Properties

Label 2835.1.e.a
Level $2835$
Weight $1$
Character orbit 2835.e
Self dual yes
Analytic conductor $1.415$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -35
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2835,1,Mod(244,2835)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2835, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2835.244");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2835 = 3^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2835.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.41484931081\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 315)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2835.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.40186125.1
Stark unit: Root of $x^{6} - 8133x^{5} - 1061706x^{4} - 68285369x^{3} - 1061706x^{2} - 8133x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{4} - q^{5} - q^{7} - q^{11} + q^{13} + q^{16} + q^{17} - q^{20} + q^{25} - q^{28} + 2 q^{29} + q^{35} - q^{44} + q^{47} + q^{49} + q^{52} + q^{55} + q^{64} - q^{65} + q^{68} - q^{71}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2835\mathbb{Z}\right)^\times\).

\(n\) \(1541\) \(1702\) \(2026\)
\(\chi(n)\) \(0\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
244.1
0
0 0 1.00000 −1.00000 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by \(\Q(\sqrt{-35}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2835.1.e.a 1
3.b odd 2 1 2835.1.e.c 1
5.b even 2 1 2835.1.e.d 1
7.b odd 2 1 2835.1.e.d 1
9.c even 3 2 315.1.bg.a 2
9.d odd 6 2 945.1.bg.a 2
15.d odd 2 1 2835.1.e.b 1
21.c even 2 1 2835.1.e.b 1
35.c odd 2 1 CM 2835.1.e.a 1
45.h odd 6 2 945.1.bg.b 2
45.j even 6 2 315.1.bg.b yes 2
45.k odd 12 4 1575.1.y.a 4
63.g even 3 2 2205.1.bn.b 2
63.h even 3 2 2205.1.q.b 2
63.k odd 6 2 2205.1.bn.a 2
63.l odd 6 2 315.1.bg.b yes 2
63.o even 6 2 945.1.bg.b 2
63.t odd 6 2 2205.1.q.a 2
105.g even 2 1 2835.1.e.c 1
315.q odd 6 2 2205.1.q.b 2
315.r even 6 2 2205.1.q.a 2
315.z even 6 2 945.1.bg.a 2
315.bg odd 6 2 315.1.bg.a 2
315.bn odd 6 2 2205.1.bn.b 2
315.bo even 6 2 2205.1.bn.a 2
315.cb even 12 4 1575.1.y.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.1.bg.a 2 9.c even 3 2
315.1.bg.a 2 315.bg odd 6 2
315.1.bg.b yes 2 45.j even 6 2
315.1.bg.b yes 2 63.l odd 6 2
945.1.bg.a 2 9.d odd 6 2
945.1.bg.a 2 315.z even 6 2
945.1.bg.b 2 45.h odd 6 2
945.1.bg.b 2 63.o even 6 2
1575.1.y.a 4 45.k odd 12 4
1575.1.y.a 4 315.cb even 12 4
2205.1.q.a 2 63.t odd 6 2
2205.1.q.a 2 315.r even 6 2
2205.1.q.b 2 63.h even 3 2
2205.1.q.b 2 315.q odd 6 2
2205.1.bn.a 2 63.k odd 6 2
2205.1.bn.a 2 315.bo even 6 2
2205.1.bn.b 2 63.g even 3 2
2205.1.bn.b 2 315.bn odd 6 2
2835.1.e.a 1 1.a even 1 1 trivial
2835.1.e.a 1 35.c odd 2 1 CM
2835.1.e.b 1 15.d odd 2 1
2835.1.e.b 1 21.c even 2 1
2835.1.e.c 1 3.b odd 2 1
2835.1.e.c 1 105.g even 2 1
2835.1.e.d 1 5.b even 2 1
2835.1.e.d 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2835, [\chi])\):

\( T_{11} + 1 \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 1 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T - 1 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less