Properties

Label 2800.2.g.c
Level 28002800
Weight 22
Character orbit 2800.g
Analytic conductor 22.35822.358
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2800,2,Mod(449,2800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2800.449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2800=24527 2800 = 2^{4} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2800.g (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-12,0,10,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.358112566022.3581125660
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq3+iq76q9+5q11+3iq13iq17+6q193q21+6iq239iq27+9q29+4q31+15iq33+2iq379q394q41+10iq43+30q99+O(q100) q + 3 i q^{3} + i q^{7} - 6 q^{9} + 5 q^{11} + 3 i q^{13} - i q^{17} + 6 q^{19} - 3 q^{21} + 6 i q^{23} - 9 i q^{27} + 9 q^{29} + 4 q^{31} + 15 i q^{33} + 2 i q^{37} - 9 q^{39} - 4 q^{41} + 10 i q^{43} + \cdots - 30 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q12q9+10q11+12q196q21+18q29+8q3118q398q412q49+6q5116q5916q6136q6916q71+26q79+18q818q896q91+60q99+O(q100) 2 q - 12 q^{9} + 10 q^{11} + 12 q^{19} - 6 q^{21} + 18 q^{29} + 8 q^{31} - 18 q^{39} - 8 q^{41} - 2 q^{49} + 6 q^{51} - 16 q^{59} - 16 q^{61} - 36 q^{69} - 16 q^{71} + 26 q^{79} + 18 q^{81} - 8 q^{89} - 6 q^{91}+ \cdots - 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2800Z)×\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times.

nn 351351 801801 21012101 25772577
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
449.1
1.00000i
1.00000i
0 3.00000i 0 0 0 1.00000i 0 −6.00000 0
449.2 0 3.00000i 0 0 0 1.00000i 0 −6.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.c 2
4.b odd 2 1 700.2.e.a 2
5.b even 2 1 inner 2800.2.g.c 2
5.c odd 4 1 560.2.a.a 1
5.c odd 4 1 2800.2.a.be 1
12.b even 2 1 6300.2.k.p 2
15.e even 4 1 5040.2.a.bd 1
20.d odd 2 1 700.2.e.a 2
20.e even 4 1 140.2.a.b 1
20.e even 4 1 700.2.a.b 1
28.d even 2 1 4900.2.e.a 2
35.f even 4 1 3920.2.a.bl 1
40.i odd 4 1 2240.2.a.bb 1
40.k even 4 1 2240.2.a.c 1
60.h even 2 1 6300.2.k.p 2
60.l odd 4 1 1260.2.a.h 1
60.l odd 4 1 6300.2.a.bf 1
140.c even 2 1 4900.2.e.a 2
140.j odd 4 1 980.2.a.b 1
140.j odd 4 1 4900.2.a.u 1
140.w even 12 2 980.2.i.b 2
140.x odd 12 2 980.2.i.j 2
420.w even 4 1 8820.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.b 1 20.e even 4 1
560.2.a.a 1 5.c odd 4 1
700.2.a.b 1 20.e even 4 1
700.2.e.a 2 4.b odd 2 1
700.2.e.a 2 20.d odd 2 1
980.2.a.b 1 140.j odd 4 1
980.2.i.b 2 140.w even 12 2
980.2.i.j 2 140.x odd 12 2
1260.2.a.h 1 60.l odd 4 1
2240.2.a.c 1 40.k even 4 1
2240.2.a.bb 1 40.i odd 4 1
2800.2.a.be 1 5.c odd 4 1
2800.2.g.c 2 1.a even 1 1 trivial
2800.2.g.c 2 5.b even 2 1 inner
3920.2.a.bl 1 35.f even 4 1
4900.2.a.u 1 140.j odd 4 1
4900.2.e.a 2 28.d even 2 1
4900.2.e.a 2 140.c even 2 1
5040.2.a.bd 1 15.e even 4 1
6300.2.a.bf 1 60.l odd 4 1
6300.2.k.p 2 12.b even 2 1
6300.2.k.p 2 60.h even 2 1
8820.2.a.n 1 420.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2800,[χ])S_{2}^{\mathrm{new}}(2800, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T115 T_{11} - 5 Copy content Toggle raw display
T132+9 T_{13}^{2} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 (T5)2 (T - 5)^{2} Copy content Toggle raw display
1313 T2+9 T^{2} + 9 Copy content Toggle raw display
1717 T2+1 T^{2} + 1 Copy content Toggle raw display
1919 (T6)2 (T - 6)^{2} Copy content Toggle raw display
2323 T2+36 T^{2} + 36 Copy content Toggle raw display
2929 (T9)2 (T - 9)^{2} Copy content Toggle raw display
3131 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
4343 T2+100 T^{2} + 100 Copy content Toggle raw display
4747 T2+1 T^{2} + 1 Copy content Toggle raw display
5353 T2+16 T^{2} + 16 Copy content Toggle raw display
5959 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
6161 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
6767 T2+144 T^{2} + 144 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 T2+4 T^{2} + 4 Copy content Toggle raw display
7979 (T13)2 (T - 13)^{2} Copy content Toggle raw display
8383 T2+16 T^{2} + 16 Copy content Toggle raw display
8989 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
9797 T2+169 T^{2} + 169 Copy content Toggle raw display
show more
show less