Properties

Label 2816.2.e.o
Level 28162816
Weight 22
Character orbit 2816.e
Analytic conductor 22.48622.486
Analytic rank 00
Dimension 1616
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2816,2,Mod(2815,2816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2816.2815"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2816=2811 2816 = 2^{8} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2816.e (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0, 0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(89)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.485873209222.4858732092
Analytic rank: 00
Dimension: 1616
Coefficient field: 16.0.1622647227216566419456.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x164x14+8x1244x10+161x888x6+32x432x2+16 x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 226 2^{26}
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+β8q5+β6q7+β1q9+(β9β7)q11+β3q13+β4q15+β15q17β7q19+β3q21++(β133β9++β2)q99+O(q100) q + \beta_{2} q^{3} + \beta_{8} q^{5} + \beta_{6} q^{7} + \beta_1 q^{9} + ( - \beta_{9} - \beta_{7}) q^{11} + \beta_{3} q^{13} + \beta_{4} q^{15} + \beta_{15} q^{17} - \beta_{7} q^{19} + \beta_{3} q^{21}+ \cdots + (\beta_{13} - 3 \beta_{9} + \cdots + \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+32q25+16q33+16q4916q81+80q8916q97+O(q100) 16 q + 32 q^{25} + 16 q^{33} + 16 q^{49} - 16 q^{81} + 80 q^{89} - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x164x14+8x1244x10+161x888x6+32x432x2+16 x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== (29ν1456ν12+324ν10908ν8+485ν6188ν4+180ν2+69664)/24660 ( 29\nu^{14} - 56\nu^{12} + 324\nu^{10} - 908\nu^{8} + 485\nu^{6} - 188\nu^{4} + 180\nu^{2} + 69664 ) / 24660 Copy content Toggle raw display
β2\beta_{2}== (699ν142134ν12+2972ν1025892ν8+82779ν6+34934ν46508ν29680)/49320 ( 699\nu^{14} - 2134\nu^{12} + 2972\nu^{10} - 25892\nu^{8} + 82779\nu^{6} + 34934\nu^{4} - 6508\nu^{2} - 9680 ) / 49320 Copy content Toggle raw display
β3\beta_{3}== (857ν152184ν13+2498ν1129932ν9+89333ν7+96240ν5+28036ν)/24660 ( 857 \nu^{15} - 2184 \nu^{13} + 2498 \nu^{11} - 29932 \nu^{9} + 89333 \nu^{7} + 96240 \nu^{5} + \cdots - 28036 \nu ) / 24660 Copy content Toggle raw display
β4\beta_{4}== (2223ν148072ν12+15388ν1096436ν8+326295ν697556ν4+58072)/49320 ( 2223 \nu^{14} - 8072 \nu^{12} + 15388 \nu^{10} - 96436 \nu^{8} + 326295 \nu^{6} - 97556 \nu^{4} + \cdots - 58072 ) / 49320 Copy content Toggle raw display
β5\beta_{5}== (2875ν1510342ν13+18912ν11119836ν9+415771ν7106762ν5+33376ν)/49320 ( 2875 \nu^{15} - 10342 \nu^{13} + 18912 \nu^{11} - 119836 \nu^{9} + 415771 \nu^{7} - 106762 \nu^{5} + \cdots - 33376 \nu ) / 49320 Copy content Toggle raw display
β6\beta_{6}== (885ν15+3712ν137757ν11+40616ν9150771ν7+106522ν5++67946ν)/12330 ( - 885 \nu^{15} + 3712 \nu^{13} - 7757 \nu^{11} + 40616 \nu^{9} - 150771 \nu^{7} + 106522 \nu^{5} + \cdots + 67946 \nu ) / 12330 Copy content Toggle raw display
β7\beta_{7}== (3715ν15+13438ν1322968ν11+147724ν9527779ν7++74944ν)/49320 ( - 3715 \nu^{15} + 13438 \nu^{13} - 22968 \nu^{11} + 147724 \nu^{9} - 527779 \nu^{7} + \cdots + 74944 \nu ) / 49320 Copy content Toggle raw display
β8\beta_{8}== (13ν14+53ν12104ν10+564ν82113ν6+1157ν4+196ν2+240)/180 ( -13\nu^{14} + 53\nu^{12} - 104\nu^{10} + 564\nu^{8} - 2113\nu^{6} + 1157\nu^{4} + 196\nu^{2} + 240 ) / 180 Copy content Toggle raw display
β9\beta_{9}== (3959ν1412114ν12+17852ν10148372ν8+480839ν6+203994ν4+56080)/49320 ( 3959 \nu^{14} - 12114 \nu^{12} + 17852 \nu^{10} - 148372 \nu^{8} + 480839 \nu^{6} + 203994 \nu^{4} + \cdots - 56080 ) / 49320 Copy content Toggle raw display
β10\beta_{10}== (3247ν1513498ν13+28482ν11149284ν9+551755ν7+248548ν)/24660 ( 3247 \nu^{15} - 13498 \nu^{13} + 28482 \nu^{11} - 149284 \nu^{9} + 551755 \nu^{7} + \cdots - 248548 \nu ) / 24660 Copy content Toggle raw display
β11\beta_{11}== (4203ν1510790ν13+12736ν11149020ν9+433899ν7+135856ν)/24660 ( 4203 \nu^{15} - 10790 \nu^{13} + 12736 \nu^{11} - 149020 \nu^{9} + 433899 \nu^{7} + \cdots - 135856 \nu ) / 24660 Copy content Toggle raw display
β12\beta_{12}== (111ν14460ν12+900ν104836ν8+18183ν69960ν41692ν22064)/548 ( 111\nu^{14} - 460\nu^{12} + 900\nu^{10} - 4836\nu^{8} + 18183\nu^{6} - 9960\nu^{4} - 1692\nu^{2} - 2064 ) / 548 Copy content Toggle raw display
β13\beta_{13}== (14121ν1551314ν13+87376ν11564772ν9+2020185ν7+286864ν)/49320 ( 14121 \nu^{15} - 51314 \nu^{13} + 87376 \nu^{11} - 564772 \nu^{9} + 2020185 \nu^{7} + \cdots - 286864 \nu ) / 49320 Copy content Toggle raw display
β14\beta_{14}== (12847ν1446728ν12+88732ν10544724ν8+1891735ν6565524ν4+336488)/49320 ( 12847 \nu^{14} - 46728 \nu^{12} + 88732 \nu^{10} - 544724 \nu^{8} + 1891735 \nu^{6} - 565524 \nu^{4} + \cdots - 336488 ) / 49320 Copy content Toggle raw display
β15\beta_{15}== (16591ν1560222ν13+112024ν11693356ν9+2419999ν7+193808ν)/49320 ( 16591 \nu^{15} - 60222 \nu^{13} + 112024 \nu^{11} - 693356 \nu^{9} + 2419999 \nu^{7} + \cdots - 193808 \nu ) / 49320 Copy content Toggle raw display
ν\nu== (β15+β13β11β10+5β7+β6+β5+2β3)/16 ( \beta_{15} + \beta_{13} - \beta_{11} - \beta_{10} + 5\beta_{7} + \beta_{6} + \beta_{5} + 2\beta_{3} ) / 16 Copy content Toggle raw display
ν2\nu^{2}== (β14+β12β9+4β83β4+3β2β1+4)/8 ( \beta_{14} + \beta_{12} - \beta_{9} + 4\beta_{8} - 3\beta_{4} + 3\beta_{2} - \beta _1 + 4 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (β15β13β117β10β713β63β5+6β3)/16 ( \beta_{15} - \beta_{13} - \beta_{11} - 7\beta_{10} - \beta_{7} - 13\beta_{6} - 3\beta_{5} + 6\beta_{3} ) / 16 Copy content Toggle raw display
ν4\nu^{4}== (2β12+3β9+6β815β2)/4 ( 2\beta_{12} + 3\beta_{9} + 6\beta_{8} - 15\beta_{2} ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (7β15+7β13+β113β10+27β75β641β52β3)/16 ( 7\beta_{15} + 7\beta_{13} + \beta_{11} - 3\beta_{10} + 27\beta_{7} - 5\beta_{6} - 41\beta_{5} - 2\beta_{3} ) / 16 Copy content Toggle raw display
ν6\nu^{6}== (3β147β12+15β920β817β485β235β1+100)/8 ( 3\beta_{14} - 7\beta_{12} + 15\beta_{9} - 20\beta_{8} - 17\beta_{4} - 85\beta_{2} - 35\beta _1 + 100 ) / 8 Copy content Toggle raw display
ν7\nu^{7}== (5β15+27β1331β11+31β10+103β7+57β6++150β3)/16 ( 5 \beta_{15} + 27 \beta_{13} - 31 \beta_{11} + 31 \beta_{10} + 103 \beta_{7} + 57 \beta_{6} + \cdots + 150 \beta_{3} ) / 16 Copy content Toggle raw display
ν8\nu^{8}== (15β1487β4+12β134)/4 ( 15\beta_{14} - 87\beta_{4} + 12\beta _1 - 34 ) / 4 Copy content Toggle raw display
ν9\nu^{9}== (23β15133β1389β1189β10509β7163β6++430β3)/16 ( 23 \beta_{15} - 133 \beta_{13} - 89 \beta_{11} - 89 \beta_{10} - 509 \beta_{7} - 163 \beta_{6} + \cdots + 430 \beta_{3} ) / 16 Copy content Toggle raw display
ν10\nu^{10}== (17β14+41β12+187β9+116β899β41089β2+451β11276)/8 ( 17\beta_{14} + 41\beta_{12} + 187\beta_{9} + 116\beta_{8} - 99\beta_{4} - 1089\beta_{2} + 451\beta _1 - 1276 ) / 8 Copy content Toggle raw display
ν11\nu^{11}== (263β15263β13+61β11+355β101007β7+294β3)/16 ( 263 \beta_{15} - 263 \beta_{13} + 61 \beta_{11} + 355 \beta_{10} - 1007 \beta_{7} + \cdots - 294 \beta_{3} ) / 16 Copy content Toggle raw display
ν12\nu^{12}== (350β12+261β9990β81521β2)/4 ( -350\beta_{12} + 261\beta_{9} - 990\beta_{8} - 1521\beta_{2} ) / 4 Copy content Toggle raw display
ν13\nu^{13}== (7β157β13577β11+3363β1027β7++2786β3)/16 ( - 7 \beta_{15} - 7 \beta_{13} - 577 \beta_{11} + 3363 \beta_{10} - 27 \beta_{7} + \cdots + 2786 \beta_{3} ) / 16 Copy content Toggle raw display
ν14\nu^{14}== (693β141673β121287β94732β84039β4+7501β2+8788)/8 ( 693 \beta_{14} - 1673 \beta_{12} - 1287 \beta_{9} - 4732 \beta_{8} - 4039 \beta_{4} + 7501 \beta_{2} + \cdots - 8788 ) / 8 Copy content Toggle raw display
ν15\nu^{15}== (1277β157443β131649β11+1649β1028495β7++7962β3)/16 ( - 1277 \beta_{15} - 7443 \beta_{13} - 1649 \beta_{11} + 1649 \beta_{10} - 28495 \beta_{7} + \cdots + 7962 \beta_{3} ) / 16 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2816Z)×\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times.

nn 10251025 15411541 20472047
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2815.1
−1.00237 + 1.55225i
1.00237 1.55225i
1.80639 + 0.388825i
−1.80639 0.388825i
−0.415194 0.642962i
0.415194 + 0.642962i
−0.748229 + 0.161057i
0.748229 0.161057i
−0.415194 + 0.642962i
0.415194 0.642962i
−0.748229 0.161057i
0.748229 + 0.161057i
−1.00237 1.55225i
1.00237 + 1.55225i
1.80639 0.388825i
−1.80639 + 0.388825i
0 2.41421i 0 −2.64575 0 −2.27411 0 −2.82843 0
2815.2 0 2.41421i 0 −2.64575 0 2.27411 0 −2.82843 0
2815.3 0 2.41421i 0 2.64575 0 −2.27411 0 −2.82843 0
2815.4 0 2.41421i 0 2.64575 0 2.27411 0 −2.82843 0
2815.5 0 0.414214i 0 −2.64575 0 −3.29066 0 2.82843 0
2815.6 0 0.414214i 0 −2.64575 0 3.29066 0 2.82843 0
2815.7 0 0.414214i 0 2.64575 0 −3.29066 0 2.82843 0
2815.8 0 0.414214i 0 2.64575 0 3.29066 0 2.82843 0
2815.9 0 0.414214i 0 −2.64575 0 −3.29066 0 2.82843 0
2815.10 0 0.414214i 0 −2.64575 0 3.29066 0 2.82843 0
2815.11 0 0.414214i 0 2.64575 0 −3.29066 0 2.82843 0
2815.12 0 0.414214i 0 2.64575 0 3.29066 0 2.82843 0
2815.13 0 2.41421i 0 −2.64575 0 −2.27411 0 −2.82843 0
2815.14 0 2.41421i 0 −2.64575 0 2.27411 0 −2.82843 0
2815.15 0 2.41421i 0 2.64575 0 −2.27411 0 −2.82843 0
2815.16 0 2.41421i 0 2.64575 0 2.27411 0 −2.82843 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2815.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner
88.b odd 2 1 inner
88.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2816.2.e.o 16
4.b odd 2 1 inner 2816.2.e.o 16
8.b even 2 1 inner 2816.2.e.o 16
8.d odd 2 1 inner 2816.2.e.o 16
11.b odd 2 1 inner 2816.2.e.o 16
16.e even 4 1 88.2.g.b 8
16.e even 4 1 352.2.g.b 8
16.f odd 4 1 88.2.g.b 8
16.f odd 4 1 352.2.g.b 8
44.c even 2 1 inner 2816.2.e.o 16
48.i odd 4 1 792.2.h.g 8
48.i odd 4 1 3168.2.h.g 8
48.k even 4 1 792.2.h.g 8
48.k even 4 1 3168.2.h.g 8
88.b odd 2 1 inner 2816.2.e.o 16
88.g even 2 1 inner 2816.2.e.o 16
176.i even 4 1 88.2.g.b 8
176.i even 4 1 352.2.g.b 8
176.l odd 4 1 88.2.g.b 8
176.l odd 4 1 352.2.g.b 8
176.u odd 20 4 968.2.k.g 32
176.v odd 20 4 968.2.k.g 32
176.w even 20 4 968.2.k.g 32
176.x even 20 4 968.2.k.g 32
528.s odd 4 1 792.2.h.g 8
528.s odd 4 1 3168.2.h.g 8
528.x even 4 1 792.2.h.g 8
528.x even 4 1 3168.2.h.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.g.b 8 16.e even 4 1
88.2.g.b 8 16.f odd 4 1
88.2.g.b 8 176.i even 4 1
88.2.g.b 8 176.l odd 4 1
352.2.g.b 8 16.e even 4 1
352.2.g.b 8 16.f odd 4 1
352.2.g.b 8 176.i even 4 1
352.2.g.b 8 176.l odd 4 1
792.2.h.g 8 48.i odd 4 1
792.2.h.g 8 48.k even 4 1
792.2.h.g 8 528.s odd 4 1
792.2.h.g 8 528.x even 4 1
968.2.k.g 32 176.u odd 20 4
968.2.k.g 32 176.v odd 20 4
968.2.k.g 32 176.w even 20 4
968.2.k.g 32 176.x even 20 4
2816.2.e.o 16 1.a even 1 1 trivial
2816.2.e.o 16 4.b odd 2 1 inner
2816.2.e.o 16 8.b even 2 1 inner
2816.2.e.o 16 8.d odd 2 1 inner
2816.2.e.o 16 11.b odd 2 1 inner
2816.2.e.o 16 44.c even 2 1 inner
2816.2.e.o 16 88.b odd 2 1 inner
2816.2.e.o 16 88.g even 2 1 inner
3168.2.h.g 8 48.i odd 4 1
3168.2.h.g 8 48.k even 4 1
3168.2.h.g 8 528.s odd 4 1
3168.2.h.g 8 528.x even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2816,[χ])S_{2}^{\mathrm{new}}(2816, [\chi]):

T34+6T32+1 T_{3}^{4} + 6T_{3}^{2} + 1 Copy content Toggle raw display
T527 T_{5}^{2} - 7 Copy content Toggle raw display
T7416T72+56 T_{7}^{4} - 16T_{7}^{2} + 56 Copy content Toggle raw display
T134+32T132+56 T_{13}^{4} + 32T_{13}^{2} + 56 Copy content Toggle raw display
T19416T192+56 T_{19}^{4} - 16T_{19}^{2} + 56 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 (T4+6T2+1)4 (T^{4} + 6 T^{2} + 1)^{4} Copy content Toggle raw display
55 (T27)8 (T^{2} - 7)^{8} Copy content Toggle raw display
77 (T416T2+56)4 (T^{4} - 16 T^{2} + 56)^{4} Copy content Toggle raw display
1111 (T820T6++14641)2 (T^{8} - 20 T^{6} + \cdots + 14641)^{2} Copy content Toggle raw display
1313 (T4+32T2+56)4 (T^{4} + 32 T^{2} + 56)^{4} Copy content Toggle raw display
1717 (T4+32T2+56)4 (T^{4} + 32 T^{2} + 56)^{4} Copy content Toggle raw display
1919 (T416T2+56)4 (T^{4} - 16 T^{2} + 56)^{4} Copy content Toggle raw display
2323 (T4+42T2+49)4 (T^{4} + 42 T^{2} + 49)^{4} Copy content Toggle raw display
2929 (T4+64T2+896)4 (T^{4} + 64 T^{2} + 896)^{4} Copy content Toggle raw display
3131 (T4+42T2+49)4 (T^{4} + 42 T^{2} + 49)^{4} Copy content Toggle raw display
3737 (T4126T2+2401)4 (T^{4} - 126 T^{2} + 2401)^{4} Copy content Toggle raw display
4141 (T4+128T2+2744)4 (T^{4} + 128 T^{2} + 2744)^{4} Copy content Toggle raw display
4343 (T4128T2+3584)4 (T^{4} - 128 T^{2} + 3584)^{4} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 (T256)8 (T^{2} - 56)^{8} Copy content Toggle raw display
5959 (T4+38T2+289)4 (T^{4} + 38 T^{2} + 289)^{4} Copy content Toggle raw display
6161 (T4+64T2+896)4 (T^{4} + 64 T^{2} + 896)^{4} Copy content Toggle raw display
6767 (T4+102T2+2401)4 (T^{4} + 102 T^{2} + 2401)^{4} Copy content Toggle raw display
7171 (T4+42T2+49)4 (T^{4} + 42 T^{2} + 49)^{4} Copy content Toggle raw display
7373 (T4+64T2+56)4 (T^{4} + 64 T^{2} + 56)^{4} Copy content Toggle raw display
7979 (T4128T2+3584)4 (T^{4} - 128 T^{2} + 3584)^{4} Copy content Toggle raw display
8383 (T464T2+896)4 (T^{4} - 64 T^{2} + 896)^{4} Copy content Toggle raw display
8989 (T210T7)8 (T^{2} - 10 T - 7)^{8} Copy content Toggle raw display
9797 (T2+2T71)8 (T^{2} + 2 T - 71)^{8} Copy content Toggle raw display
show more
show less