Properties

Label 2816.2.e.o
Level $2816$
Weight $2$
Character orbit 2816.e
Analytic conductor $22.486$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(2815,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.2815");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.1622647227216566419456.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_{8} q^{5} + \beta_{6} q^{7} + \beta_1 q^{9} + ( - \beta_{9} - \beta_{7}) q^{11} + \beta_{3} q^{13} + \beta_{4} q^{15} + \beta_{15} q^{17} - \beta_{7} q^{19} + \beta_{3} q^{21}+ \cdots + (\beta_{13} - 3 \beta_{9} + \cdots + \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{25} + 16 q^{33} + 16 q^{49} - 16 q^{81} + 80 q^{89} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 29\nu^{14} - 56\nu^{12} + 324\nu^{10} - 908\nu^{8} + 485\nu^{6} - 188\nu^{4} + 180\nu^{2} + 69664 ) / 24660 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 699\nu^{14} - 2134\nu^{12} + 2972\nu^{10} - 25892\nu^{8} + 82779\nu^{6} + 34934\nu^{4} - 6508\nu^{2} - 9680 ) / 49320 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 857 \nu^{15} - 2184 \nu^{13} + 2498 \nu^{11} - 29932 \nu^{9} + 89333 \nu^{7} + 96240 \nu^{5} + \cdots - 28036 \nu ) / 24660 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2223 \nu^{14} - 8072 \nu^{12} + 15388 \nu^{10} - 96436 \nu^{8} + 326295 \nu^{6} - 97556 \nu^{4} + \cdots - 58072 ) / 49320 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2875 \nu^{15} - 10342 \nu^{13} + 18912 \nu^{11} - 119836 \nu^{9} + 415771 \nu^{7} - 106762 \nu^{5} + \cdots - 33376 \nu ) / 49320 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 885 \nu^{15} + 3712 \nu^{13} - 7757 \nu^{11} + 40616 \nu^{9} - 150771 \nu^{7} + 106522 \nu^{5} + \cdots + 67946 \nu ) / 12330 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 3715 \nu^{15} + 13438 \nu^{13} - 22968 \nu^{11} + 147724 \nu^{9} - 527779 \nu^{7} + \cdots + 74944 \nu ) / 49320 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -13\nu^{14} + 53\nu^{12} - 104\nu^{10} + 564\nu^{8} - 2113\nu^{6} + 1157\nu^{4} + 196\nu^{2} + 240 ) / 180 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 3959 \nu^{14} - 12114 \nu^{12} + 17852 \nu^{10} - 148372 \nu^{8} + 480839 \nu^{6} + 203994 \nu^{4} + \cdots - 56080 ) / 49320 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 3247 \nu^{15} - 13498 \nu^{13} + 28482 \nu^{11} - 149284 \nu^{9} + 551755 \nu^{7} + \cdots - 248548 \nu ) / 24660 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 4203 \nu^{15} - 10790 \nu^{13} + 12736 \nu^{11} - 149020 \nu^{9} + 433899 \nu^{7} + \cdots - 135856 \nu ) / 24660 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 111\nu^{14} - 460\nu^{12} + 900\nu^{10} - 4836\nu^{8} + 18183\nu^{6} - 9960\nu^{4} - 1692\nu^{2} - 2064 ) / 548 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 14121 \nu^{15} - 51314 \nu^{13} + 87376 \nu^{11} - 564772 \nu^{9} + 2020185 \nu^{7} + \cdots - 286864 \nu ) / 49320 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 12847 \nu^{14} - 46728 \nu^{12} + 88732 \nu^{10} - 544724 \nu^{8} + 1891735 \nu^{6} - 565524 \nu^{4} + \cdots - 336488 ) / 49320 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 16591 \nu^{15} - 60222 \nu^{13} + 112024 \nu^{11} - 693356 \nu^{9} + 2419999 \nu^{7} + \cdots - 193808 \nu ) / 49320 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{15} + \beta_{13} - \beta_{11} - \beta_{10} + 5\beta_{7} + \beta_{6} + \beta_{5} + 2\beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{14} + \beta_{12} - \beta_{9} + 4\beta_{8} - 3\beta_{4} + 3\beta_{2} - \beta _1 + 4 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} - \beta_{13} - \beta_{11} - 7\beta_{10} - \beta_{7} - 13\beta_{6} - 3\beta_{5} + 6\beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{12} + 3\beta_{9} + 6\beta_{8} - 15\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7\beta_{15} + 7\beta_{13} + \beta_{11} - 3\beta_{10} + 27\beta_{7} - 5\beta_{6} - 41\beta_{5} - 2\beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3\beta_{14} - 7\beta_{12} + 15\beta_{9} - 20\beta_{8} - 17\beta_{4} - 85\beta_{2} - 35\beta _1 + 100 ) / 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 5 \beta_{15} + 27 \beta_{13} - 31 \beta_{11} + 31 \beta_{10} + 103 \beta_{7} + 57 \beta_{6} + \cdots + 150 \beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 15\beta_{14} - 87\beta_{4} + 12\beta _1 - 34 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 23 \beta_{15} - 133 \beta_{13} - 89 \beta_{11} - 89 \beta_{10} - 509 \beta_{7} - 163 \beta_{6} + \cdots + 430 \beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 17\beta_{14} + 41\beta_{12} + 187\beta_{9} + 116\beta_{8} - 99\beta_{4} - 1089\beta_{2} + 451\beta _1 - 1276 ) / 8 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 263 \beta_{15} - 263 \beta_{13} + 61 \beta_{11} + 355 \beta_{10} - 1007 \beta_{7} + \cdots - 294 \beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( -350\beta_{12} + 261\beta_{9} - 990\beta_{8} - 1521\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 7 \beta_{15} - 7 \beta_{13} - 577 \beta_{11} + 3363 \beta_{10} - 27 \beta_{7} + \cdots + 2786 \beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 693 \beta_{14} - 1673 \beta_{12} - 1287 \beta_{9} - 4732 \beta_{8} - 4039 \beta_{4} + 7501 \beta_{2} + \cdots - 8788 ) / 8 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 1277 \beta_{15} - 7443 \beta_{13} - 1649 \beta_{11} + 1649 \beta_{10} - 28495 \beta_{7} + \cdots + 7962 \beta_{3} ) / 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2815.1
−1.00237 + 1.55225i
1.00237 1.55225i
1.80639 + 0.388825i
−1.80639 0.388825i
−0.415194 0.642962i
0.415194 + 0.642962i
−0.748229 + 0.161057i
0.748229 0.161057i
−0.415194 + 0.642962i
0.415194 0.642962i
−0.748229 0.161057i
0.748229 + 0.161057i
−1.00237 1.55225i
1.00237 + 1.55225i
1.80639 0.388825i
−1.80639 + 0.388825i
0 2.41421i 0 −2.64575 0 −2.27411 0 −2.82843 0
2815.2 0 2.41421i 0 −2.64575 0 2.27411 0 −2.82843 0
2815.3 0 2.41421i 0 2.64575 0 −2.27411 0 −2.82843 0
2815.4 0 2.41421i 0 2.64575 0 2.27411 0 −2.82843 0
2815.5 0 0.414214i 0 −2.64575 0 −3.29066 0 2.82843 0
2815.6 0 0.414214i 0 −2.64575 0 3.29066 0 2.82843 0
2815.7 0 0.414214i 0 2.64575 0 −3.29066 0 2.82843 0
2815.8 0 0.414214i 0 2.64575 0 3.29066 0 2.82843 0
2815.9 0 0.414214i 0 −2.64575 0 −3.29066 0 2.82843 0
2815.10 0 0.414214i 0 −2.64575 0 3.29066 0 2.82843 0
2815.11 0 0.414214i 0 2.64575 0 −3.29066 0 2.82843 0
2815.12 0 0.414214i 0 2.64575 0 3.29066 0 2.82843 0
2815.13 0 2.41421i 0 −2.64575 0 −2.27411 0 −2.82843 0
2815.14 0 2.41421i 0 −2.64575 0 2.27411 0 −2.82843 0
2815.15 0 2.41421i 0 2.64575 0 −2.27411 0 −2.82843 0
2815.16 0 2.41421i 0 2.64575 0 2.27411 0 −2.82843 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2815.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner
88.b odd 2 1 inner
88.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2816.2.e.o 16
4.b odd 2 1 inner 2816.2.e.o 16
8.b even 2 1 inner 2816.2.e.o 16
8.d odd 2 1 inner 2816.2.e.o 16
11.b odd 2 1 inner 2816.2.e.o 16
16.e even 4 1 88.2.g.b 8
16.e even 4 1 352.2.g.b 8
16.f odd 4 1 88.2.g.b 8
16.f odd 4 1 352.2.g.b 8
44.c even 2 1 inner 2816.2.e.o 16
48.i odd 4 1 792.2.h.g 8
48.i odd 4 1 3168.2.h.g 8
48.k even 4 1 792.2.h.g 8
48.k even 4 1 3168.2.h.g 8
88.b odd 2 1 inner 2816.2.e.o 16
88.g even 2 1 inner 2816.2.e.o 16
176.i even 4 1 88.2.g.b 8
176.i even 4 1 352.2.g.b 8
176.l odd 4 1 88.2.g.b 8
176.l odd 4 1 352.2.g.b 8
176.u odd 20 4 968.2.k.g 32
176.v odd 20 4 968.2.k.g 32
176.w even 20 4 968.2.k.g 32
176.x even 20 4 968.2.k.g 32
528.s odd 4 1 792.2.h.g 8
528.s odd 4 1 3168.2.h.g 8
528.x even 4 1 792.2.h.g 8
528.x even 4 1 3168.2.h.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.g.b 8 16.e even 4 1
88.2.g.b 8 16.f odd 4 1
88.2.g.b 8 176.i even 4 1
88.2.g.b 8 176.l odd 4 1
352.2.g.b 8 16.e even 4 1
352.2.g.b 8 16.f odd 4 1
352.2.g.b 8 176.i even 4 1
352.2.g.b 8 176.l odd 4 1
792.2.h.g 8 48.i odd 4 1
792.2.h.g 8 48.k even 4 1
792.2.h.g 8 528.s odd 4 1
792.2.h.g 8 528.x even 4 1
968.2.k.g 32 176.u odd 20 4
968.2.k.g 32 176.v odd 20 4
968.2.k.g 32 176.w even 20 4
968.2.k.g 32 176.x even 20 4
2816.2.e.o 16 1.a even 1 1 trivial
2816.2.e.o 16 4.b odd 2 1 inner
2816.2.e.o 16 8.b even 2 1 inner
2816.2.e.o 16 8.d odd 2 1 inner
2816.2.e.o 16 11.b odd 2 1 inner
2816.2.e.o 16 44.c even 2 1 inner
2816.2.e.o 16 88.b odd 2 1 inner
2816.2.e.o 16 88.g even 2 1 inner
3168.2.h.g 8 48.i odd 4 1
3168.2.h.g 8 48.k even 4 1
3168.2.h.g 8 528.s odd 4 1
3168.2.h.g 8 528.x even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2816, [\chi])\):

\( T_{3}^{4} + 6T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} - 7 \) Copy content Toggle raw display
\( T_{7}^{4} - 16T_{7}^{2} + 56 \) Copy content Toggle raw display
\( T_{13}^{4} + 32T_{13}^{2} + 56 \) Copy content Toggle raw display
\( T_{19}^{4} - 16T_{19}^{2} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{4} + 6 T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 7)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 16 T^{2} + 56)^{4} \) Copy content Toggle raw display
$11$ \( (T^{8} - 20 T^{6} + \cdots + 14641)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 32 T^{2} + 56)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 32 T^{2} + 56)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} - 16 T^{2} + 56)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 42 T^{2} + 49)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 64 T^{2} + 896)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 42 T^{2} + 49)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} - 126 T^{2} + 2401)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 128 T^{2} + 2744)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 128 T^{2} + 3584)^{4} \) Copy content Toggle raw display
$47$ \( T^{16} \) Copy content Toggle raw display
$53$ \( (T^{2} - 56)^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} + 38 T^{2} + 289)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 64 T^{2} + 896)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 102 T^{2} + 2401)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 42 T^{2} + 49)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 64 T^{2} + 56)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 128 T^{2} + 3584)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 64 T^{2} + 896)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 10 T - 7)^{8} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 71)^{8} \) Copy content Toggle raw display
show more
show less