Properties

Label 2800.2.a.i
Level $2800$
Weight $2$
Character orbit 2800.a
Self dual yes
Analytic conductor $22.358$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(1,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3581125660\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} - q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} - q^{7} - 2 q^{9} + 5 q^{11} - q^{13} - 3 q^{17} + 6 q^{19} + q^{21} - 6 q^{23} + 5 q^{27} - 9 q^{29} - 5 q^{33} - 6 q^{37} + q^{39} + 8 q^{41} + 6 q^{43} + 3 q^{47} + q^{49} + 3 q^{51} + 12 q^{53} - 6 q^{57} - 8 q^{59} - 4 q^{61} + 2 q^{63} - 4 q^{67} + 6 q^{69} - 8 q^{71} - 10 q^{73} - 5 q^{77} + 3 q^{79} + q^{81} - 12 q^{83} + 9 q^{87} - 16 q^{89} + q^{91} - 7 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 0 0 −1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.a.i 1
4.b odd 2 1 1400.2.a.k 1
5.b even 2 1 560.2.a.e 1
5.c odd 4 2 2800.2.g.m 2
15.d odd 2 1 5040.2.a.be 1
20.d odd 2 1 280.2.a.b 1
20.e even 4 2 1400.2.g.e 2
28.d even 2 1 9800.2.a.n 1
35.c odd 2 1 3920.2.a.r 1
40.e odd 2 1 2240.2.a.v 1
40.f even 2 1 2240.2.a.j 1
60.h even 2 1 2520.2.a.p 1
140.c even 2 1 1960.2.a.k 1
140.p odd 6 2 1960.2.q.m 2
140.s even 6 2 1960.2.q.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.a.b 1 20.d odd 2 1
560.2.a.e 1 5.b even 2 1
1400.2.a.k 1 4.b odd 2 1
1400.2.g.e 2 20.e even 4 2
1960.2.a.k 1 140.c even 2 1
1960.2.q.e 2 140.s even 6 2
1960.2.q.m 2 140.p odd 6 2
2240.2.a.j 1 40.f even 2 1
2240.2.a.v 1 40.e odd 2 1
2520.2.a.p 1 60.h even 2 1
2800.2.a.i 1 1.a even 1 1 trivial
2800.2.g.m 2 5.c odd 4 2
3920.2.a.r 1 35.c odd 2 1
5040.2.a.be 1 15.d odd 2 1
9800.2.a.n 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2800))\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{11} - 5 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 5 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 9 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T - 8 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T - 3 \) Copy content Toggle raw display
$53$ \( T - 12 \) Copy content Toggle raw display
$59$ \( T + 8 \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T - 3 \) Copy content Toggle raw display
$83$ \( T + 12 \) Copy content Toggle raw display
$89$ \( T + 16 \) Copy content Toggle raw display
$97$ \( T + 7 \) Copy content Toggle raw display
show more
show less