gp: [N,k,chi] = [2816,2,Mod(2815,2816)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2816.2815");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,
0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,80]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(89)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 − 4 x 14 + 8 x 12 − 44 x 10 + 161 x 8 − 88 x 6 + 32 x 4 − 32 x 2 + 16 x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 x 1 6 − 4 x 1 4 + 8 x 1 2 − 4 4 x 1 0 + 1 6 1 x 8 − 8 8 x 6 + 3 2 x 4 − 3 2 x 2 + 1 6
x^16 - 4*x^14 + 8*x^12 - 44*x^10 + 161*x^8 - 88*x^6 + 32*x^4 - 32*x^2 + 16
:
β 1 \beta_{1} β 1 = = =
( 29 ν 14 − 56 ν 12 + 324 ν 10 − 908 ν 8 + 485 ν 6 − 188 ν 4 + 180 ν 2 + 69664 ) / 24660 ( 29\nu^{14} - 56\nu^{12} + 324\nu^{10} - 908\nu^{8} + 485\nu^{6} - 188\nu^{4} + 180\nu^{2} + 69664 ) / 24660 ( 2 9 ν 1 4 − 5 6 ν 1 2 + 3 2 4 ν 1 0 − 9 0 8 ν 8 + 4 8 5 ν 6 − 1 8 8 ν 4 + 1 8 0 ν 2 + 6 9 6 6 4 ) / 2 4 6 6 0
(29*v^14 - 56*v^12 + 324*v^10 - 908*v^8 + 485*v^6 - 188*v^4 + 180*v^2 + 69664) / 24660
β 2 \beta_{2} β 2 = = =
( 699 ν 14 − 2134 ν 12 + 2972 ν 10 − 25892 ν 8 + 82779 ν 6 + 34934 ν 4 − 6508 ν 2 − 9680 ) / 49320 ( 699\nu^{14} - 2134\nu^{12} + 2972\nu^{10} - 25892\nu^{8} + 82779\nu^{6} + 34934\nu^{4} - 6508\nu^{2} - 9680 ) / 49320 ( 6 9 9 ν 1 4 − 2 1 3 4 ν 1 2 + 2 9 7 2 ν 1 0 − 2 5 8 9 2 ν 8 + 8 2 7 7 9 ν 6 + 3 4 9 3 4 ν 4 − 6 5 0 8 ν 2 − 9 6 8 0 ) / 4 9 3 2 0
(699*v^14 - 2134*v^12 + 2972*v^10 - 25892*v^8 + 82779*v^6 + 34934*v^4 - 6508*v^2 - 9680) / 49320
β 3 \beta_{3} β 3 = = =
( 857 ν 15 − 2184 ν 13 + 2498 ν 11 − 29932 ν 9 + 89333 ν 7 + 96240 ν 5 + ⋯ − 28036 ν ) / 24660 ( 857 \nu^{15} - 2184 \nu^{13} + 2498 \nu^{11} - 29932 \nu^{9} + 89333 \nu^{7} + 96240 \nu^{5} + \cdots - 28036 \nu ) / 24660 ( 8 5 7 ν 1 5 − 2 1 8 4 ν 1 3 + 2 4 9 8 ν 1 1 − 2 9 9 3 2 ν 9 + 8 9 3 3 3 ν 7 + 9 6 2 4 0 ν 5 + ⋯ − 2 8 0 3 6 ν ) / 2 4 6 6 0
(857*v^15 - 2184*v^13 + 2498*v^11 - 29932*v^9 + 89333*v^7 + 96240*v^5 + 18254*v^3 - 28036*v) / 24660
β 4 \beta_{4} β 4 = = =
( 2223 ν 14 − 8072 ν 12 + 15388 ν 10 − 96436 ν 8 + 326295 ν 6 − 97556 ν 4 + ⋯ − 58072 ) / 49320 ( 2223 \nu^{14} - 8072 \nu^{12} + 15388 \nu^{10} - 96436 \nu^{8} + 326295 \nu^{6} - 97556 \nu^{4} + \cdots - 58072 ) / 49320 ( 2 2 2 3 ν 1 4 − 8 0 7 2 ν 1 2 + 1 5 3 8 8 ν 1 0 − 9 6 4 3 6 ν 8 + 3 2 6 2 9 5 ν 6 − 9 7 5 5 6 ν 4 + ⋯ − 5 8 0 7 2 ) / 4 9 3 2 0
(2223*v^14 - 8072*v^12 + 15388*v^10 - 96436*v^8 + 326295*v^6 - 97556*v^4 + 112060*v^2 - 58072) / 49320
β 5 \beta_{5} β 5 = = =
( 2875 ν 15 − 10342 ν 13 + 18912 ν 11 − 119836 ν 9 + 415771 ν 7 − 106762 ν 5 + ⋯ − 33376 ν ) / 49320 ( 2875 \nu^{15} - 10342 \nu^{13} + 18912 \nu^{11} - 119836 \nu^{9} + 415771 \nu^{7} - 106762 \nu^{5} + \cdots - 33376 \nu ) / 49320 ( 2 8 7 5 ν 1 5 − 1 0 3 4 2 ν 1 3 + 1 8 9 1 2 ν 1 1 − 1 1 9 8 3 6 ν 9 + 4 1 5 7 7 1 ν 7 − 1 0 6 7 6 2 ν 5 + ⋯ − 3 3 3 7 6 ν ) / 4 9 3 2 0
(2875*v^15 - 10342*v^13 + 18912*v^11 - 119836*v^9 + 415771*v^7 - 106762*v^5 + 83208*v^3 - 33376*v) / 49320
β 6 \beta_{6} β 6 = = =
( − 885 ν 15 + 3712 ν 13 − 7757 ν 11 + 40616 ν 9 − 150771 ν 7 + 106522 ν 5 + ⋯ + 67946 ν ) / 12330 ( - 885 \nu^{15} + 3712 \nu^{13} - 7757 \nu^{11} + 40616 \nu^{9} - 150771 \nu^{7} + 106522 \nu^{5} + \cdots + 67946 \nu ) / 12330 ( − 8 8 5 ν 1 5 + 3 7 1 2 ν 1 3 − 7 7 5 7 ν 1 1 + 4 0 6 1 6 ν 9 − 1 5 0 7 7 1 ν 7 + 1 0 6 5 2 2 ν 5 + ⋯ + 6 7 9 4 6 ν ) / 1 2 3 3 0
(-885*v^15 + 3712*v^13 - 7757*v^11 + 40616*v^9 - 150771*v^7 + 106522*v^5 - 57983*v^3 + 67946*v) / 12330
β 7 \beta_{7} β 7 = = =
( − 3715 ν 15 + 13438 ν 13 − 22968 ν 11 + 147724 ν 9 − 527779 ν 7 + ⋯ + 74944 ν ) / 49320 ( - 3715 \nu^{15} + 13438 \nu^{13} - 22968 \nu^{11} + 147724 \nu^{9} - 527779 \nu^{7} + \cdots + 74944 \nu ) / 49320 ( − 3 7 1 5 ν 1 5 + 1 3 4 3 8 ν 1 3 − 2 2 9 6 8 ν 1 1 + 1 4 7 7 2 4 ν 9 − 5 2 7 7 7 9 ν 7 + ⋯ + 7 4 9 4 4 ν ) / 4 9 3 2 0
(-3715*v^15 + 13438*v^13 - 22968*v^11 + 147724*v^9 - 527779*v^7 + 55858*v^5 + 165888*v^3 + 74944*v) / 49320
β 8 \beta_{8} β 8 = = =
( − 13 ν 14 + 53 ν 12 − 104 ν 10 + 564 ν 8 − 2113 ν 6 + 1157 ν 4 + 196 ν 2 + 240 ) / 180 ( -13\nu^{14} + 53\nu^{12} - 104\nu^{10} + 564\nu^{8} - 2113\nu^{6} + 1157\nu^{4} + 196\nu^{2} + 240 ) / 180 ( − 1 3 ν 1 4 + 5 3 ν 1 2 − 1 0 4 ν 1 0 + 5 6 4 ν 8 − 2 1 1 3 ν 6 + 1 1 5 7 ν 4 + 1 9 6 ν 2 + 2 4 0 ) / 1 8 0
(-13*v^14 + 53*v^12 - 104*v^10 + 564*v^8 - 2113*v^6 + 1157*v^4 + 196*v^2 + 240) / 180
β 9 \beta_{9} β 9 = = =
( 3959 ν 14 − 12114 ν 12 + 17852 ν 10 − 148372 ν 8 + 480839 ν 6 + 203994 ν 4 + ⋯ − 56080 ) / 49320 ( 3959 \nu^{14} - 12114 \nu^{12} + 17852 \nu^{10} - 148372 \nu^{8} + 480839 \nu^{6} + 203994 \nu^{4} + \cdots - 56080 ) / 49320 ( 3 9 5 9 ν 1 4 − 1 2 1 1 4 ν 1 2 + 1 7 8 5 2 ν 1 0 − 1 4 8 3 7 2 ν 8 + 4 8 0 8 3 9 ν 6 + 2 0 3 9 9 4 ν 4 + ⋯ − 5 6 0 8 0 ) / 4 9 3 2 0
(3959*v^14 - 12114*v^12 + 17852*v^10 - 148372*v^8 + 480839*v^6 + 203994*v^4 - 38428*v^2 - 56080) / 49320
β 10 \beta_{10} β 1 0 = = =
( 3247 ν 15 − 13498 ν 13 + 28482 ν 11 − 149284 ν 9 + 551755 ν 7 + ⋯ − 248548 ν ) / 24660 ( 3247 \nu^{15} - 13498 \nu^{13} + 28482 \nu^{11} - 149284 \nu^{9} + 551755 \nu^{7} + \cdots - 248548 \nu ) / 24660 ( 3 2 4 7 ν 1 5 − 1 3 4 9 8 ν 1 3 + 2 8 4 8 2 ν 1 1 − 1 4 9 2 8 4 ν 9 + 5 5 1 7 5 5 ν 7 + ⋯ − 2 4 8 5 4 8 ν ) / 2 4 6 6 0
(3247*v^15 - 13498*v^13 + 28482*v^11 - 149284*v^9 + 551755*v^7 - 389674*v^5 + 212190*v^3 - 248548*v) / 24660
β 11 \beta_{11} β 1 1 = = =
( 4203 ν 15 − 10790 ν 13 + 12736 ν 11 − 149020 ν 9 + 433899 ν 7 + ⋯ − 135856 ν ) / 24660 ( 4203 \nu^{15} - 10790 \nu^{13} + 12736 \nu^{11} - 149020 \nu^{9} + 433899 \nu^{7} + \cdots - 135856 \nu ) / 24660 ( 4 2 0 3 ν 1 5 − 1 0 7 9 0 ν 1 3 + 1 2 7 3 6 ν 1 1 − 1 4 9 0 2 0 ν 9 + 4 3 3 8 9 9 ν 7 + ⋯ − 1 3 5 8 5 6 ν ) / 2 4 6 6 0
(4203*v^15 - 10790*v^13 + 12736*v^11 - 149020*v^9 + 433899*v^7 + 463846*v^5 + 89032*v^3 - 135856*v) / 24660
β 12 \beta_{12} β 1 2 = = =
( 111 ν 14 − 460 ν 12 + 900 ν 10 − 4836 ν 8 + 18183 ν 6 − 9960 ν 4 − 1692 ν 2 − 2064 ) / 548 ( 111\nu^{14} - 460\nu^{12} + 900\nu^{10} - 4836\nu^{8} + 18183\nu^{6} - 9960\nu^{4} - 1692\nu^{2} - 2064 ) / 548 ( 1 1 1 ν 1 4 − 4 6 0 ν 1 2 + 9 0 0 ν 1 0 − 4 8 3 6 ν 8 + 1 8 1 8 3 ν 6 − 9 9 6 0 ν 4 − 1 6 9 2 ν 2 − 2 0 6 4 ) / 5 4 8
(111*v^14 - 460*v^12 + 900*v^10 - 4836*v^8 + 18183*v^6 - 9960*v^4 - 1692*v^2 - 2064) / 548
β 13 \beta_{13} β 1 3 = = =
( 14121 ν 15 − 51314 ν 13 + 87376 ν 11 − 564772 ν 9 + 2020185 ν 7 + ⋯ − 286864 ν ) / 49320 ( 14121 \nu^{15} - 51314 \nu^{13} + 87376 \nu^{11} - 564772 \nu^{9} + 2020185 \nu^{7} + \cdots - 286864 \nu ) / 49320 ( 1 4 1 2 1 ν 1 5 − 5 1 3 1 4 ν 1 3 + 8 7 3 7 6 ν 1 1 − 5 6 4 7 7 2 ν 9 + 2 0 2 0 1 8 5 ν 7 + ⋯ − 2 8 6 8 6 4 ν ) / 4 9 3 2 0
(14121*v^15 - 51314*v^13 + 87376*v^11 - 564772*v^9 + 2020185*v^7 - 213662*v^5 - 635240*v^3 - 286864*v) / 49320
β 14 \beta_{14} β 1 4 = = =
( 12847 ν 14 − 46728 ν 12 + 88732 ν 10 − 544724 ν 8 + 1891735 ν 6 − 565524 ν 4 + ⋯ − 336488 ) / 49320 ( 12847 \nu^{14} - 46728 \nu^{12} + 88732 \nu^{10} - 544724 \nu^{8} + 1891735 \nu^{6} - 565524 \nu^{4} + \cdots - 336488 ) / 49320 ( 1 2 8 4 7 ν 1 4 − 4 6 7 2 8 ν 1 2 + 8 8 7 3 2 ν 1 0 − 5 4 4 7 2 4 ν 8 + 1 8 9 1 7 3 5 ν 6 − 5 6 5 5 2 4 ν 4 + ⋯ − 3 3 6 4 8 8 ) / 4 9 3 2 0
(12847*v^14 - 46728*v^12 + 88732*v^10 - 544724*v^8 + 1891735*v^6 - 565524*v^4 + 649660*v^2 - 336488) / 49320
β 15 \beta_{15} β 1 5 = = =
( 16591 ν 15 − 60222 ν 13 + 112024 ν 11 − 693356 ν 9 + 2419999 ν 7 + ⋯ − 193808 ν ) / 49320 ( 16591 \nu^{15} - 60222 \nu^{13} + 112024 \nu^{11} - 693356 \nu^{9} + 2419999 \nu^{7} + \cdots - 193808 \nu ) / 49320 ( 1 6 5 9 1 ν 1 5 − 6 0 2 2 2 ν 1 3 + 1 1 2 0 2 4 ν 1 1 − 6 9 3 3 5 6 ν 9 + 2 4 1 9 9 9 9 ν 7 + ⋯ − 1 9 3 8 0 8 ν ) / 4 9 3 2 0
(16591*v^15 - 60222*v^13 + 112024*v^11 - 693356*v^9 + 2419999*v^7 - 621570*v^5 + 483952*v^3 - 193808*v) / 49320
ν \nu ν = = =
( β 15 + β 13 − β 11 − β 10 + 5 β 7 + β 6 + β 5 + 2 β 3 ) / 16 ( \beta_{15} + \beta_{13} - \beta_{11} - \beta_{10} + 5\beta_{7} + \beta_{6} + \beta_{5} + 2\beta_{3} ) / 16 ( β 1 5 + β 1 3 − β 1 1 − β 1 0 + 5 β 7 + β 6 + β 5 + 2 β 3 ) / 1 6
(b15 + b13 - b11 - b10 + 5*b7 + b6 + b5 + 2*b3) / 16
ν 2 \nu^{2} ν 2 = = =
( β 14 + β 12 − β 9 + 4 β 8 − 3 β 4 + 3 β 2 − β 1 + 4 ) / 8 ( \beta_{14} + \beta_{12} - \beta_{9} + 4\beta_{8} - 3\beta_{4} + 3\beta_{2} - \beta _1 + 4 ) / 8 ( β 1 4 + β 1 2 − β 9 + 4 β 8 − 3 β 4 + 3 β 2 − β 1 + 4 ) / 8
(b14 + b12 - b9 + 4*b8 - 3*b4 + 3*b2 - b1 + 4) / 8
ν 3 \nu^{3} ν 3 = = =
( β 15 − β 13 − β 11 − 7 β 10 − β 7 − 13 β 6 − 3 β 5 + 6 β 3 ) / 16 ( \beta_{15} - \beta_{13} - \beta_{11} - 7\beta_{10} - \beta_{7} - 13\beta_{6} - 3\beta_{5} + 6\beta_{3} ) / 16 ( β 1 5 − β 1 3 − β 1 1 − 7 β 1 0 − β 7 − 1 3 β 6 − 3 β 5 + 6 β 3 ) / 1 6
(b15 - b13 - b11 - 7*b10 - b7 - 13*b6 - 3*b5 + 6*b3) / 16
ν 4 \nu^{4} ν 4 = = =
( 2 β 12 + 3 β 9 + 6 β 8 − 15 β 2 ) / 4 ( 2\beta_{12} + 3\beta_{9} + 6\beta_{8} - 15\beta_{2} ) / 4 ( 2 β 1 2 + 3 β 9 + 6 β 8 − 1 5 β 2 ) / 4
(2*b12 + 3*b9 + 6*b8 - 15*b2) / 4
ν 5 \nu^{5} ν 5 = = =
( 7 β 15 + 7 β 13 + β 11 − 3 β 10 + 27 β 7 − 5 β 6 − 41 β 5 − 2 β 3 ) / 16 ( 7\beta_{15} + 7\beta_{13} + \beta_{11} - 3\beta_{10} + 27\beta_{7} - 5\beta_{6} - 41\beta_{5} - 2\beta_{3} ) / 16 ( 7 β 1 5 + 7 β 1 3 + β 1 1 − 3 β 1 0 + 2 7 β 7 − 5 β 6 − 4 1 β 5 − 2 β 3 ) / 1 6
(7*b15 + 7*b13 + b11 - 3*b10 + 27*b7 - 5*b6 - 41*b5 - 2*b3) / 16
ν 6 \nu^{6} ν 6 = = =
( 3 β 14 − 7 β 12 + 15 β 9 − 20 β 8 − 17 β 4 − 85 β 2 − 35 β 1 + 100 ) / 8 ( 3\beta_{14} - 7\beta_{12} + 15\beta_{9} - 20\beta_{8} - 17\beta_{4} - 85\beta_{2} - 35\beta _1 + 100 ) / 8 ( 3 β 1 4 − 7 β 1 2 + 1 5 β 9 − 2 0 β 8 − 1 7 β 4 − 8 5 β 2 − 3 5 β 1 + 1 0 0 ) / 8
(3*b14 - 7*b12 + 15*b9 - 20*b8 - 17*b4 - 85*b2 - 35*b1 + 100) / 8
ν 7 \nu^{7} ν 7 = = =
( 5 β 15 + 27 β 13 − 31 β 11 + 31 β 10 + 103 β 7 + 57 β 6 + ⋯ + 150 β 3 ) / 16 ( 5 \beta_{15} + 27 \beta_{13} - 31 \beta_{11} + 31 \beta_{10} + 103 \beta_{7} + 57 \beta_{6} + \cdots + 150 \beta_{3} ) / 16 ( 5 β 1 5 + 2 7 β 1 3 − 3 1 β 1 1 + 3 1 β 1 0 + 1 0 3 β 7 + 5 7 β 6 + ⋯ + 1 5 0 β 3 ) / 1 6
(5*b15 + 27*b13 - 31*b11 + 31*b10 + 103*b7 + 57*b6 - 27*b5 + 150*b3) / 16
ν 8 \nu^{8} ν 8 = = =
( 15 β 14 − 87 β 4 + 12 β 1 − 34 ) / 4 ( 15\beta_{14} - 87\beta_{4} + 12\beta _1 - 34 ) / 4 ( 1 5 β 1 4 − 8 7 β 4 + 1 2 β 1 − 3 4 ) / 4
(15*b14 - 87*b4 + 12*b1 - 34) / 4
ν 9 \nu^{9} ν 9 = = =
( 23 β 15 − 133 β 13 − 89 β 11 − 89 β 10 − 509 β 7 − 163 β 6 + ⋯ + 430 β 3 ) / 16 ( 23 \beta_{15} - 133 \beta_{13} - 89 \beta_{11} - 89 \beta_{10} - 509 \beta_{7} - 163 \beta_{6} + \cdots + 430 \beta_{3} ) / 16 ( 2 3 β 1 5 − 1 3 3 β 1 3 − 8 9 β 1 1 − 8 9 β 1 0 − 5 0 9 β 7 − 1 6 3 β 6 + ⋯ + 4 3 0 β 3 ) / 1 6
(23*b15 - 133*b13 - 89*b11 - 89*b10 - 509*b7 - 163*b6 - 133*b5 + 430*b3) / 16
ν 10 \nu^{10} ν 1 0 = = =
( 17 β 14 + 41 β 12 + 187 β 9 + 116 β 8 − 99 β 4 − 1089 β 2 + 451 β 1 − 1276 ) / 8 ( 17\beta_{14} + 41\beta_{12} + 187\beta_{9} + 116\beta_{8} - 99\beta_{4} - 1089\beta_{2} + 451\beta _1 - 1276 ) / 8 ( 1 7 β 1 4 + 4 1 β 1 2 + 1 8 7 β 9 + 1 1 6 β 8 − 9 9 β 4 − 1 0 8 9 β 2 + 4 5 1 β 1 − 1 2 7 6 ) / 8
(17*b14 + 41*b12 + 187*b9 + 116*b8 - 99*b4 - 1089*b2 + 451*b1 - 1276) / 8
ν 11 \nu^{11} ν 1 1 = = =
( 263 β 15 − 263 β 13 + 61 β 11 + 355 β 10 − 1007 β 7 + ⋯ − 294 β 3 ) / 16 ( 263 \beta_{15} - 263 \beta_{13} + 61 \beta_{11} + 355 \beta_{10} - 1007 \beta_{7} + \cdots - 294 \beta_{3} ) / 16 ( 2 6 3 β 1 5 − 2 6 3 β 1 3 + 6 1 β 1 1 + 3 5 5 β 1 0 − 1 0 0 7 β 7 + ⋯ − 2 9 4 β 3 ) / 1 6
(263*b15 - 263*b13 + 61*b11 + 355*b10 - 1007*b7 + 649*b6 - 1533*b5 - 294*b3) / 16
ν 12 \nu^{12} ν 1 2 = = =
( − 350 β 12 + 261 β 9 − 990 β 8 − 1521 β 2 ) / 4 ( -350\beta_{12} + 261\beta_{9} - 990\beta_{8} - 1521\beta_{2} ) / 4 ( − 3 5 0 β 1 2 + 2 6 1 β 9 − 9 9 0 β 8 − 1 5 2 1 β 2 ) / 4
(-350*b12 + 261*b9 - 990*b8 - 1521*b2) / 4
ν 13 \nu^{13} ν 1 3 = = =
( − 7 β 15 − 7 β 13 − 577 β 11 + 3363 β 10 − 27 β 7 + ⋯ + 2786 β 3 ) / 16 ( - 7 \beta_{15} - 7 \beta_{13} - 577 \beta_{11} + 3363 \beta_{10} - 27 \beta_{7} + \cdots + 2786 \beta_{3} ) / 16 ( − 7 β 1 5 − 7 β 1 3 − 5 7 7 β 1 1 + 3 3 6 3 β 1 0 − 2 7 β 7 + ⋯ + 2 7 8 6 β 3 ) / 1 6
(-7*b15 - 7*b13 - 577*b11 + 3363*b10 - 27*b7 + 6149*b6 + 41*b5 + 2786*b3) / 16
ν 14 \nu^{14} ν 1 4 = = =
( 693 β 14 − 1673 β 12 − 1287 β 9 − 4732 β 8 − 4039 β 4 + 7501 β 2 + ⋯ − 8788 ) / 8 ( 693 \beta_{14} - 1673 \beta_{12} - 1287 \beta_{9} - 4732 \beta_{8} - 4039 \beta_{4} + 7501 \beta_{2} + \cdots - 8788 ) / 8 ( 6 9 3 β 1 4 − 1 6 7 3 β 1 2 − 1 2 8 7 β 9 − 4 7 3 2 β 8 − 4 0 3 9 β 4 + 7 5 0 1 β 2 + ⋯ − 8 7 8 8 ) / 8
(693*b14 - 1673*b12 - 1287*b9 - 4732*b8 - 4039*b4 + 7501*b2 + 3107*b1 - 8788) / 8
ν 15 \nu^{15} ν 1 5 = = =
( − 1277 β 15 − 7443 β 13 − 1649 β 11 + 1649 β 10 − 28495 β 7 + ⋯ + 7962 β 3 ) / 16 ( - 1277 \beta_{15} - 7443 \beta_{13} - 1649 \beta_{11} + 1649 \beta_{10} - 28495 \beta_{7} + \cdots + 7962 \beta_{3} ) / 16 ( − 1 2 7 7 β 1 5 − 7 4 4 3 β 1 3 − 1 6 4 9 β 1 1 + 1 6 4 9 β 1 0 − 2 8 4 9 5 β 7 + ⋯ + 7 9 6 2 β 3 ) / 1 6
(-1277*b15 - 7443*b13 - 1649*b11 + 1649*b10 - 28495*b7 + 3015*b6 + 7443*b5 + 7962*b3) / 16
Character values
We give the values of χ \chi χ on generators for ( Z / 2816 Z ) × \left(\mathbb{Z}/2816\mathbb{Z}\right)^\times ( Z / 2 8 1 6 Z ) × .
n n n
1025 1025 1 0 2 5
1541 1541 1 5 4 1
2047 2047 2 0 4 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2816 , [ χ ] ) S_{2}^{\mathrm{new}}(2816, [\chi]) S 2 n e w ( 2 8 1 6 , [ χ ] ) :
T 3 4 + 6 T 3 2 + 1 T_{3}^{4} + 6T_{3}^{2} + 1 T 3 4 + 6 T 3 2 + 1
T3^4 + 6*T3^2 + 1
T 5 2 − 7 T_{5}^{2} - 7 T 5 2 − 7
T5^2 - 7
T 7 4 − 16 T 7 2 + 56 T_{7}^{4} - 16T_{7}^{2} + 56 T 7 4 − 1 6 T 7 2 + 5 6
T7^4 - 16*T7^2 + 56
T 13 4 + 32 T 13 2 + 56 T_{13}^{4} + 32T_{13}^{2} + 56 T 1 3 4 + 3 2 T 1 3 2 + 5 6
T13^4 + 32*T13^2 + 56
T 19 4 − 16 T 19 2 + 56 T_{19}^{4} - 16T_{19}^{2} + 56 T 1 9 4 − 1 6 T 1 9 2 + 5 6
T19^4 - 16*T19^2 + 56
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
( T 4 + 6 T 2 + 1 ) 4 (T^{4} + 6 T^{2} + 1)^{4} ( T 4 + 6 T 2 + 1 ) 4
(T^4 + 6*T^2 + 1)^4
5 5 5
( T 2 − 7 ) 8 (T^{2} - 7)^{8} ( T 2 − 7 ) 8
(T^2 - 7)^8
7 7 7
( T 4 − 16 T 2 + 56 ) 4 (T^{4} - 16 T^{2} + 56)^{4} ( T 4 − 1 6 T 2 + 5 6 ) 4
(T^4 - 16*T^2 + 56)^4
11 11 1 1
( T 8 − 20 T 6 + ⋯ + 14641 ) 2 (T^{8} - 20 T^{6} + \cdots + 14641)^{2} ( T 8 − 2 0 T 6 + ⋯ + 1 4 6 4 1 ) 2
(T^8 - 20*T^6 + 214*T^4 - 2420*T^2 + 14641)^2
13 13 1 3
( T 4 + 32 T 2 + 56 ) 4 (T^{4} + 32 T^{2} + 56)^{4} ( T 4 + 3 2 T 2 + 5 6 ) 4
(T^4 + 32*T^2 + 56)^4
17 17 1 7
( T 4 + 32 T 2 + 56 ) 4 (T^{4} + 32 T^{2} + 56)^{4} ( T 4 + 3 2 T 2 + 5 6 ) 4
(T^4 + 32*T^2 + 56)^4
19 19 1 9
( T 4 − 16 T 2 + 56 ) 4 (T^{4} - 16 T^{2} + 56)^{4} ( T 4 − 1 6 T 2 + 5 6 ) 4
(T^4 - 16*T^2 + 56)^4
23 23 2 3
( T 4 + 42 T 2 + 49 ) 4 (T^{4} + 42 T^{2} + 49)^{4} ( T 4 + 4 2 T 2 + 4 9 ) 4
(T^4 + 42*T^2 + 49)^4
29 29 2 9
( T 4 + 64 T 2 + 896 ) 4 (T^{4} + 64 T^{2} + 896)^{4} ( T 4 + 6 4 T 2 + 8 9 6 ) 4
(T^4 + 64*T^2 + 896)^4
31 31 3 1
( T 4 + 42 T 2 + 49 ) 4 (T^{4} + 42 T^{2} + 49)^{4} ( T 4 + 4 2 T 2 + 4 9 ) 4
(T^4 + 42*T^2 + 49)^4
37 37 3 7
( T 4 − 126 T 2 + 2401 ) 4 (T^{4} - 126 T^{2} + 2401)^{4} ( T 4 − 1 2 6 T 2 + 2 4 0 1 ) 4
(T^4 - 126*T^2 + 2401)^4
41 41 4 1
( T 4 + 128 T 2 + 2744 ) 4 (T^{4} + 128 T^{2} + 2744)^{4} ( T 4 + 1 2 8 T 2 + 2 7 4 4 ) 4
(T^4 + 128*T^2 + 2744)^4
43 43 4 3
( T 4 − 128 T 2 + 3584 ) 4 (T^{4} - 128 T^{2} + 3584)^{4} ( T 4 − 1 2 8 T 2 + 3 5 8 4 ) 4
(T^4 - 128*T^2 + 3584)^4
47 47 4 7
T 16 T^{16} T 1 6
T^16
53 53 5 3
( T 2 − 56 ) 8 (T^{2} - 56)^{8} ( T 2 − 5 6 ) 8
(T^2 - 56)^8
59 59 5 9
( T 4 + 38 T 2 + 289 ) 4 (T^{4} + 38 T^{2} + 289)^{4} ( T 4 + 3 8 T 2 + 2 8 9 ) 4
(T^4 + 38*T^2 + 289)^4
61 61 6 1
( T 4 + 64 T 2 + 896 ) 4 (T^{4} + 64 T^{2} + 896)^{4} ( T 4 + 6 4 T 2 + 8 9 6 ) 4
(T^4 + 64*T^2 + 896)^4
67 67 6 7
( T 4 + 102 T 2 + 2401 ) 4 (T^{4} + 102 T^{2} + 2401)^{4} ( T 4 + 1 0 2 T 2 + 2 4 0 1 ) 4
(T^4 + 102*T^2 + 2401)^4
71 71 7 1
( T 4 + 42 T 2 + 49 ) 4 (T^{4} + 42 T^{2} + 49)^{4} ( T 4 + 4 2 T 2 + 4 9 ) 4
(T^4 + 42*T^2 + 49)^4
73 73 7 3
( T 4 + 64 T 2 + 56 ) 4 (T^{4} + 64 T^{2} + 56)^{4} ( T 4 + 6 4 T 2 + 5 6 ) 4
(T^4 + 64*T^2 + 56)^4
79 79 7 9
( T 4 − 128 T 2 + 3584 ) 4 (T^{4} - 128 T^{2} + 3584)^{4} ( T 4 − 1 2 8 T 2 + 3 5 8 4 ) 4
(T^4 - 128*T^2 + 3584)^4
83 83 8 3
( T 4 − 64 T 2 + 896 ) 4 (T^{4} - 64 T^{2} + 896)^{4} ( T 4 − 6 4 T 2 + 8 9 6 ) 4
(T^4 - 64*T^2 + 896)^4
89 89 8 9
( T 2 − 10 T − 7 ) 8 (T^{2} - 10 T - 7)^{8} ( T 2 − 1 0 T − 7 ) 8
(T^2 - 10*T - 7)^8
97 97 9 7
( T 2 + 2 T − 71 ) 8 (T^{2} + 2 T - 71)^{8} ( T 2 + 2 T − 7 1 ) 8
(T^2 + 2*T - 71)^8
show more
show less