Properties

Label 2800.2.a.u
Level $2800$
Weight $2$
Character orbit 2800.a
Self dual yes
Analytic conductor $22.358$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(1,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - q^{7} - 2 q^{9} + q^{11} + q^{13} + 3 q^{17} + 4 q^{19} - q^{21} + 2 q^{23} - 5 q^{27} - q^{29} + 6 q^{31} + q^{33} - 2 q^{37} + q^{39} - 10 q^{41} + 9 q^{47} + q^{49} + 3 q^{51} + 14 q^{53} + 4 q^{57} - 6 q^{59} - 4 q^{61} + 2 q^{63} + 10 q^{67} + 2 q^{69} + 16 q^{71} - 10 q^{73} - q^{77} + 11 q^{79} + q^{81} + 4 q^{83} - q^{87} + 12 q^{89} - q^{91} + 6 q^{93} + 19 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 0 0 −1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.a.u 1
4.b odd 2 1 1400.2.a.d 1
5.b even 2 1 2800.2.a.k 1
5.c odd 4 2 560.2.g.d 2
15.e even 4 2 5040.2.t.a 2
20.d odd 2 1 1400.2.a.j 1
20.e even 4 2 280.2.g.a 2
28.d even 2 1 9800.2.a.bb 1
40.i odd 4 2 2240.2.g.a 2
40.k even 4 2 2240.2.g.b 2
60.l odd 4 2 2520.2.t.a 2
140.c even 2 1 9800.2.a.p 1
140.j odd 4 2 1960.2.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.g.a 2 20.e even 4 2
560.2.g.d 2 5.c odd 4 2
1400.2.a.d 1 4.b odd 2 1
1400.2.a.j 1 20.d odd 2 1
1960.2.g.a 2 140.j odd 4 2
2240.2.g.a 2 40.i odd 4 2
2240.2.g.b 2 40.k even 4 2
2520.2.t.a 2 60.l odd 4 2
2800.2.a.k 1 5.b even 2 1
2800.2.a.u 1 1.a even 1 1 trivial
5040.2.t.a 2 15.e even 4 2
9800.2.a.p 1 140.c even 2 1
9800.2.a.bb 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2800))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{11} - 1 \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 2 \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T - 6 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 9 \) Copy content Toggle raw display
$53$ \( T - 14 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T - 10 \) Copy content Toggle raw display
$71$ \( T - 16 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T - 11 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 12 \) Copy content Toggle raw display
$97$ \( T - 19 \) Copy content Toggle raw display
show more
show less