Properties

Label 285.10.a.c.1.5
Level 285285
Weight 1010
Character 285.1
Self dual yes
Analytic conductor 146.785146.785
Analytic rank 11
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 285=3519 285 = 3 \cdot 5 \cdot 19
Weight: k k == 10 10
Character orbit: [χ][\chi] == 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 146.785213307146.785213307
Analytic rank: 11
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x123x114398x10+4080x9+7026370x8+7294322x75023445596x6++49 ⁣ ⁣00 x^{12} - 3 x^{11} - 4398 x^{10} + 4080 x^{9} + 7026370 x^{8} + 7294322 x^{7} - 5023445596 x^{6} + \cdots + 49\!\cdots\!00 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2133652 2^{13}\cdot 3^{6}\cdot 5^{2}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 14.0719-14.0719 of defining polynomial
Character χ\chi == 285.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q17.0719q281.0000q3220.549q4+625.000q5+1382.83q6+11804.8q7+12506.0q8+6561.00q910670.0q10+10723.5q11+17864.5q12+55804.2q13201531.q1450625.0q15100581.q16+39049.4q17112009.q18+130321.q19137843.q20956188.q21183072.q22+85590.2q231.01299e6q24+390625.q25952685.q26531441.q272.60354e6q284.91333e6q29+864266.q307.66372e6q314.68598e6q32868607.q33666649.q34+7.37800e6q351.44702e6q361.74637e7q372.22483e6q384.52014e6q39+7.81627e6q40+2.56765e7q41+1.63240e7q423.52977e7q432.36507e6q44+4.10062e6q451.46119e6q469.69853e6q47+8.14703e6q48+9.89996e7q496.66872e6q503.16300e6q511.23076e7q526.79387e7q53+9.07272e6q54+6.70222e6q55+1.47631e8q561.05560e7q57+8.38799e7q582.56493e7q59+1.11653e7q607.01660e6q61+1.30835e8q62+7.74513e7q63+1.31496e8q64+3.48776e7q65+1.48288e7q661.24277e8q678.61233e6q686.93281e6q691.25957e8q70+6.68509e7q71+8.20520e7q72+4.31812e8q73+2.98138e8q743.16406e7q752.87422e7q76+1.26589e8q77+7.71675e7q781.81702e8q796.28629e7q80+4.30467e7q814.38346e8q826.01036e8q83+2.10887e8q84+2.44059e7q85+6.02600e8q86+3.97979e8q87+1.34109e8q884.69609e8q897.00056e7q90+6.58757e8q911.88769e7q92+6.20762e8q93+1.65573e8q94+8.14506e7q95+3.79565e8q963.63557e8q971.69011e9q98+7.03572e7q99+O(q100)q-17.0719 q^{2} -81.0000 q^{3} -220.549 q^{4} +625.000 q^{5} +1382.83 q^{6} +11804.8 q^{7} +12506.0 q^{8} +6561.00 q^{9} -10670.0 q^{10} +10723.5 q^{11} +17864.5 q^{12} +55804.2 q^{13} -201531. q^{14} -50625.0 q^{15} -100581. q^{16} +39049.4 q^{17} -112009. q^{18} +130321. q^{19} -137843. q^{20} -956188. q^{21} -183072. q^{22} +85590.2 q^{23} -1.01299e6 q^{24} +390625. q^{25} -952685. q^{26} -531441. q^{27} -2.60354e6 q^{28} -4.91333e6 q^{29} +864266. q^{30} -7.66372e6 q^{31} -4.68598e6 q^{32} -868607. q^{33} -666649. q^{34} +7.37800e6 q^{35} -1.44702e6 q^{36} -1.74637e7 q^{37} -2.22483e6 q^{38} -4.52014e6 q^{39} +7.81627e6 q^{40} +2.56765e7 q^{41} +1.63240e7 q^{42} -3.52977e7 q^{43} -2.36507e6 q^{44} +4.10062e6 q^{45} -1.46119e6 q^{46} -9.69853e6 q^{47} +8.14703e6 q^{48} +9.89996e7 q^{49} -6.66872e6 q^{50} -3.16300e6 q^{51} -1.23076e7 q^{52} -6.79387e7 q^{53} +9.07272e6 q^{54} +6.70222e6 q^{55} +1.47631e8 q^{56} -1.05560e7 q^{57} +8.38799e7 q^{58} -2.56493e7 q^{59} +1.11653e7 q^{60} -7.01660e6 q^{61} +1.30835e8 q^{62} +7.74513e7 q^{63} +1.31496e8 q^{64} +3.48776e7 q^{65} +1.48288e7 q^{66} -1.24277e8 q^{67} -8.61233e6 q^{68} -6.93281e6 q^{69} -1.25957e8 q^{70} +6.68509e7 q^{71} +8.20520e7 q^{72} +4.31812e8 q^{73} +2.98138e8 q^{74} -3.16406e7 q^{75} -2.87422e7 q^{76} +1.26589e8 q^{77} +7.71675e7 q^{78} -1.81702e8 q^{79} -6.28629e7 q^{80} +4.30467e7 q^{81} -4.38346e8 q^{82} -6.01036e8 q^{83} +2.10887e8 q^{84} +2.44059e7 q^{85} +6.02600e8 q^{86} +3.97979e8 q^{87} +1.34109e8 q^{88} -4.69609e8 q^{89} -7.00056e7 q^{90} +6.58757e8 q^{91} -1.88769e7 q^{92} +6.20762e8 q^{93} +1.65573e8 q^{94} +8.14506e7 q^{95} +3.79565e8 q^{96} -3.63557e8 q^{97} -1.69011e9 q^{98} +7.03572e7 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q33q2972q3+2751q4+7500q5+2673q63450q718327q8+78732q920625q108180q11222831q1254754q13198168q14607500q15+319475q16+53668980q99+O(q100) 12 q - 33 q^{2} - 972 q^{3} + 2751 q^{4} + 7500 q^{5} + 2673 q^{6} - 3450 q^{7} - 18327 q^{8} + 78732 q^{9} - 20625 q^{10} - 8180 q^{11} - 222831 q^{12} - 54754 q^{13} - 198168 q^{14} - 607500 q^{15} + 319475 q^{16}+ \cdots - 53668980 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −17.0719 −0.754480 −0.377240 0.926116i 0.623127π-0.623127\pi
−0.377240 + 0.926116i 0.623127π0.623127\pi
33 −81.0000 −0.577350
44 −220.549 −0.430761
55 625.000 0.447214
66 1382.83 0.435599
77 11804.8 1.85831 0.929153 0.369695i 0.120538π-0.120538\pi
0.929153 + 0.369695i 0.120538π0.120538\pi
88 12506.0 1.07948
99 6561.00 0.333333
1010 −10670.0 −0.337413
1111 10723.5 0.220837 0.110418 0.993885i 0.464781π-0.464781\pi
0.110418 + 0.993885i 0.464781π0.464781\pi
1212 17864.5 0.248700
1313 55804.2 0.541903 0.270952 0.962593i 0.412662π-0.412662\pi
0.270952 + 0.962593i 0.412662π0.412662\pi
1414 −201531. −1.40205
1515 −50625.0 −0.258199
1616 −100581. −0.383685
1717 39049.4 0.113395 0.0566976 0.998391i 0.481943π-0.481943\pi
0.0566976 + 0.998391i 0.481943π0.481943\pi
1818 −112009. −0.251493
1919 130321. 0.229416
2020 −137843. −0.192642
2121 −956188. −1.07289
2222 −183072. −0.166617
2323 85590.2 0.0637748 0.0318874 0.999491i 0.489848π-0.489848\pi
0.0318874 + 0.999491i 0.489848π0.489848\pi
2424 −1.01299e6 −0.623238
2525 390625. 0.200000
2626 −952685. −0.408855
2727 −531441. −0.192450
2828 −2.60354e6 −0.800485
2929 −4.91333e6 −1.28998 −0.644992 0.764189i 0.723139π-0.723139\pi
−0.644992 + 0.764189i 0.723139π0.723139\pi
3030 864266. 0.194806
3131 −7.66372e6 −1.49043 −0.745216 0.666823i 0.767654π-0.767654\pi
−0.745216 + 0.666823i 0.767654π0.767654\pi
3232 −4.68598e6 −0.789997
3333 −868607. −0.127500
3434 −666649. −0.0855543
3535 7.37800e6 0.831060
3636 −1.44702e6 −0.143587
3737 −1.74637e7 −1.53189 −0.765944 0.642907i 0.777728π-0.777728\pi
−0.765944 + 0.642907i 0.777728π0.777728\pi
3838 −2.22483e6 −0.173089
3939 −4.52014e6 −0.312868
4040 7.81627e6 0.482758
4141 2.56765e7 1.41908 0.709541 0.704664i 0.248902π-0.248902\pi
0.709541 + 0.704664i 0.248902π0.248902\pi
4242 1.63240e7 0.809476
4343 −3.52977e7 −1.57449 −0.787243 0.616643i 0.788492π-0.788492\pi
−0.787243 + 0.616643i 0.788492π0.788492\pi
4444 −2.36507e6 −0.0951278
4545 4.10062e6 0.149071
4646 −1.46119e6 −0.0481168
4747 −9.69853e6 −0.289912 −0.144956 0.989438i 0.546304π-0.546304\pi
−0.144956 + 0.989438i 0.546304π0.546304\pi
4848 8.14703e6 0.221520
4949 9.89996e7 2.45330
5050 −6.66872e6 −0.150896
5151 −3.16300e6 −0.0654687
5252 −1.23076e7 −0.233431
5353 −6.79387e7 −1.18270 −0.591352 0.806414i 0.701406π-0.701406\pi
−0.591352 + 0.806414i 0.701406π0.701406\pi
5454 9.07272e6 0.145200
5555 6.70222e6 0.0987612
5656 1.47631e8 2.00600
5757 −1.05560e7 −0.132453
5858 8.38799e7 0.973267
5959 −2.56493e7 −0.275576 −0.137788 0.990462i 0.543999π-0.543999\pi
−0.137788 + 0.990462i 0.543999π0.543999\pi
6060 1.11653e7 0.111222
6161 −7.01660e6 −0.0648847 −0.0324424 0.999474i 0.510329π-0.510329\pi
−0.0324424 + 0.999474i 0.510329π0.510329\pi
6262 1.30835e8 1.12450
6363 7.74513e7 0.619435
6464 1.31496e8 0.979721
6565 3.48776e7 0.242347
6666 1.48288e7 0.0961963
6767 −1.24277e8 −0.753451 −0.376725 0.926325i 0.622950π-0.622950\pi
−0.376725 + 0.926325i 0.622950π0.622950\pi
6868 −8.61233e6 −0.0488462
6969 −6.93281e6 −0.0368204
7070 −1.25957e8 −0.627018
7171 6.68509e7 0.312208 0.156104 0.987741i 0.450106π-0.450106\pi
0.156104 + 0.987741i 0.450106π0.450106\pi
7272 8.20520e7 0.359827
7373 4.31812e8 1.77968 0.889839 0.456275i 0.150817π-0.150817\pi
0.889839 + 0.456275i 0.150817π0.150817\pi
7474 2.98138e8 1.15578
7575 −3.16406e7 −0.115470
7676 −2.87422e7 −0.0988233
7777 1.26589e8 0.410382
7878 7.71675e7 0.236053
7979 −1.81702e8 −0.524853 −0.262427 0.964952i 0.584523π-0.584523\pi
−0.262427 + 0.964952i 0.584523π0.584523\pi
8080 −6.28629e7 −0.171589
8181 4.30467e7 0.111111
8282 −4.38346e8 −1.07067
8383 −6.01036e8 −1.39011 −0.695055 0.718956i 0.744620π-0.744620\pi
−0.695055 + 0.718956i 0.744620π0.744620\pi
8484 2.10887e8 0.462160
8585 2.44059e7 0.0507118
8686 6.02600e8 1.18792
8787 3.97979e8 0.744773
8888 1.34109e8 0.238389
8989 −4.69609e8 −0.793380 −0.396690 0.917953i 0.629841π-0.629841\pi
−0.396690 + 0.917953i 0.629841π0.629841\pi
9090 −7.00056e7 −0.112471
9191 6.58757e8 1.00702
9292 −1.88769e7 −0.0274717
9393 6.20762e8 0.860501
9494 1.65573e8 0.218732
9595 8.14506e7 0.102598
9696 3.79565e8 0.456105
9797 −3.63557e8 −0.416966 −0.208483 0.978026i 0.566853π-0.566853\pi
−0.208483 + 0.978026i 0.566853π0.566853\pi
9898 −1.69011e9 −1.85097
9999 7.03572e7 0.0736123
100100 −8.61521e7 −0.0861521
101101 −1.10033e9 −1.05215 −0.526074 0.850439i 0.676336π-0.676336\pi
−0.526074 + 0.850439i 0.676336π0.676336\pi
102102 5.39985e7 0.0493948
103103 −4.43205e8 −0.388005 −0.194002 0.981001i 0.562147π-0.562147\pi
−0.194002 + 0.981001i 0.562147π0.562147\pi
104104 6.97889e8 0.584974
105105 −5.97618e8 −0.479813
106106 1.15984e9 0.892326
107107 −1.53314e9 −1.13072 −0.565360 0.824844i 0.691263π-0.691263\pi
−0.565360 + 0.824844i 0.691263π0.691263\pi
108108 1.17209e8 0.0828999
109109 −1.91067e9 −1.29648 −0.648240 0.761436i 0.724495π-0.724495\pi
−0.648240 + 0.761436i 0.724495π0.724495\pi
110110 −1.14420e8 −0.0745133
111111 1.41456e9 0.884436
112112 −1.18733e9 −0.713004
113113 1.84040e9 1.06184 0.530919 0.847423i 0.321847π-0.321847\pi
0.530919 + 0.847423i 0.321847π0.321847\pi
114114 1.80211e8 0.0999333
115115 5.34939e7 0.0285209
116116 1.08363e9 0.555675
117117 3.66131e8 0.180634
118118 4.37883e8 0.207916
119119 4.60970e8 0.210723
120120 −6.33118e8 −0.278720
121121 −2.24295e9 −0.951231
122122 1.19787e8 0.0489542
123123 −2.07979e9 −0.819308
124124 1.69023e9 0.642020
125125 2.44141e8 0.0894427
126126 −1.32224e9 −0.467351
127127 1.51876e9 0.518049 0.259025 0.965871i 0.416599π-0.416599\pi
0.259025 + 0.965871i 0.416599π0.416599\pi
128128 1.54333e8 0.0508177
129129 2.85912e9 0.909030
130130 −5.95428e8 −0.182845
131131 5.54699e9 1.64565 0.822823 0.568298i 0.192398π-0.192398\pi
0.822823 + 0.568298i 0.192398π0.192398\pi
132132 1.91571e8 0.0549221
133133 1.53841e9 0.426325
134134 2.12165e9 0.568463
135135 −3.32151e8 −0.0860663
136136 4.88353e8 0.122408
137137 6.74188e8 0.163508 0.0817539 0.996653i 0.473948π-0.473948\pi
0.0817539 + 0.996653i 0.473948π0.473948\pi
138138 1.18356e8 0.0277802
139139 3.90541e9 0.887360 0.443680 0.896185i 0.353673π-0.353673\pi
0.443680 + 0.896185i 0.353673π0.353673\pi
140140 −1.62721e9 −0.357988
141141 7.85581e8 0.167381
142142 −1.14127e9 −0.235555
143143 5.98419e8 0.119672
144144 −6.59909e8 −0.127895
145145 −3.07083e9 −0.576899
146146 −7.37185e9 −1.34273
147147 −8.01897e9 −1.41641
148148 3.85160e9 0.659877
149149 −3.80714e9 −0.632791 −0.316396 0.948627i 0.602473π-0.602473\pi
−0.316396 + 0.948627i 0.602473π0.602473\pi
150150 5.40166e8 0.0871198
151151 −5.03611e9 −0.788314 −0.394157 0.919043i 0.628963π-0.628963\pi
−0.394157 + 0.919043i 0.628963π0.628963\pi
152152 1.62980e9 0.247650
153153 2.56203e8 0.0377984
154154 −2.16112e9 −0.309625
155155 −4.78983e9 −0.666542
156156 9.96914e8 0.134771
157157 −1.27343e10 −1.67273 −0.836363 0.548175i 0.815323π-0.815323\pi
−0.836363 + 0.548175i 0.815323π0.815323\pi
158158 3.10200e9 0.395991
159159 5.50304e9 0.682834
160160 −2.92874e9 −0.353298
161161 1.01038e9 0.118513
162162 −7.34890e8 −0.0838311
163163 −7.30036e9 −0.810028 −0.405014 0.914310i 0.632733π-0.632733\pi
−0.405014 + 0.914310i 0.632733π0.632733\pi
164164 −5.66293e9 −0.611285
165165 −5.42880e8 −0.0570198
166166 1.02608e10 1.04881
167167 −1.73438e9 −0.172552 −0.0862758 0.996271i 0.527497π-0.527497\pi
−0.0862758 + 0.996271i 0.527497π0.527497\pi
168168 −1.19581e10 −1.15817
169169 −7.49039e9 −0.706341
170170 −4.16655e8 −0.0382611
171171 8.55036e8 0.0764719
172172 7.78489e9 0.678226
173173 −5.91992e9 −0.502468 −0.251234 0.967926i 0.580836π-0.580836\pi
−0.251234 + 0.967926i 0.580836π0.580836\pi
174174 −6.79427e9 −0.561916
175175 4.61125e9 0.371661
176176 −1.07858e9 −0.0847317
177177 2.07759e9 0.159104
178178 8.01713e9 0.598589
179179 1.13075e10 0.823241 0.411620 0.911355i 0.364963π-0.364963\pi
0.411620 + 0.911355i 0.364963π0.364963\pi
180180 −9.04391e8 −0.0642140
181181 −1.96730e10 −1.36244 −0.681219 0.732080i 0.738550π-0.738550\pi
−0.681219 + 0.732080i 0.738550π0.738550\pi
182182 −1.12463e10 −0.759778
183183 5.68344e8 0.0374612
184184 1.07039e9 0.0688436
185185 −1.09148e10 −0.685082
186186 −1.05976e10 −0.649231
187187 4.18748e8 0.0250418
188188 2.13901e9 0.124883
189189 −6.27355e9 −0.357631
190190 −1.39052e9 −0.0774080
191191 −8.57929e9 −0.466446 −0.233223 0.972423i 0.574927π-0.574927\pi
−0.233223 + 0.972423i 0.574927π0.574927\pi
192192 −1.06512e10 −0.565642
193193 2.00369e10 1.03949 0.519747 0.854320i 0.326026π-0.326026\pi
0.519747 + 0.854320i 0.326026π0.326026\pi
194194 6.20663e9 0.314592
195195 −2.82509e9 −0.139919
196196 −2.18343e10 −1.05679
197197 −9.28019e9 −0.438994 −0.219497 0.975613i 0.570442π-0.570442\pi
−0.219497 + 0.975613i 0.570442π0.570442\pi
198198 −1.20113e9 −0.0555389
199199 3.12211e10 1.41127 0.705635 0.708576i 0.250662π-0.250662\pi
0.705635 + 0.708576i 0.250662π0.250662\pi
200200 4.88517e9 0.215896
201201 1.00665e10 0.435005
202202 1.87847e10 0.793824
203203 −5.80008e10 −2.39719
204204 6.97599e8 0.0282013
205205 1.60478e10 0.634633
206206 7.56636e9 0.292742
207207 5.61557e8 0.0212583
208208 −5.61282e9 −0.207920
209209 1.39750e9 0.0506634
210210 1.02025e10 0.362009
211211 2.95630e10 1.02678 0.513391 0.858155i 0.328389π-0.328389\pi
0.513391 + 0.858155i 0.328389π0.328389\pi
212212 1.49838e10 0.509462
213213 −5.41492e9 −0.180254
214214 2.61737e10 0.853105
215215 −2.20611e10 −0.704131
216216 −6.64622e9 −0.207746
217217 −9.04687e10 −2.76968
218218 3.26188e10 0.978167
219219 −3.49767e10 −1.02750
220220 −1.47817e9 −0.0425424
221221 2.17912e9 0.0614492
222222 −2.41492e10 −0.667289
223223 3.58409e10 0.970527 0.485263 0.874368i 0.338724π-0.338724\pi
0.485263 + 0.874368i 0.338724π0.338724\pi
224224 −5.53171e10 −1.46806
225225 2.56289e9 0.0666667
226226 −3.14191e10 −0.801135
227227 −7.63678e10 −1.90895 −0.954474 0.298296i 0.903582π-0.903582\pi
−0.954474 + 0.298296i 0.903582π0.903582\pi
228228 2.32812e9 0.0570556
229229 −7.53272e10 −1.81006 −0.905028 0.425351i 0.860151π-0.860151\pi
−0.905028 + 0.425351i 0.860151π0.860151\pi
230230 −9.13244e8 −0.0215185
231231 −1.02537e10 −0.236934
232232 −6.14462e10 −1.39251
233233 5.23818e10 1.16434 0.582168 0.813068i 0.302205π-0.302205\pi
0.582168 + 0.813068i 0.302205π0.302205\pi
234234 −6.25057e9 −0.136285
235235 −6.06158e9 −0.129652
236236 5.65694e9 0.118707
237237 1.47179e10 0.303024
238238 −7.86965e9 −0.158986
239239 −2.49810e10 −0.495243 −0.247622 0.968857i 0.579649π-0.579649\pi
−0.247622 + 0.968857i 0.579649π0.579649\pi
240240 5.09189e9 0.0990669
241241 8.94691e10 1.70843 0.854213 0.519923i 0.174039π-0.174039\pi
0.854213 + 0.519923i 0.174039π0.174039\pi
242242 3.82915e10 0.717684
243243 −3.48678e9 −0.0641500
244244 1.54751e9 0.0279498
245245 6.18748e10 1.09715
246246 3.55061e10 0.618151
247247 7.27246e9 0.124321
248248 −9.58427e10 −1.60889
249249 4.86840e10 0.802581
250250 −4.16795e9 −0.0674827
251251 −3.78202e8 −0.00601440 −0.00300720 0.999995i 0.500957π-0.500957\pi
−0.00300720 + 0.999995i 0.500957π0.500957\pi
252252 −1.70818e10 −0.266828
253253 9.17831e8 0.0140838
254254 −2.59281e10 −0.390858
255255 −1.97688e9 −0.0292785
256256 −6.99607e10 −1.01806
257257 −6.92550e10 −0.990266 −0.495133 0.868817i 0.664881π-0.664881\pi
−0.495133 + 0.868817i 0.664881π0.664881\pi
258258 −4.88106e10 −0.685844
259259 −2.06155e11 −2.84672
260260 −7.69224e9 −0.104393
261261 −3.22363e10 −0.429995
262262 −9.46977e10 −1.24161
263263 1.22467e11 1.57840 0.789200 0.614136i 0.210495π-0.210495\pi
0.789200 + 0.614136i 0.210495π0.210495\pi
264264 −1.08628e10 −0.137634
265265 −4.24617e10 −0.528921
266266 −2.62637e10 −0.321653
267267 3.80383e10 0.458058
268268 2.74093e10 0.324557
269269 −2.06902e10 −0.240924 −0.120462 0.992718i 0.538438π-0.538438\pi
−0.120462 + 0.992718i 0.538438π0.538438\pi
270270 5.67045e9 0.0649353
271271 −3.14415e10 −0.354113 −0.177057 0.984201i 0.556658π-0.556658\pi
−0.177057 + 0.984201i 0.556658π0.556658\pi
272272 −3.92761e9 −0.0435080
273273 −5.33593e10 −0.581405
274274 −1.15097e10 −0.123363
275275 4.18889e9 0.0441674
276276 1.52903e9 0.0158608
277277 1.81200e11 1.84926 0.924631 0.380865i 0.124374π-0.124374\pi
0.924631 + 0.380865i 0.124374π0.124374\pi
278278 −6.66729e10 −0.669495
279279 −5.02817e10 −0.496811
280280 9.22694e10 0.897112
281281 1.51008e11 1.44485 0.722423 0.691451i 0.243028π-0.243028\pi
0.722423 + 0.691451i 0.243028π0.243028\pi
282282 −1.34114e10 −0.126285
283283 −2.02089e11 −1.87285 −0.936425 0.350867i 0.885887π-0.885887\pi
−0.936425 + 0.350867i 0.885887π0.885887\pi
284284 −1.47439e10 −0.134487
285285 −6.59750e9 −0.0592349
286286 −1.02162e10 −0.0902902
287287 3.03105e11 2.63709
288288 −3.07447e10 −0.263332
289289 −1.17063e11 −0.987142
290290 5.24249e10 0.435258
291291 2.94482e10 0.240735
292292 −9.52358e10 −0.766615
293293 1.59940e11 1.26781 0.633905 0.773411i 0.281451π-0.281451\pi
0.633905 + 0.773411i 0.281451π0.281451\pi
294294 1.36899e11 1.06866
295295 −1.60308e10 −0.123241
296296 −2.18401e11 −1.65364
297297 −5.69893e9 −0.0425001
298298 6.49952e10 0.477428
299299 4.77629e9 0.0345598
300300 6.97832e9 0.0497400
301301 −4.16682e11 −2.92588
302302 8.59761e10 0.594766
303303 8.91267e10 0.607458
304304 −1.31078e10 −0.0880233
305305 −4.38537e9 −0.0290173
306306 −4.37388e9 −0.0285181
307307 −2.20955e11 −1.41965 −0.709826 0.704378i 0.751226π-0.751226\pi
−0.709826 + 0.704378i 0.751226π0.751226\pi
308308 −2.79192e10 −0.176777
309309 3.58996e10 0.224015
310310 8.17716e10 0.502892
311311 −8.57467e10 −0.519752 −0.259876 0.965642i 0.583682π-0.583682\pi
−0.259876 + 0.965642i 0.583682π0.583682\pi
312312 −5.65290e10 −0.337735
313313 −1.99701e11 −1.17606 −0.588031 0.808838i 0.700097π-0.700097\pi
−0.588031 + 0.808838i 0.700097π0.700097\pi
314314 2.17398e11 1.26204
315315 4.84070e10 0.277020
316316 4.00743e10 0.226086
317317 1.01674e11 0.565513 0.282757 0.959192i 0.408751π-0.408751\pi
0.282757 + 0.959192i 0.408751π0.408751\pi
318318 −9.39474e10 −0.515184
319319 −5.26883e10 −0.284876
320320 8.21850e10 0.438145
321321 1.24184e11 0.652821
322322 −1.72490e10 −0.0894157
323323 5.08896e9 0.0260146
324324 −9.49393e9 −0.0478623
325325 2.17985e10 0.108381
326326 1.24631e11 0.611150
327327 1.54764e11 0.748523
328328 3.21110e11 1.53187
329329 −1.14489e11 −0.538745
330330 9.26800e9 0.0430203
331331 6.55209e10 0.300022 0.150011 0.988684i 0.452069π-0.452069\pi
0.150011 + 0.988684i 0.452069π0.452069\pi
332332 1.32558e11 0.598805
333333 −1.14579e11 −0.510630
334334 2.96091e10 0.130187
335335 −7.76732e10 −0.336953
336336 9.61740e10 0.411653
337337 −1.63149e11 −0.689050 −0.344525 0.938777i 0.611960π-0.611960\pi
−0.344525 + 0.938777i 0.611960π0.611960\pi
338338 1.27875e11 0.532920
339339 −1.49072e11 −0.613052
340340 −5.38271e9 −0.0218447
341341 −8.21823e10 −0.329142
342342 −1.45971e10 −0.0576965
343343 6.92304e11 2.70068
344344 −4.41434e11 −1.69962
345345 −4.33301e9 −0.0164666
346346 1.01064e11 0.379102
347347 4.60263e11 1.70421 0.852105 0.523370i 0.175325π-0.175325\pi
0.852105 + 0.523370i 0.175325π0.175325\pi
348348 −8.77741e10 −0.320819
349349 −1.56693e11 −0.565372 −0.282686 0.959212i 0.591225π-0.591225\pi
−0.282686 + 0.959212i 0.591225π0.591225\pi
350350 −7.87229e10 −0.280411
351351 −2.96566e10 −0.104289
352352 −5.02504e10 −0.174461
353353 1.39647e11 0.478680 0.239340 0.970936i 0.423069π-0.423069\pi
0.239340 + 0.970936i 0.423069π0.423069\pi
354354 −3.54685e10 −0.120041
355355 4.17818e10 0.139624
356356 1.03572e11 0.341757
357357 −3.73386e10 −0.121661
358358 −1.93040e11 −0.621118
359359 3.87102e11 1.22999 0.614993 0.788533i 0.289159π-0.289159\pi
0.614993 + 0.788533i 0.289159π0.289159\pi
360360 5.12825e10 0.160919
361361 1.69836e10 0.0526316
362362 3.35856e11 1.02793
363363 1.81679e11 0.549194
364364 −1.45289e11 −0.433786
365365 2.69882e11 0.795896
366366 −9.70273e9 −0.0282637
367367 3.70839e11 1.06706 0.533529 0.845782i 0.320866π-0.320866\pi
0.533529 + 0.845782i 0.320866π0.320866\pi
368368 −8.60872e9 −0.0244694
369369 1.68463e11 0.473028
370370 1.86336e11 0.516880
371371 −8.02003e11 −2.19783
372372 −1.36909e11 −0.370670
373373 −1.58356e11 −0.423590 −0.211795 0.977314i 0.567931π-0.567931\pi
−0.211795 + 0.977314i 0.567931π0.567931\pi
374374 −7.14884e9 −0.0188935
375375 −1.97754e10 −0.0516398
376376 −1.21290e11 −0.312954
377377 −2.74184e11 −0.699047
378378 1.07102e11 0.269825
379379 −5.77139e11 −1.43682 −0.718412 0.695617i 0.755131π-0.755131\pi
−0.718412 + 0.695617i 0.755131π0.755131\pi
380380 −1.79639e10 −0.0441951
381381 −1.23019e11 −0.299096
382382 1.46465e11 0.351924
383383 3.76018e11 0.892923 0.446461 0.894803i 0.352684π-0.352684\pi
0.446461 + 0.894803i 0.352684π0.352684\pi
384384 −1.25010e10 −0.0293396
385385 7.91183e10 0.183529
386386 −3.42068e11 −0.784277
387387 −2.31588e11 −0.524828
388388 8.01824e10 0.179612
389389 7.59614e11 1.68198 0.840988 0.541053i 0.181974π-0.181974\pi
0.840988 + 0.541053i 0.181974π0.181974\pi
390390 4.82297e10 0.105566
391391 3.34225e9 0.00723175
392392 1.23809e12 2.64829
393393 −4.49306e11 −0.950114
394394 1.58431e11 0.331212
395395 −1.13564e11 −0.234721
396396 −1.55172e10 −0.0317093
397397 4.42109e11 0.893248 0.446624 0.894722i 0.352626π-0.352626\pi
0.446624 + 0.894722i 0.352626π0.352626\pi
398398 −5.33005e11 −1.06477
399399 −1.24611e11 −0.246139
400400 −3.92893e10 −0.0767369
401401 2.21483e11 0.427752 0.213876 0.976861i 0.431391π-0.431391\pi
0.213876 + 0.976861i 0.431391π0.431391\pi
402402 −1.71854e11 −0.328202
403403 −4.27668e11 −0.807670
404404 2.42677e11 0.453224
405405 2.69042e10 0.0496904
406406 9.90185e11 1.80863
407407 −1.87272e11 −0.338297
408408 −3.95566e10 −0.0706721
409409 −1.65746e11 −0.292879 −0.146439 0.989220i 0.546781π-0.546781\pi
−0.146439 + 0.989220i 0.546781π0.546781\pi
410410 −2.73967e11 −0.478818
411411 −5.46092e10 −0.0944012
412412 9.77486e10 0.167137
413413 −3.02785e11 −0.512105
414414 −9.58687e9 −0.0160389
415415 −3.75648e11 −0.621676
416416 −2.61497e11 −0.428102
417417 −3.16338e11 −0.512318
418418 −2.38581e10 −0.0382245
419419 1.50545e11 0.238619 0.119309 0.992857i 0.461932π-0.461932\pi
0.119309 + 0.992857i 0.461932π0.461932\pi
420420 1.31804e11 0.206684
421421 1.11582e12 1.73111 0.865553 0.500817i 0.166967π-0.166967\pi
0.865553 + 0.500817i 0.166967π0.166967\pi
422422 −5.04698e11 −0.774686
423423 −6.36321e10 −0.0966372
424424 −8.49643e11 −1.27670
425425 1.52537e10 0.0226790
426426 9.24431e10 0.135998
427427 −8.28295e10 −0.120576
428428 3.38133e11 0.487070
429429 −4.84719e10 −0.0690928
430430 3.76625e11 0.531253
431431 5.20796e11 0.726976 0.363488 0.931599i 0.381586π-0.381586\pi
0.363488 + 0.931599i 0.381586π0.381586\pi
432432 5.34527e10 0.0738401
433433 −7.81289e11 −1.06811 −0.534055 0.845450i 0.679333π-0.679333\pi
−0.534055 + 0.845450i 0.679333π0.679333\pi
434434 1.54447e12 2.08967
435435 2.48737e11 0.333073
436436 4.21397e11 0.558472
437437 1.11542e10 0.0146309
438438 5.97120e11 0.775226
439439 −5.76901e11 −0.741328 −0.370664 0.928767i 0.620870π-0.620870\pi
−0.370664 + 0.928767i 0.620870π0.620870\pi
440440 8.38181e10 0.106611
441441 6.49536e11 0.817767
442442 −3.72018e10 −0.0463622
443443 −1.06242e11 −0.131063 −0.0655314 0.997851i 0.520874π-0.520874\pi
−0.0655314 + 0.997851i 0.520874π0.520874\pi
444444 −3.11979e11 −0.380980
445445 −2.93506e11 −0.354810
446446 −6.11874e11 −0.732243
447447 3.08378e11 0.365342
448448 1.55228e12 1.82062
449449 3.68568e11 0.427966 0.213983 0.976837i 0.431356π-0.431356\pi
0.213983 + 0.976837i 0.431356π0.431356\pi
450450 −4.37535e10 −0.0502986
451451 2.75343e11 0.313386
452452 −4.05898e11 −0.457398
453453 4.07925e11 0.455133
454454 1.30375e12 1.44026
455455 4.11723e11 0.450354
456456 −1.32014e11 −0.142981
457457 −6.92422e11 −0.742588 −0.371294 0.928515i 0.621086π-0.621086\pi
−0.371294 + 0.928515i 0.621086π0.621086\pi
458458 1.28598e12 1.36565
459459 −2.07525e10 −0.0218229
460460 −1.17980e10 −0.0122857
461461 1.23633e11 0.127491 0.0637455 0.997966i 0.479695π-0.479695\pi
0.0637455 + 0.997966i 0.479695π0.479695\pi
462462 1.75051e11 0.178762
463463 −5.65668e11 −0.572067 −0.286033 0.958220i 0.592337π-0.592337\pi
−0.286033 + 0.958220i 0.592337π0.592337\pi
464464 4.94185e11 0.494947
465465 3.87976e11 0.384828
466466 −8.94257e11 −0.878468
467467 1.11034e12 1.08026 0.540130 0.841582i 0.318375π-0.318375\pi
0.540130 + 0.841582i 0.318375π0.318375\pi
468468 −8.07501e10 −0.0778102
469469 −1.46707e12 −1.40014
470470 1.03483e11 0.0978201
471471 1.03147e12 0.965749
472472 −3.20771e11 −0.297479
473473 −3.78517e11 −0.347704
474474 −2.51262e11 −0.228625
475475 5.09066e10 0.0458831
476476 −1.01667e11 −0.0907711
477477 −4.45746e11 −0.394235
478478 4.26473e11 0.373651
479479 −4.59356e11 −0.398694 −0.199347 0.979929i 0.563882π-0.563882\pi
−0.199347 + 0.979929i 0.563882π0.563882\pi
480480 2.37228e11 0.203976
481481 −9.74545e11 −0.830136
482482 −1.52741e12 −1.28897
483483 −8.18404e10 −0.0684236
484484 4.94682e11 0.409753
485485 −2.27223e11 −0.186473
486486 5.95261e10 0.0483999
487487 2.77447e11 0.223511 0.111756 0.993736i 0.464353π-0.464353\pi
0.111756 + 0.993736i 0.464353π0.464353\pi
488488 −8.77498e10 −0.0700417
489489 5.91329e11 0.467670
490490 −1.05632e12 −0.827777
491491 −8.86757e11 −0.688554 −0.344277 0.938868i 0.611876π-0.611876\pi
−0.344277 + 0.938868i 0.611876π0.611876\pi
492492 4.58697e11 0.352926
493493 −1.91863e11 −0.146278
494494 −1.24155e11 −0.0937978
495495 4.39733e10 0.0329204
496496 7.70822e11 0.571856
497497 7.89161e11 0.580179
498498 −8.31129e11 −0.605531
499499 −6.77785e11 −0.489372 −0.244686 0.969602i 0.578685π-0.578685\pi
−0.244686 + 0.969602i 0.578685π0.578685\pi
500500 −5.38451e10 −0.0385284
501501 1.40484e11 0.0996228
502502 6.45664e9 0.00453774
503503 −8.11800e11 −0.565449 −0.282724 0.959201i 0.591238π-0.591238\pi
−0.282724 + 0.959201i 0.591238π0.591238\pi
504504 9.68608e11 0.668668
505505 −6.87706e11 −0.470535
506506 −1.56691e10 −0.0106260
507507 6.06722e11 0.407806
508508 −3.34961e11 −0.223155
509509 1.61730e11 0.106797 0.0533986 0.998573i 0.482995π-0.482995\pi
0.0533986 + 0.998573i 0.482995π0.482995\pi
510510 3.37491e10 0.0220900
511511 5.09745e12 3.30719
512512 1.11535e12 0.717290
513513 −6.92579e10 −0.0441511
514514 1.18232e12 0.747136
515515 −2.77003e11 −0.173521
516516 −6.30576e11 −0.391574
517517 −1.04003e11 −0.0640232
518518 3.51946e12 2.14779
519519 4.79513e11 0.290100
520520 4.36181e11 0.261608
521521 −2.87943e12 −1.71213 −0.856065 0.516868i 0.827098π-0.827098\pi
−0.856065 + 0.516868i 0.827098π0.827098\pi
522522 5.50336e11 0.324422
523523 −1.88151e12 −1.09963 −0.549817 0.835285i 0.685303π-0.685303\pi
−0.549817 + 0.835285i 0.685303π0.685303\pi
524524 −1.22338e12 −0.708879
525525 −3.73511e11 −0.214579
526526 −2.09074e12 −1.19087
527527 −2.99264e11 −0.169008
528528 8.73651e10 0.0489199
529529 −1.79383e12 −0.995933
530530 7.24903e11 0.399060
531531 −1.68285e11 −0.0918587
532532 −3.39296e11 −0.183644
533533 1.43285e12 0.769006
534534 −6.49388e11 −0.345596
535535 −9.58213e11 −0.505673
536536 −1.55421e12 −0.813335
537537 −9.15905e11 −0.475298
538538 3.53222e11 0.181772
539539 1.06163e12 0.541779
540540 7.32556e10 0.0370740
541541 −1.62100e12 −0.813568 −0.406784 0.913524i 0.633350π-0.633350\pi
−0.406784 + 0.913524i 0.633350π0.633350\pi
542542 5.36767e11 0.267171
543543 1.59351e12 0.786604
544544 −1.82985e11 −0.0895819
545545 −1.19417e12 −0.579803
546546 9.10946e11 0.438658
547547 1.76631e12 0.843575 0.421787 0.906695i 0.361403π-0.361403\pi
0.421787 + 0.906695i 0.361403π0.361403\pi
548548 −1.48692e11 −0.0704327
549549 −4.60359e10 −0.0216282
550550 −7.15123e10 −0.0333234
551551 −6.40309e11 −0.295943
552552 −8.67019e10 −0.0397469
553553 −2.14496e12 −0.975338
554554 −3.09343e12 −1.39523
555555 8.84097e11 0.395532
556556 −8.61336e11 −0.382240
557557 2.60533e12 1.14687 0.573435 0.819251i 0.305610π-0.305610\pi
0.573435 + 0.819251i 0.305610π0.305610\pi
558558 8.58405e11 0.374834
559559 −1.96976e12 −0.853219
560560 −7.42084e11 −0.318865
561561 −3.39186e10 −0.0144579
562562 −2.57800e12 −1.09011
563563 4.01223e12 1.68306 0.841528 0.540214i 0.181657π-0.181657\pi
0.841528 + 0.540214i 0.181657π0.181657\pi
564564 −1.73260e11 −0.0721010
565565 1.15025e12 0.474868
566566 3.45004e12 1.41303
567567 5.08158e11 0.206478
568568 8.36039e11 0.337023
569569 −3.21451e12 −1.28561 −0.642806 0.766029i 0.722230π-0.722230\pi
−0.642806 + 0.766029i 0.722230π0.722230\pi
570570 1.12632e11 0.0446915
571571 −6.41308e11 −0.252467 −0.126233 0.992001i 0.540289π-0.540289\pi
−0.126233 + 0.992001i 0.540289π0.540289\pi
572572 −1.31981e11 −0.0515501
573573 6.94922e11 0.269303
574574 −5.17459e12 −1.98963
575575 3.34337e10 0.0127550
576576 8.62745e11 0.326574
577577 −3.87706e12 −1.45617 −0.728085 0.685487i 0.759589π-0.759589\pi
−0.728085 + 0.685487i 0.759589π0.759589\pi
578578 1.99849e12 0.744778
579579 −1.62299e12 −0.600152
580580 6.77270e11 0.248505
581581 −7.09511e12 −2.58325
582582 −5.02737e11 −0.181630
583583 −7.28544e11 −0.261184
584584 5.40025e12 1.92113
585585 2.28832e11 0.0807822
586586 −2.73049e12 −0.956536
587587 3.11635e12 1.08336 0.541682 0.840583i 0.317788π-0.317788\pi
0.541682 + 0.840583i 0.317788π0.317788\pi
588588 1.76858e12 0.610136
589589 −9.98744e11 −0.341929
590590 2.73677e11 0.0929831
591591 7.51696e11 0.253453
592592 1.75650e12 0.587762
593593 −1.96777e12 −0.653475 −0.326738 0.945115i 0.605949π-0.605949\pi
−0.326738 + 0.945115i 0.605949π0.605949\pi
594594 9.72918e10 0.0320654
595595 2.88107e11 0.0942382
596596 8.39663e11 0.272582
597597 −2.52891e12 −0.814797
598598 −8.15405e10 −0.0260746
599599 −2.44774e12 −0.776864 −0.388432 0.921477i 0.626983π-0.626983\pi
−0.388432 + 0.921477i 0.626983π0.626983\pi
600600 −3.95699e11 −0.124648
601601 8.75163e11 0.273624 0.136812 0.990597i 0.456314π-0.456314\pi
0.136812 + 0.990597i 0.456314π0.456314\pi
602602 7.11357e12 2.20751
603603 −8.15383e11 −0.251150
604604 1.11071e12 0.339574
605605 −1.40185e12 −0.425403
606606 −1.52156e12 −0.458314
607607 −1.87732e12 −0.561293 −0.280647 0.959811i 0.590549π-0.590549\pi
−0.280647 + 0.959811i 0.590549π0.590549\pi
608608 −6.10682e11 −0.181238
609609 4.69807e12 1.38402
610610 7.48668e10 0.0218930
611611 −5.41219e11 −0.157104
612612 −5.65055e10 −0.0162821
613613 2.33539e12 0.668017 0.334009 0.942570i 0.391599π-0.391599\pi
0.334009 + 0.942570i 0.391599π0.391599\pi
614614 3.77213e12 1.07110
615615 −1.29987e12 −0.366406
616616 1.58313e12 0.442999
617617 4.28203e12 1.18951 0.594753 0.803909i 0.297250π-0.297250\pi
0.594753 + 0.803909i 0.297250π0.297250\pi
618618 −6.12875e11 −0.169014
619619 −5.25474e12 −1.43861 −0.719305 0.694694i 0.755540π-0.755540\pi
−0.719305 + 0.694694i 0.755540π0.755540\pi
620620 1.05639e12 0.287120
621621 −4.54862e10 −0.0122735
622622 1.46386e12 0.392142
623623 −5.54364e12 −1.47434
624624 4.54638e11 0.120043
625625 1.52588e11 0.0400000
626626 3.40928e12 0.887315
627627 −1.13198e11 −0.0292505
628628 2.80853e12 0.720545
629629 −6.81945e11 −0.173709
630630 −8.26401e11 −0.209006
631631 −1.73310e12 −0.435202 −0.217601 0.976038i 0.569823π-0.569823\pi
−0.217601 + 0.976038i 0.569823π0.569823\pi
632632 −2.27237e12 −0.566568
633633 −2.39461e12 −0.592813
634634 −1.73577e12 −0.426668
635635 9.49222e11 0.231679
636636 −1.21369e12 −0.294138
637637 5.52459e12 1.32945
638638 8.99490e11 0.214933
639639 4.38609e11 0.104069
640640 9.64583e10 0.0227263
641641 9.42113e11 0.220415 0.110208 0.993909i 0.464848π-0.464848\pi
0.110208 + 0.993909i 0.464848π0.464848\pi
642642 −2.12007e12 −0.492540
643643 1.07698e11 0.0248462 0.0124231 0.999923i 0.496046π-0.496046\pi
0.0124231 + 0.999923i 0.496046π0.496046\pi
644644 −2.22838e11 −0.0510508
645645 1.78695e12 0.406530
646646 −8.68783e10 −0.0196275
647647 6.89733e12 1.54743 0.773717 0.633532i 0.218395π-0.218395\pi
0.773717 + 0.633532i 0.218395π0.218395\pi
648648 5.38343e11 0.119942
649649 −2.75051e11 −0.0608573
650650 −3.72143e11 −0.0817710
651651 7.32796e12 1.59908
652652 1.61009e12 0.348928
653653 −6.08371e12 −1.30936 −0.654681 0.755906i 0.727197π-0.727197\pi
−0.654681 + 0.755906i 0.727197π0.727197\pi
654654 −2.64212e12 −0.564745
655655 3.46687e12 0.735955
656656 −2.58255e12 −0.544480
657657 2.83312e12 0.593226
658658 1.95455e12 0.406472
659659 −7.58358e12 −1.56635 −0.783177 0.621799i 0.786402π-0.786402\pi
−0.783177 + 0.621799i 0.786402π0.786402\pi
660660 1.19732e11 0.0245619
661661 −4.44191e12 −0.905030 −0.452515 0.891757i 0.649473π-0.649473\pi
−0.452515 + 0.891757i 0.649473π0.649473\pi
662662 −1.11857e12 −0.226361
663663 −1.76509e11 −0.0354777
664664 −7.51658e12 −1.50060
665665 9.61508e11 0.190658
666666 1.95608e12 0.385260
667667 −4.20533e11 −0.0822685
668668 3.82516e11 0.0743285
669669 −2.90312e12 −0.560334
670670 1.32603e12 0.254224
671671 −7.52428e10 −0.0143289
672672 4.48068e12 0.847583
673673 −5.95654e12 −1.11925 −0.559624 0.828747i 0.689054π-0.689054\pi
−0.559624 + 0.828747i 0.689054π0.689054\pi
674674 2.78527e12 0.519874
675675 −2.07594e11 −0.0384900
676676 1.65200e12 0.304264
677677 3.79342e12 0.694036 0.347018 0.937858i 0.387194π-0.387194\pi
0.347018 + 0.937858i 0.387194π0.387194\pi
678678 2.54495e12 0.462535
679679 −4.29172e12 −0.774850
680680 3.05221e11 0.0547424
681681 6.18579e12 1.10213
682682 1.40301e12 0.248331
683683 −8.63237e12 −1.51788 −0.758939 0.651162i 0.774282π-0.774282\pi
−0.758939 + 0.651162i 0.774282π0.774282\pi
684684 −1.88578e11 −0.0329411
685685 4.21367e11 0.0731229
686686 −1.18190e13 −2.03761
687687 6.10150e12 1.04504
688688 3.55027e12 0.604106
689689 −3.79127e12 −0.640911
690690 7.39727e10 0.0124237
691691 8.23079e12 1.37338 0.686689 0.726951i 0.259063π-0.259063\pi
0.686689 + 0.726951i 0.259063π0.259063\pi
692692 1.30563e12 0.216443
693693 8.30552e11 0.136794
694694 −7.85757e12 −1.28579
695695 2.44088e12 0.396840
696696 4.97714e12 0.803967
697697 1.00265e12 0.160917
698698 2.67505e12 0.426562
699699 −4.24292e12 −0.672230
700700 −1.01701e12 −0.160097
701701 5.13274e12 0.802819 0.401410 0.915899i 0.368520π-0.368520\pi
0.401410 + 0.915899i 0.368520π0.368520\pi
702702 5.06296e11 0.0786842
703703 −2.27588e12 −0.351439
704704 1.41010e12 0.216359
705705 4.90988e11 0.0748549
706706 −2.38404e12 −0.361154
707707 −1.29892e13 −1.95521
708708 −4.58212e11 −0.0685357
709709 3.81960e12 0.567688 0.283844 0.958870i 0.408390π-0.408390\pi
0.283844 + 0.958870i 0.408390π0.408390\pi
710710 −7.13296e11 −0.105343
711711 −1.19215e12 −0.174951
712712 −5.87294e12 −0.856438
713713 −6.55940e11 −0.0950520
714714 6.37442e11 0.0917907
715715 3.74012e11 0.0535190
716716 −2.49386e12 −0.354620
717717 2.02346e12 0.285929
718718 −6.60857e12 −0.927999
719719 −1.11913e13 −1.56172 −0.780859 0.624708i 0.785218π-0.785218\pi
−0.780859 + 0.624708i 0.785218π0.785218\pi
720720 −4.12443e11 −0.0571963
721721 −5.23194e12 −0.721032
722722 −2.89942e11 −0.0397094
723723 −7.24700e12 −0.986360
724724 4.33887e12 0.586885
725725 −1.91927e12 −0.257997
726726 −3.10161e12 −0.414355
727727 −8.48783e12 −1.12692 −0.563458 0.826145i 0.690529π-0.690529\pi
−0.563458 + 0.826145i 0.690529π0.690529\pi
728728 8.23844e12 1.08706
729729 2.82430e11 0.0370370
730730 −4.60741e12 −0.600487
731731 −1.37836e12 −0.178539
732732 −1.25348e11 −0.0161368
733733 4.12823e12 0.528197 0.264098 0.964496i 0.414926π-0.414926\pi
0.264098 + 0.964496i 0.414926π0.414926\pi
734734 −6.33093e12 −0.805073
735735 −5.01185e12 −0.633440
736736 −4.01074e11 −0.0503819
737737 −1.33269e12 −0.166390
738738 −2.87599e12 −0.356890
739739 3.52537e12 0.434815 0.217408 0.976081i 0.430240π-0.430240\pi
0.217408 + 0.976081i 0.430240π0.430240\pi
740740 2.40725e12 0.295106
741741 −5.89069e11 −0.0717768
742742 1.36917e13 1.65821
743743 −6.43206e12 −0.774284 −0.387142 0.922020i 0.626538π-0.626538\pi
−0.387142 + 0.922020i 0.626538π0.626538\pi
744744 7.76326e12 0.928894
745745 −2.37946e12 −0.282993
746746 2.70345e12 0.319590
747747 −3.94340e12 −0.463370
748748 −9.23547e10 −0.0107870
749749 −1.80984e13 −2.10122
750750 3.37604e11 0.0389612
751751 1.02373e12 0.117437 0.0587184 0.998275i 0.481299π-0.481299\pi
0.0587184 + 0.998275i 0.481299π0.481299\pi
752752 9.75485e11 0.111235
753753 3.06344e10 0.00347242
754754 4.68085e12 0.527417
755755 −3.14757e12 −0.352545
756756 1.38363e12 0.154053
757757 5.86577e12 0.649222 0.324611 0.945848i 0.394767π-0.394767\pi
0.324611 + 0.945848i 0.394767π0.394767\pi
758758 9.85287e12 1.08405
759759 −7.43443e10 −0.00813130
760760 1.01862e12 0.110752
761761 6.18495e12 0.668506 0.334253 0.942483i 0.391516π-0.391516\pi
0.334253 + 0.942483i 0.391516π0.391516\pi
762762 2.10017e12 0.225662
763763 −2.25550e13 −2.40926
764764 1.89216e12 0.200926
765765 1.60127e11 0.0169039
766766 −6.41934e12 −0.673692
767767 −1.43134e12 −0.149336
768768 5.66682e12 0.587779
769769 −1.87533e11 −0.0193379 −0.00966895 0.999953i 0.503078π-0.503078\pi
−0.00966895 + 0.999953i 0.503078π0.503078\pi
770770 −1.35070e12 −0.138469
771771 5.60965e12 0.571731
772772 −4.41912e12 −0.447773
773773 −3.37329e12 −0.339818 −0.169909 0.985460i 0.554347π-0.554347\pi
−0.169909 + 0.985460i 0.554347π0.554347\pi
774774 3.95366e12 0.395972
775775 −2.99364e12 −0.298086
776776 −4.54666e12 −0.450106
777777 1.66985e13 1.64355
778778 −1.29681e13 −1.26902
779779 3.34618e12 0.325560
780780 6.23072e11 0.0602715
781781 7.16879e11 0.0689471
782782 −5.70586e10 −0.00545621
783783 2.61114e12 0.248258
784784 −9.95744e12 −0.941294
785785 −7.95891e12 −0.748066
786786 7.67052e12 0.716841
787787 −3.45820e12 −0.321340 −0.160670 0.987008i 0.551365π-0.551365\pi
−0.160670 + 0.987008i 0.551365π0.551365\pi
788788 2.04674e12 0.189101
789789 −9.91980e12 −0.911290
790790 1.93875e12 0.177093
791791 2.17255e13 1.97322
792792 8.79889e11 0.0794629
793793 −3.91556e11 −0.0351612
794794 −7.54765e12 −0.673937
795795 3.43940e12 0.305373
796796 −6.88580e12 −0.607919
797797 −1.50198e13 −1.31857 −0.659284 0.751894i 0.729141π-0.729141\pi
−0.659284 + 0.751894i 0.729141π0.729141\pi
798798 2.12736e12 0.185707
799799 −3.78722e11 −0.0328746
800800 −1.83046e12 −0.157999
801801 −3.08111e12 −0.264460
802802 −3.78115e12 −0.322730
803803 4.63055e12 0.393018
804804 −2.22015e12 −0.187383
805805 6.31485e11 0.0530007
806806 7.30111e12 0.609371
807807 1.67591e12 0.139097
808808 −1.37608e13 −1.13577
809809 −5.19090e12 −0.426063 −0.213032 0.977045i 0.568334π-0.568334\pi
−0.213032 + 0.977045i 0.568334π0.568334\pi
810810 −4.59306e11 −0.0374904
811811 5.64885e11 0.0458528 0.0229264 0.999737i 0.492702π-0.492702\pi
0.0229264 + 0.999737i 0.492702π0.492702\pi
812812 1.27920e13 1.03261
813813 2.54676e12 0.204447
814814 3.19710e12 0.255238
815815 −4.56273e12 −0.362256
816816 3.18137e11 0.0251193
817817 −4.60003e12 −0.361212
818818 2.82960e12 0.220971
819819 4.32211e12 0.335674
820820 −3.53933e12 −0.273375
821821 2.42921e13 1.86604 0.933020 0.359826i 0.117164π-0.117164\pi
0.933020 + 0.359826i 0.117164π0.117164\pi
822822 9.32284e11 0.0712238
823823 −1.33695e13 −1.01582 −0.507910 0.861410i 0.669582π-0.669582\pi
−0.507910 + 0.861410i 0.669582π0.669582\pi
824824 −5.54273e12 −0.418843
825825 −3.39300e11 −0.0255000
826826 5.16912e12 0.386372
827827 4.50524e12 0.334922 0.167461 0.985879i 0.446443π-0.446443\pi
0.167461 + 0.985879i 0.446443π0.446443\pi
828828 −1.23851e11 −0.00915722
829829 −8.89486e12 −0.654099 −0.327050 0.945007i 0.606054π-0.606054\pi
−0.327050 + 0.945007i 0.606054π0.606054\pi
830830 6.41303e12 0.469042
831831 −1.46772e13 −1.06767
832832 7.33803e12 0.530914
833833 3.86588e12 0.278193
834834 5.40050e12 0.386533
835835 −1.08399e12 −0.0771675
836836 −3.08219e11 −0.0218238
837837 4.07282e12 0.286834
838838 −2.57010e12 −0.180033
839839 1.18724e13 0.827199 0.413599 0.910459i 0.364271π-0.364271\pi
0.413599 + 0.910459i 0.364271π0.364271\pi
840840 −7.47382e12 −0.517948
841841 9.63362e12 0.664060
842842 −1.90492e13 −1.30608
843843 −1.22317e13 −0.834183
844844 −6.52011e12 −0.442297
845845 −4.68149e12 −0.315885
846846 1.08632e12 0.0729108
847847 −2.64776e13 −1.76768
848848 6.83332e12 0.453785
849849 1.63692e13 1.08129
850850 −2.60410e11 −0.0171109
851851 −1.49472e12 −0.0976959
852852 1.19426e12 0.0776462
853853 8.65613e12 0.559826 0.279913 0.960025i 0.409694π-0.409694\pi
0.279913 + 0.960025i 0.409694π0.409694\pi
854854 1.41406e12 0.0909719
855855 5.34398e11 0.0341993
856856 −1.91735e13 −1.22059
857857 −2.58026e12 −0.163399 −0.0816997 0.996657i 0.526035π-0.526035\pi
−0.0816997 + 0.996657i 0.526035π0.526035\pi
858858 8.27509e11 0.0521291
859859 −1.20094e13 −0.752581 −0.376291 0.926502i 0.622801π-0.622801\pi
−0.376291 + 0.926502i 0.622801π0.622801\pi
860860 4.86556e12 0.303312
861861 −2.45515e13 −1.52252
862862 −8.89099e12 −0.548489
863863 2.57711e13 1.58156 0.790779 0.612102i 0.209676π-0.209676\pi
0.790779 + 0.612102i 0.209676π0.209676\pi
864864 2.49032e12 0.152035
865865 −3.69995e12 −0.224710
866866 1.33381e13 0.805867
867867 9.48210e12 0.569926
868868 1.99528e13 1.19307
869869 −1.94849e12 −0.115907
870870 −4.24642e12 −0.251296
871871 −6.93519e12 −0.408297
872872 −2.38949e13 −1.39952
873873 −2.38530e12 −0.138989
874874 −1.90424e11 −0.0110387
875875 2.88203e12 0.166212
876876 7.71410e12 0.442605
877877 −4.15440e12 −0.237143 −0.118571 0.992946i 0.537831π-0.537831\pi
−0.118571 + 0.992946i 0.537831π0.537831\pi
878878 9.84880e12 0.559317
879879 −1.29552e13 −0.731970
880880 −6.74113e11 −0.0378932
881881 2.65371e13 1.48409 0.742047 0.670348i 0.233855π-0.233855\pi
0.742047 + 0.670348i 0.233855π0.233855\pi
882882 −1.10888e13 −0.616989
883883 1.41263e13 0.781998 0.390999 0.920391i 0.372130π-0.372130\pi
0.390999 + 0.920391i 0.372130π0.372130\pi
884884 −4.80604e11 −0.0264699
885885 1.29850e12 0.0711534
886886 1.81376e12 0.0988843
887887 −1.50302e13 −0.815283 −0.407642 0.913142i 0.633649π-0.633649\pi
−0.407642 + 0.913142i 0.633649π0.633649\pi
888888 1.76905e13 0.954731
889889 1.79286e13 0.962694
890890 5.01071e12 0.267697
891891 4.61614e11 0.0245374
892892 −7.90470e12 −0.418065
893893 −1.26392e12 −0.0665103
894894 −5.26461e12 −0.275643
895895 7.06717e12 0.368164
896896 1.82187e12 0.0944348
897897 −3.86880e11 −0.0199531
898898 −6.29217e12 −0.322892
899899 3.76544e13 1.92263
900900 −5.65244e11 −0.0287174
901901 −2.65297e12 −0.134113
902902 −4.70063e12 −0.236443
903903 3.37513e13 1.68926
904904 2.30160e13 1.14623
905905 −1.22956e13 −0.609301
906906 −6.96406e12 −0.343389
907907 2.29165e13 1.12439 0.562193 0.827006i 0.309958π-0.309958\pi
0.562193 + 0.827006i 0.309958π0.309958\pi
908908 1.68429e13 0.822299
909909 −7.21926e12 −0.350716
910910 −7.02891e12 −0.339783
911911 −7.02130e12 −0.337742 −0.168871 0.985638i 0.554012π-0.554012\pi
−0.168871 + 0.985638i 0.554012π0.554012\pi
912912 1.06173e12 0.0508203
913913 −6.44524e12 −0.306988
914914 1.18210e13 0.560267
915915 3.55215e11 0.0167532
916916 1.66134e13 0.779701
917917 6.54810e13 3.05811
918918 3.54284e11 0.0164649
919919 1.14513e13 0.529584 0.264792 0.964306i 0.414697π-0.414697\pi
0.264792 + 0.964306i 0.414697π0.414697\pi
920920 6.68996e11 0.0307878
921921 1.78974e13 0.819636
922922 −2.11065e12 −0.0961893
923923 3.73056e12 0.169187
924924 2.26146e12 0.102062
925925 −6.82174e12 −0.306378
926926 9.65703e12 0.431613
927927 −2.90787e12 −0.129335
928928 2.30238e13 1.01908
929929 −4.07798e13 −1.79628 −0.898141 0.439708i 0.855082π-0.855082\pi
−0.898141 + 0.439708i 0.855082π0.855082\pi
930930 −6.62350e12 −0.290345
931931 1.29017e13 0.562826
932932 −1.15528e13 −0.501550
933933 6.94548e12 0.300079
934934 −1.89556e13 −0.815034
935935 2.61718e11 0.0111990
936936 4.57885e12 0.194991
937937 2.76611e12 0.117231 0.0586153 0.998281i 0.481331π-0.481331\pi
0.0586153 + 0.998281i 0.481331π0.481331\pi
938938 2.50456e13 1.05638
939939 1.61758e13 0.679000
940940 1.33688e12 0.0558492
941941 1.33465e13 0.554900 0.277450 0.960740i 0.410511π-0.410511\pi
0.277450 + 0.960740i 0.410511π0.410511\pi
942942 −1.76093e13 −0.728638
943943 2.19765e12 0.0905017
944944 2.57982e12 0.105734
945945 −3.92097e12 −0.159938
946946 6.46201e12 0.262336
947947 −4.79853e13 −1.93880 −0.969402 0.245480i 0.921054π-0.921054\pi
−0.969402 + 0.245480i 0.921054π0.921054\pi
948948 −3.24602e12 −0.130531
949949 2.40969e13 0.964413
950950 −8.69074e11 −0.0346179
951951 −8.23558e12 −0.326499
952952 5.76491e12 0.227471
953953 4.46482e13 1.75342 0.876710 0.481020i 0.159733π-0.159733\pi
0.876710 + 0.481020i 0.159733π0.159733\pi
954954 7.60974e12 0.297442
955955 −5.36205e12 −0.208601
956956 5.50954e12 0.213331
957957 4.26775e12 0.164473
958958 7.84209e12 0.300806
959959 7.95865e12 0.303847
960960 −6.65698e12 −0.252963
961961 3.22930e13 1.22139
962962 1.66374e13 0.626320
963963 −1.00589e13 −0.376907
964964 −1.97324e13 −0.735923
965965 1.25230e13 0.464876
966966 1.39717e12 0.0516242
967967 −2.18351e13 −0.803039 −0.401519 0.915851i 0.631518π-0.631518\pi
−0.401519 + 0.915851i 0.631518π0.631518\pi
968968 −2.80504e13 −1.02683
969969 −4.12206e11 −0.0150196
970970 3.87914e12 0.140690
971971 −1.25175e13 −0.451888 −0.225944 0.974140i 0.572547π-0.572547\pi
−0.225944 + 0.974140i 0.572547π0.572547\pi
972972 7.69008e11 0.0276333
973973 4.61026e13 1.64899
974974 −4.73655e12 −0.168635
975975 −1.76568e12 −0.0625736
976976 7.05734e11 0.0248953
977977 3.20249e13 1.12451 0.562253 0.826965i 0.309935π-0.309935\pi
0.562253 + 0.826965i 0.309935π0.309935\pi
978978 −1.00951e13 −0.352847
979979 −5.03588e12 −0.175208
980980 −1.36464e13 −0.472609
981981 −1.25359e13 −0.432160
982982 1.51386e13 0.519500
983983 5.40250e13 1.84546 0.922728 0.385452i 0.125954π-0.125954\pi
0.922728 + 0.385452i 0.125954π0.125954\pi
984984 −2.60099e13 −0.884426
985985 −5.80012e12 −0.196324
986986 3.27546e12 0.110364
987987 9.27363e12 0.311044
988988 −1.60394e12 −0.0535527
989989 −3.02114e12 −0.100412
990990 −7.50708e11 −0.0248378
991991 −8.74099e12 −0.287892 −0.143946 0.989586i 0.545979π-0.545979\pi
−0.143946 + 0.989586i 0.545979π0.545979\pi
992992 3.59121e13 1.17744
993993 −5.30719e12 −0.173218
994994 −1.34725e13 −0.437733
995995 1.95132e13 0.631139
996996 −1.07372e13 −0.345720
997997 −1.29294e13 −0.414429 −0.207214 0.978296i 0.566440π-0.566440\pi
−0.207214 + 0.978296i 0.566440π0.566440\pi
998998 1.15711e13 0.369221
999999 9.28090e12 0.294812
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.c.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.c.1.5 12 1.1 even 1 trivial