toggle raw display
$19$ \( T + 764 \) Copy content Toggle raw display
$23$ \( T - 168 \) Copy content Toggle raw display
$29$ \( T + 6866 \) Copy content Toggle raw display
$31$ \( T + 4096 \) Copy content Toggle raw display
$37$ \( T + 4682 \) Copy content Toggle raw display
$41$ \( T - 13130 \) Copy content Toggle raw display
$43$ \( T - 18220 \) Copy content Toggle raw display
$47$ \( T + 7104 \) Copy content Toggle raw display
$53$ \( T + 20026 \) Copy content Toggle raw display
$59$ \( T + 38964 \) Copy content Toggle raw display
$61$ \( T + 56274 \) Copy content Toggle raw display
$67$ \( T + 24060 \) Copy content Toggle raw display
$71$ \( T + 31896 \) Copy content Toggle raw display
$73$ \( T + 23670 \) Copy content Toggle raw display
$79$ \( T - 37744 \) Copy content Toggle raw display
$83$ \( T + 68204 \) Copy content Toggle raw display
$89$ \( T + 19078 \) Copy content Toggle raw display
$97$ \( T + 115646 \) Copy content Toggle raw display
show more
show less