Properties

Label 2848.1.bu.a.2063.1
Level 28482848
Weight 11
Character 2848.2063
Analytic conductor 1.4211.421
Analytic rank 00
Dimension 1010
Projective image D11D_{11}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2848,1,Mod(271,2848)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2848, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2848.271");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2848=2589 2848 = 2^{5} \cdot 89
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2848.bu (of order 2222, degree 1010, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.421337155981.42133715598
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 712)
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

Embedding invariants

Embedding label 2063.1
Root 0.142315+0.989821i0.142315 + 0.989821i of defining polynomial
Character χ\chi == 2848.2063
Dual form 2848.1.bu.a.751.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.101811.27155i)q3+(0.2605541.81219i)q9+(1.841250.540641i)q11+(0.345139+0.755750i)q17+(0.2731001.89945i)q19+(0.8412540.540641i)q25+(1.175970.755750i)q27+(2.71616+1.74557i)q33+(1.309721.51150i)q41+(0.797176+0.234072i)q43+(0.8412540.540641i)q49+(1.34125+0.393828i)q51+(2.716161.74557i)q57+(0.544078+0.627899i)q59+(0.186393+0.215109i)q67+(0.239446+1.66538i)q73+(0.2394461.66538i)q75+(0.500000+0.146813i)q81+(0.544078+1.19136i)q83+(0.841254+0.540641i)q89+(0.2731000.0801894i)q97+(0.500000+3.47758i)q99+O(q100)q+(1.10181 - 1.27155i) q^{3} +(-0.260554 - 1.81219i) q^{9} +(-1.84125 - 0.540641i) q^{11} +(0.345139 + 0.755750i) q^{17} +(-0.273100 - 1.89945i) q^{19} +(0.841254 - 0.540641i) q^{25} +(-1.17597 - 0.755750i) q^{27} +(-2.71616 + 1.74557i) q^{33} +(-1.30972 - 1.51150i) q^{41} +(0.797176 + 0.234072i) q^{43} +(0.841254 - 0.540641i) q^{49} +(1.34125 + 0.393828i) q^{51} +(-2.71616 - 1.74557i) q^{57} +(0.544078 + 0.627899i) q^{59} +(-0.186393 + 0.215109i) q^{67} +(-0.239446 + 1.66538i) q^{73} +(0.239446 - 1.66538i) q^{75} +(-0.500000 + 0.146813i) q^{81} +(0.544078 + 1.19136i) q^{83} +(0.841254 + 0.540641i) q^{89} +(0.273100 - 0.0801894i) q^{97} +(-0.500000 + 3.47758i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+2q33q99q11+9q17+2q19q257q274q332q41+2q43q49+4q514q57+2q59+2q672q73+2q755q81+2q83+5q99+O(q100) 10 q + 2 q^{3} - 3 q^{9} - 9 q^{11} + 9 q^{17} + 2 q^{19} - q^{25} - 7 q^{27} - 4 q^{33} - 2 q^{41} + 2 q^{43} - q^{49} + 4 q^{51} - 4 q^{57} + 2 q^{59} + 2 q^{67} - 2 q^{73} + 2 q^{75} - 5 q^{81} + 2 q^{83}+ \cdots - 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2848Z)×\left(\mathbb{Z}/2848\mathbb{Z}\right)^\times.

nn 357357 12471247 12491249
χ(n)\chi(n) 1-1 1-1 e(811)e\left(\frac{8}{11}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.10181 1.27155i 1.10181 1.27155i 0.142315 0.989821i 0.454545π-0.454545\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
44 0 0
55 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
66 0 0
77 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
88 0 0
99 −0.260554 1.81219i −0.260554 1.81219i
1010 0 0
1111 −1.84125 0.540641i −1.84125 0.540641i −0.841254 0.540641i 0.818182π-0.818182\pi
−1.00000 π\pi
1212 0 0
1313 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
1414 0 0
1515 0 0
1616 0 0
1717 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 00
−0.654861 + 0.755750i 0.727273π0.727273\pi
1818 0 0
1919 −0.273100 1.89945i −0.273100 1.89945i −0.415415 0.909632i 0.636364π-0.636364\pi
0.142315 0.989821i 0.454545π-0.454545\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
2424 0 0
2525 0.841254 0.540641i 0.841254 0.540641i
2626 0 0
2727 −1.17597 0.755750i −1.17597 0.755750i
2828 0 0
2929 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
3030 0 0
3131 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
3232 0 0
3333 −2.71616 + 1.74557i −2.71616 + 1.74557i
3434 0 0
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
4242 0 0
4343 0.797176 + 0.234072i 0.797176 + 0.234072i 0.654861 0.755750i 0.272727π-0.272727\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
4848 0 0
4949 0.841254 0.540641i 0.841254 0.540641i
5050 0 0
5151 1.34125 + 0.393828i 1.34125 + 0.393828i
5252 0 0
5353 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
5454 0 0
5555 0 0
5656 0 0
5757 −2.71616 1.74557i −2.71616 1.74557i
5858 0 0
5959 0.544078 + 0.627899i 0.544078 + 0.627899i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
6060 0 0
6161 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 −0.186393 + 0.215109i −0.186393 + 0.215109i −0.841254 0.540641i 0.818182π-0.818182\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
7272 0 0
7373 −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
7474 0 0
7575 0.239446 1.66538i 0.239446 1.66538i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
8080 0 0
8181 −0.500000 + 0.146813i −0.500000 + 0.146813i
8282 0 0
8383 0.544078 + 1.19136i 0.544078 + 1.19136i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0.841254 + 0.540641i 0.841254 + 0.540641i
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i 0.545455π-0.545455\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
9898 0 0
9999 −0.500000 + 3.47758i −0.500000 + 3.47758i
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
104104 0 0
105105 0 0
106106 0 0
107107 1.91899 + 0.563465i 1.91899 + 0.563465i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
108108 0 0
109109 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 2.25667 + 1.45027i 2.25667 + 1.45027i
122122 0 0
123123 −3.36501 −3.36501
124124 0 0
125125 0 0
126126 0 0
127127 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
128128 0 0
129129 1.17597 0.755750i 1.17597 0.755750i
130130 0 0
131131 1.10181 + 1.27155i 1.10181 + 1.27155i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
138138 0 0
139139 −0.273100 1.89945i −0.273100 1.89945i −0.415415 0.909632i 0.636364π-0.636364\pi
0.142315 0.989821i 0.454545π-0.454545\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0.239446 1.66538i 0.239446 1.66538i
148148 0 0
149149 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
150150 0 0
151151 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
152152 0 0
153153 1.27964 0.822373i 1.27964 0.822373i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −0.698939 + 1.53046i −0.698939 + 1.53046i 0.142315 + 0.989821i 0.454545π0.454545\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
168168 0 0
169169 −0.142315 0.989821i −0.142315 0.989821i
170170 0 0
171171 −3.37102 + 0.989821i −3.37102 + 0.989821i
172172 0 0
173173 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
174174 0 0
175175 0 0
176176 0 0
177177 1.39788 1.39788
178178 0 0
179179 0.284630 0.284630 0.142315 0.989821i 0.454545π-0.454545\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
180180 0 0
181181 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −0.226900 1.57812i −0.226900 1.57812i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
192192 0 0
193193 −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
198198 0 0
199199 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
200200 0 0
201201 0.0681534 + 0.474017i 0.0681534 + 0.474017i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −0.524075 + 3.64502i −0.524075 + 3.64502i
210210 0 0
211211 −0.698939 + 0.449181i −0.698939 + 0.449181i −0.841254 0.540641i 0.818182π-0.818182\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 1.85380 + 2.13940i 1.85380 + 2.13940i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
224224 0 0
225225 −1.19894 1.38365i −1.19894 1.38365i
226226 0 0
227227 −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i 0.636364π0.636364\pi
−1.00000 π\pi
228228 0 0
229229 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
240240 0 0
241241 −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i 0.909091π-0.909091\pi
0.415415 0.909632i 0.363636π-0.363636\pi
242242 0 0
243243 0.216476 0.474017i 0.216476 0.474017i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 2.11435 + 0.620830i 2.11435 + 0.620830i
250250 0 0
251251 −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i 0.545455π-0.545455\pi
0.415415 0.909632i 0.363636π-0.363636\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
264264 0 0
265265 0 0
266266 0 0
267267 1.61435 0.474017i 1.61435 0.474017i
268268 0 0
269269 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
270270 0 0
271271 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
272272 0 0
273273 0 0
274274 0 0
275275 −1.84125 + 0.540641i −1.84125 + 0.540641i
276276 0 0
277277 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i 0.545455π-0.545455\pi
0.415415 0.909632i 0.363636π-0.363636\pi
282282 0 0
283283 −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.202824 0.234072i 0.202824 0.234072i
290290 0 0
291291 0.198939 0.435615i 0.198939 0.435615i
292292 0 0
293293 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
294294 0 0
295295 0 0
296296 0 0
297297 1.75667 + 2.02730i 1.75667 + 2.02730i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 1.10181 0.708089i 1.10181 0.708089i 0.142315 0.989821i 0.454545π-0.454545\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
312312 0 0
313313 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
318318 0 0
319319 0 0
320320 0 0
321321 2.83083 1.81926i 2.83083 1.81926i
322322 0 0
323323 1.34125 0.861971i 1.34125 0.861971i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 1.61435 1.03748i 1.61435 1.03748i 0.654861 0.755750i 0.272727π-0.272727\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
338338 0 0
339339 0.915415 + 2.00448i 0.915415 + 2.00448i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 −0.186393 1.29639i −0.186393 1.29639i −0.841254 0.540641i 0.818182π-0.818182\pi
0.654861 0.755750i 0.272727π-0.272727\pi
348348 0 0
349349 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
360360 0 0
361361 −2.57385 + 0.755750i −2.57385 + 0.755750i
362362 0 0
363363 4.33052 1.27155i 4.33052 1.27155i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
368368 0 0
369369 −2.39788 + 2.76730i −2.39788 + 2.76730i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −0.0405070 0.281733i −0.0405070 0.281733i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
384384 0 0
385385 0 0
386386 0 0
387387 0.216476 1.50563i 0.216476 1.50563i
388388 0 0
389389 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
390390 0 0
391391 0 0
392392 0 0
393393 2.83083 2.83083
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
410410 0 0
411411 −1.39788 −1.39788
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −2.71616 1.74557i −2.71616 1.74557i
418418 0 0
419419 0.118239 + 0.258908i 0.118239 + 0.258908i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
420420 0 0
421421 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
422422 0 0
423423 0 0
424424 0 0
425425 0.698939 + 0.449181i 0.698939 + 0.449181i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
432432 0 0
433433 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
440440 0 0
441441 −1.19894 1.38365i −1.19894 1.38365i
442442 0 0
443443 0.544078 1.19136i 0.544078 1.19136i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 00
−0.142315 + 0.989821i 0.545455π0.545455\pi
450450 0 0
451451 1.59435 + 3.49114i 1.59435 + 3.49114i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
458458 0 0
459459 0.165284 1.14958i 0.165284 1.14958i
460460 0 0
461461 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
462462 0 0
463463 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
464464 0 0
465465 0 0
466466 0 0
467467 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −1.34125 0.861971i −1.34125 0.861971i
474474 0 0
475475 −1.25667 1.45027i −1.25667 1.45027i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
488488 0 0
489489 1.17597 + 2.57501i 1.17597 + 2.57501i
490490 0 0
491491 −1.84125 0.540641i −1.84125 0.540641i −0.841254 0.540641i 0.818182π-0.818182\pi
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.10181 0.708089i 1.10181 0.708089i 0.142315 0.989821i 0.454545π-0.454545\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
504504 0 0
505505 0 0
506506 0 0
507507 −1.41542 0.909632i −1.41542 0.909632i
508508 0 0
509509 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
510510 0 0
511511 0 0
512512 0 0
513513 −1.11435 + 2.44009i −1.11435 + 2.44009i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i 0.909091π-0.909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
522522 0 0
523523 1.61435 + 0.474017i 1.61435 + 0.474017i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.959493 + 0.281733i −0.959493 + 0.281733i
530530 0 0
531531 0.996114 1.14958i 0.996114 1.14958i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0.313607 0.361922i 0.313607 0.361922i
538538 0 0
539539 −1.84125 + 0.540641i −1.84125 + 0.540641i
540540 0 0
541541 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
558558 0 0
559559 0 0
560560 0 0
561561 −2.25667 1.45027i −2.25667 1.45027i
562562 0 0
563563 −1.84125 + 0.540641i −1.84125 + 0.540641i −0.841254 + 0.540641i 0.818182π0.818182\pi
−1.00000 1.00000π1.00000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i 0.727273π-0.727273\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
570570 0 0
571571 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 00
0.841254 + 0.540641i 0.181818π0.181818\pi
578578 0 0
579579 0.198939 + 0.435615i 0.198939 + 0.435615i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
600600 0 0
601601 −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
602602 0 0
603603 0.438384 + 0.281733i 0.438384 + 0.281733i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
618618 0 0
619619 1.10181 + 1.27155i 1.10181 + 1.27155i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.415415 0.909632i 0.415415 0.909632i
626626 0 0
627627 4.05742 + 4.68251i 4.05742 + 4.68251i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
632632 0 0
633633 −0.198939 + 1.38365i −0.198939 + 1.38365i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
642642 0 0
643643 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
648648 0 0
649649 −0.662317 1.45027i −0.662317 1.45027i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
654654 0 0
655655 0 0
656656 0 0
657657 3.08038 3.08038
658658 0 0
659659 1.10181 1.27155i 1.10181 1.27155i 0.142315 0.989821i 0.454545π-0.454545\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
660660 0 0
661661 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
674674 0 0
675675 −1.39788 −1.39788
676676 0 0
677677 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
678678 0 0
679679 0 0
680680 0 0
681681 −0.402869 + 2.80202i −0.402869 + 2.80202i
682682 0 0
683683 1.61435 0.474017i 1.61435 0.474017i 0.654861 0.755750i 0.272727π-0.272727\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.544078 1.19136i 0.544078 1.19136i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.690279 1.51150i 0.690279 1.51150i
698698 0 0
699699 −1.44306 + 1.66538i −1.44306 + 1.66538i
700700 0 0
701701 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
720720 0 0
721721 0 0
722722 0 0
723723 −2.11435 0.620830i −2.11435 0.620830i
724724 0 0
725725 0 0
726726 0 0
727727 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
728728 0 0
729729 −0.580699 1.27155i −0.580699 1.27155i
730730 0 0
731731 0.0982369 + 0.683252i 0.0982369 + 0.683252i
732732 0 0
733733 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
734734 0 0
735735 0 0
736736 0 0
737737 0.459493 0.295298i 0.459493 0.295298i
738738 0 0
739739 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
744744 0 0
745745 0 0
746746 0 0
747747 2.01722 1.29639i 2.01722 1.29639i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
752752 0 0
753753 1.44306 + 1.66538i 1.44306 + 1.66538i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
770770 0 0
771771 −2.11435 2.44009i −2.11435 2.44009i
772772 0 0
773773 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −2.51334 + 2.90055i −2.51334 + 2.90055i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.760554 1.66538i 0.760554 1.66538i
802802 0 0
803803 1.34125 2.93694i 1.34125 2.93694i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
810810 0 0
811811 0.284630 1.97964i 0.284630 1.97964i 0.142315 0.989821i 0.454545π-0.454545\pi
0.142315 0.989821i 0.454545π-0.454545\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0.226900 1.57812i 0.226900 1.57812i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
822822 0 0
823823 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
824824 0 0
825825 −1.34125 + 2.93694i −1.34125 + 2.93694i
826826 0 0
827827 0.544078 + 1.19136i 0.544078 + 1.19136i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
828828 0 0
829829 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.698939 + 0.449181i 0.698939 + 0.449181i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
840840 0 0
841841 0.841254 0.540641i 0.841254 0.540641i
842842 0 0
843843 −2.11435 2.44009i −2.11435 2.44009i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 1.44306 + 1.66538i 1.44306 + 1.66538i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
858858 0 0
859859 −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
864864 0 0
865865 0 0
866866 0 0
867867 −0.0741615 0.515804i −0.0741615 0.515804i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −0.216476 0.474017i −0.216476 0.474017i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 0.540641i 0.181818π-0.181818\pi
882882 0 0
883883 −1.25667 + 0.368991i −1.25667 + 0.368991i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
888888 0 0
889889 0 0
890890 0 0
891891 1.00000 1.00000
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −0.345139 0.755750i −0.345139 0.755750i 0.654861 0.755750i 0.272727π-0.272727\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
912912 0 0
913913 −0.357685 2.48775i −0.357685 2.48775i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
920920 0 0
921921 0.313607 2.18119i 0.313607 2.18119i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
930930 0 0
931931 −1.25667 1.45027i −1.25667 1.45027i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
938938 0 0
939939 0.402869 0.258908i 0.402869 0.258908i
940940 0 0
941941 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.959493 0.281733i −0.959493 0.281733i
962962 0 0
963963 0.521109 3.62439i 0.521109 3.62439i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0.381761 2.65520i 0.381761 2.65520i
970970 0 0
971971 −0.273100 + 0.0801894i −0.273100 + 0.0801894i −0.415415 0.909632i 0.636364π-0.636364\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i 0.545455π-0.545455\pi
0.841254 0.540641i 0.181818π-0.181818\pi
978978 0 0
979979 −1.25667 1.45027i −1.25667 1.45027i
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0.459493 3.19584i 0.459493 3.19584i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2848.1.bu.a.2063.1 10
4.3 odd 2 712.1.s.a.283.1 10
8.3 odd 2 CM 2848.1.bu.a.2063.1 10
8.5 even 2 712.1.s.a.283.1 10
89.39 even 11 inner 2848.1.bu.a.751.1 10
356.39 odd 22 712.1.s.a.395.1 yes 10
712.395 odd 22 inner 2848.1.bu.a.751.1 10
712.573 even 22 712.1.s.a.395.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
712.1.s.a.283.1 10 4.3 odd 2
712.1.s.a.283.1 10 8.5 even 2
712.1.s.a.395.1 yes 10 356.39 odd 22
712.1.s.a.395.1 yes 10 712.573 even 22
2848.1.bu.a.751.1 10 89.39 even 11 inner
2848.1.bu.a.751.1 10 712.395 odd 22 inner
2848.1.bu.a.2063.1 10 1.1 even 1 trivial
2848.1.bu.a.2063.1 10 8.3 odd 2 CM