Properties

Label 285.10.a.d.1.11
Level 285285
Weight 1010
Character 285.1
Self dual yes
Analytic conductor 146.785146.785
Analytic rank 11
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 285=3519 285 = 3 \cdot 5 \cdot 19
Weight: k k == 10 10
Character orbit: [χ][\chi] == 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 146.785213307146.785213307
Analytic rank: 11
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x123x114398x10+11376x9+7070146x815274638x75114407260x6++43 ⁣ ⁣00 x^{12} - 3 x^{11} - 4398 x^{10} + 11376 x^{9} + 7070146 x^{8} - 15274638 x^{7} - 5114407260 x^{6} + \cdots + 43\!\cdots\!00 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2143352 2^{14}\cdot 3^{3}\cdot 5^{2}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.11
Root 33.798033.7980 of defining polynomial
Character χ\chi == 285.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+30.7980q2+81.0000q3+436.517q4+625.000q5+2494.64q62782.02q72324.71q8+6561.00q9+19248.8q10+1151.71q11+35357.9q12+39804.6q1385680.5q14+50625.0q15295093.q16175791.q17+202066.q18130321.q19+272823.q20225343.q21+35470.4q222.33041e6q23188302.q24+390625.q25+1.22590e6q26+531441.q271.21440e6q281.00066e6q29+1.55915e6q304.83994e6q317.89804e6q32+93288.5q335.41402e6q341.73876e6q35+2.86399e6q36+9.22167e6q374.01363e6q38+3.22417e6q391.45294e6q40+1.49454e7q416.94012e6q42+3.22833e7q43+502742.q44+4.10062e6q457.17720e7q465.41216e7q472.39026e7q483.26140e7q49+1.20305e7q501.42391e7q51+1.73754e7q525.17654e7q53+1.63673e7q54+719819.q55+6.46738e6q561.05560e7q573.08184e7q583.49621e7q59+2.20987e7q60+1.98210e7q611.49061e8q621.82528e7q639.21560e7q64+2.48778e7q65+2.87310e6q667.44306e7q677.67359e7q681.88763e8q695.35503e7q703.42811e8q711.52524e7q723.02412e8q73+2.84009e8q74+3.16406e7q755.68874e7q763.20408e6q77+9.92980e7q78+3.94342e8q791.84433e8q80+4.30467e7q81+4.60288e8q824.79544e8q839.83663e7q841.09869e8q85+9.94260e8q868.10535e7q872.67739e6q88+5.64393e8q89+1.26291e8q901.10737e8q911.01727e9q923.92035e8q931.66684e9q948.14506e7q956.39741e8q96+1.27447e9q971.00445e9q98+7.55637e6q99+O(q100)q+30.7980 q^{2} +81.0000 q^{3} +436.517 q^{4} +625.000 q^{5} +2494.64 q^{6} -2782.02 q^{7} -2324.71 q^{8} +6561.00 q^{9} +19248.8 q^{10} +1151.71 q^{11} +35357.9 q^{12} +39804.6 q^{13} -85680.5 q^{14} +50625.0 q^{15} -295093. q^{16} -175791. q^{17} +202066. q^{18} -130321. q^{19} +272823. q^{20} -225343. q^{21} +35470.4 q^{22} -2.33041e6 q^{23} -188302. q^{24} +390625. q^{25} +1.22590e6 q^{26} +531441. q^{27} -1.21440e6 q^{28} -1.00066e6 q^{29} +1.55915e6 q^{30} -4.83994e6 q^{31} -7.89804e6 q^{32} +93288.5 q^{33} -5.41402e6 q^{34} -1.73876e6 q^{35} +2.86399e6 q^{36} +9.22167e6 q^{37} -4.01363e6 q^{38} +3.22417e6 q^{39} -1.45294e6 q^{40} +1.49454e7 q^{41} -6.94012e6 q^{42} +3.22833e7 q^{43} +502742. q^{44} +4.10062e6 q^{45} -7.17720e7 q^{46} -5.41216e7 q^{47} -2.39026e7 q^{48} -3.26140e7 q^{49} +1.20305e7 q^{50} -1.42391e7 q^{51} +1.73754e7 q^{52} -5.17654e7 q^{53} +1.63673e7 q^{54} +719819. q^{55} +6.46738e6 q^{56} -1.05560e7 q^{57} -3.08184e7 q^{58} -3.49621e7 q^{59} +2.20987e7 q^{60} +1.98210e7 q^{61} -1.49061e8 q^{62} -1.82528e7 q^{63} -9.21560e7 q^{64} +2.48778e7 q^{65} +2.87310e6 q^{66} -7.44306e7 q^{67} -7.67359e7 q^{68} -1.88763e8 q^{69} -5.35503e7 q^{70} -3.42811e8 q^{71} -1.52524e7 q^{72} -3.02412e8 q^{73} +2.84009e8 q^{74} +3.16406e7 q^{75} -5.68874e7 q^{76} -3.20408e6 q^{77} +9.92980e7 q^{78} +3.94342e8 q^{79} -1.84433e8 q^{80} +4.30467e7 q^{81} +4.60288e8 q^{82} -4.79544e8 q^{83} -9.83663e7 q^{84} -1.09869e8 q^{85} +9.94260e8 q^{86} -8.10535e7 q^{87} -2.67739e6 q^{88} +5.64393e8 q^{89} +1.26291e8 q^{90} -1.10737e8 q^{91} -1.01727e9 q^{92} -3.92035e8 q^{93} -1.66684e9 q^{94} -8.14506e7 q^{95} -6.39741e8 q^{96} +1.27447e9 q^{97} -1.00445e9 q^{98} +7.55637e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q33q2+972q3+2751q4+7500q52673q65100q740215q8+78732q920625q1060416q11+222831q12164042q13444762q14+607500q15+396389376q99+O(q100) 12 q - 33 q^{2} + 972 q^{3} + 2751 q^{4} + 7500 q^{5} - 2673 q^{6} - 5100 q^{7} - 40215 q^{8} + 78732 q^{9} - 20625 q^{10} - 60416 q^{11} + 222831 q^{12} - 164042 q^{13} - 444762 q^{14} + 607500 q^{15}+ \cdots - 396389376 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 30.7980 1.36109 0.680546 0.732705i 0.261743π-0.261743\pi
0.680546 + 0.732705i 0.261743π0.261743\pi
33 81.0000 0.577350
44 436.517 0.852573
55 625.000 0.447214
66 2494.64 0.785827
77 −2782.02 −0.437944 −0.218972 0.975731i 0.570270π-0.570270\pi
−0.218972 + 0.975731i 0.570270π0.570270\pi
88 −2324.71 −0.200662
99 6561.00 0.333333
1010 19248.8 0.608699
1111 1151.71 0.0237179 0.0118589 0.999930i 0.496225π-0.496225\pi
0.0118589 + 0.999930i 0.496225π0.496225\pi
1212 35357.9 0.492233
1313 39804.6 0.386534 0.193267 0.981146i 0.438092π-0.438092\pi
0.193267 + 0.981146i 0.438092π0.438092\pi
1414 −85680.5 −0.596082
1515 50625.0 0.258199
1616 −295093. −1.12569
1717 −175791. −0.510478 −0.255239 0.966878i 0.582154π-0.582154\pi
−0.255239 + 0.966878i 0.582154π0.582154\pi
1818 202066. 0.453698
1919 −130321. −0.229416
2020 272823. 0.381282
2121 −225343. −0.252847
2222 35470.4 0.0322823
2323 −2.33041e6 −1.73643 −0.868215 0.496188i 0.834733π-0.834733\pi
−0.868215 + 0.496188i 0.834733π0.834733\pi
2424 −188302. −0.115852
2525 390625. 0.200000
2626 1.22590e6 0.526109
2727 531441. 0.192450
2828 −1.21440e6 −0.373379
2929 −1.00066e6 −0.262722 −0.131361 0.991335i 0.541935π-0.541935\pi
−0.131361 + 0.991335i 0.541935π0.541935\pi
3030 1.55915e6 0.351433
3131 −4.83994e6 −0.941266 −0.470633 0.882329i 0.655974π-0.655974\pi
−0.470633 + 0.882329i 0.655974π0.655974\pi
3232 −7.89804e6 −1.33151
3333 93288.5 0.0136935
3434 −5.41402e6 −0.694807
3535 −1.73876e6 −0.195854
3636 2.86399e6 0.284191
3737 9.22167e6 0.808913 0.404456 0.914557i 0.367461π-0.367461\pi
0.404456 + 0.914557i 0.367461π0.367461\pi
3838 −4.01363e6 −0.312256
3939 3.22417e6 0.223165
4040 −1.45294e6 −0.0897386
4141 1.49454e7 0.825999 0.412999 0.910731i 0.364481π-0.364481\pi
0.412999 + 0.910731i 0.364481π0.364481\pi
4242 −6.94012e6 −0.344148
4343 3.22833e7 1.44002 0.720011 0.693962i 0.244137π-0.244137\pi
0.720011 + 0.693962i 0.244137π0.244137\pi
4444 502742. 0.0202212
4545 4.10062e6 0.149071
4646 −7.17720e7 −2.36344
4747 −5.41216e7 −1.61782 −0.808910 0.587932i 0.799942π-0.799942\pi
−0.808910 + 0.587932i 0.799942π0.799942\pi
4848 −2.39026e7 −0.649919
4949 −3.26140e7 −0.808205
5050 1.20305e7 0.272219
5151 −1.42391e7 −0.294724
5252 1.73754e7 0.329548
5353 −5.17654e7 −0.901153 −0.450576 0.892738i 0.648781π-0.648781\pi
−0.450576 + 0.892738i 0.648781π0.648781\pi
5454 1.63673e7 0.261942
5555 719819. 0.0106070
5656 6.46738e6 0.0878785
5757 −1.05560e7 −0.132453
5858 −3.08184e7 −0.357588
5959 −3.49621e7 −0.375632 −0.187816 0.982204i 0.560141π-0.560141\pi
−0.187816 + 0.982204i 0.560141π0.560141\pi
6060 2.20987e7 0.220133
6161 1.98210e7 0.183291 0.0916454 0.995792i 0.470787π-0.470787\pi
0.0916454 + 0.995792i 0.470787π0.470787\pi
6262 −1.49061e8 −1.28115
6363 −1.82528e7 −0.145981
6464 −9.21560e7 −0.686616
6565 2.48778e7 0.172863
6666 2.87310e6 0.0186382
6767 −7.44306e7 −0.451248 −0.225624 0.974214i 0.572442π-0.572442\pi
−0.225624 + 0.974214i 0.572442π0.572442\pi
6868 −7.67359e7 −0.435220
6969 −1.88763e8 −1.00253
7070 −5.35503e7 −0.266576
7171 −3.42811e8 −1.60100 −0.800502 0.599330i 0.795434π-0.795434\pi
−0.800502 + 0.599330i 0.795434π0.795434\pi
7272 −1.52524e7 −0.0668872
7373 −3.02412e8 −1.24637 −0.623185 0.782075i 0.714162π-0.714162\pi
−0.623185 + 0.782075i 0.714162π0.714162\pi
7474 2.84009e8 1.10101
7575 3.16406e7 0.115470
7676 −5.68874e7 −0.195594
7777 −3.20408e6 −0.0103871
7878 9.92980e7 0.303749
7979 3.94342e8 1.13907 0.569536 0.821966i 0.307123π-0.307123\pi
0.569536 + 0.821966i 0.307123π0.307123\pi
8080 −1.84433e8 −0.503425
8181 4.30467e7 0.111111
8282 4.60288e8 1.12426
8383 −4.79544e8 −1.10912 −0.554558 0.832145i 0.687112π-0.687112\pi
−0.554558 + 0.832145i 0.687112π0.687112\pi
8484 −9.83663e7 −0.215571
8585 −1.09869e8 −0.228293
8686 9.94260e8 1.96000
8787 −8.10535e7 −0.151682
8888 −2.67739e6 −0.00475927
8989 5.64393e8 0.953514 0.476757 0.879035i 0.341812π-0.341812\pi
0.476757 + 0.879035i 0.341812π0.341812\pi
9090 1.26291e8 0.202900
9191 −1.10737e8 −0.169280
9292 −1.01727e9 −1.48043
9393 −3.92035e8 −0.543440
9494 −1.66684e9 −2.20200
9595 −8.14506e7 −0.102598
9696 −6.39741e8 −0.768748
9797 1.27447e9 1.46169 0.730845 0.682543i 0.239126π-0.239126\pi
0.730845 + 0.682543i 0.239126π0.239126\pi
9898 −1.00445e9 −1.10004
9999 7.55637e6 0.00790597
100100 1.70515e8 0.170515
101101 7.95234e8 0.760412 0.380206 0.924902i 0.375853π-0.375853\pi
0.380206 + 0.924902i 0.375853π0.375853\pi
102102 −4.38535e8 −0.401147
103103 5.01052e8 0.438647 0.219323 0.975652i 0.429615π-0.429615\pi
0.219323 + 0.975652i 0.429615π0.429615\pi
104104 −9.25341e7 −0.0775625
105105 −1.40840e8 −0.113077
106106 −1.59427e9 −1.22655
107107 −2.61865e9 −1.93130 −0.965652 0.259837i 0.916331π-0.916331\pi
−0.965652 + 0.259837i 0.916331π0.916331\pi
108108 2.31983e8 0.164078
109109 −1.65433e9 −1.12254 −0.561270 0.827632i 0.689687π-0.689687\pi
−0.561270 + 0.827632i 0.689687π0.689687\pi
110110 2.21690e7 0.0144371
111111 7.46955e8 0.467026
112112 8.20954e8 0.492990
113113 1.26156e9 0.727873 0.363937 0.931424i 0.381432π-0.381432\pi
0.363937 + 0.931424i 0.381432π0.381432\pi
114114 −3.25104e8 −0.180281
115115 −1.45651e9 −0.776555
116116 −4.36806e8 −0.223989
117117 2.61158e8 0.128845
118118 −1.07676e9 −0.511270
119119 4.89054e8 0.223560
120120 −1.17689e8 −0.0518106
121121 −2.35662e9 −0.999437
122122 6.10447e8 0.249476
123123 1.21057e9 0.476891
124124 −2.11272e9 −0.802498
125125 2.44141e8 0.0894427
126126 −5.62150e8 −0.198694
127127 −1.46488e9 −0.499671 −0.249836 0.968288i 0.580377π-0.580377\pi
−0.249836 + 0.968288i 0.580377π0.580377\pi
128128 1.20557e9 0.396962
129129 2.61494e9 0.831397
130130 7.66188e8 0.235283
131131 −3.71095e9 −1.10094 −0.550471 0.834855i 0.685552π-0.685552\pi
−0.550471 + 0.834855i 0.685552π0.685552\pi
132132 4.07221e7 0.0116747
133133 3.62555e8 0.100471
134134 −2.29231e9 −0.614190
135135 3.32151e8 0.0860663
136136 4.08664e8 0.102433
137137 6.10071e9 1.47958 0.739788 0.672840i 0.234926π-0.234926\pi
0.739788 + 0.672840i 0.234926π0.234926\pi
138138 −5.81353e9 −1.36453
139139 −4.69271e8 −0.106625 −0.0533123 0.998578i 0.516978π-0.516978\pi
−0.0533123 + 0.998578i 0.516978π0.516978\pi
140140 −7.58999e8 −0.166980
141141 −4.38385e9 −0.934049
142142 −1.05579e10 −2.17911
143143 4.58433e7 0.00916777
144144 −1.93611e9 −0.375231
145145 −6.25413e8 −0.117493
146146 −9.31370e9 −1.69642
147147 −2.64173e9 −0.466618
148148 4.02542e9 0.689657
149149 −1.09108e10 −1.81350 −0.906750 0.421669i 0.861444π-0.861444\pi
−0.906750 + 0.421669i 0.861444π0.861444\pi
150150 9.74468e8 0.157165
151151 1.01608e10 1.59050 0.795249 0.606282i 0.207340π-0.207340\pi
0.795249 + 0.606282i 0.207340π0.207340\pi
152152 3.02959e8 0.0460349
153153 −1.15337e9 −0.170159
154154 −9.86792e7 −0.0141378
155155 −3.02496e9 −0.420947
156156 1.40741e9 0.190265
157157 1.19097e10 1.56442 0.782211 0.623013i 0.214092π-0.214092\pi
0.782211 + 0.623013i 0.214092π0.214092\pi
158158 1.21450e10 1.55038
159159 −4.19300e9 −0.520281
160160 −4.93627e9 −0.595469
161161 6.48324e9 0.760459
162162 1.32575e9 0.151233
163163 4.00627e9 0.444524 0.222262 0.974987i 0.428656π-0.428656\pi
0.222262 + 0.974987i 0.428656π0.428656\pi
164164 6.52391e9 0.704224
165165 5.83053e7 0.00612393
166166 −1.47690e10 −1.50961
167167 −5.78334e9 −0.575380 −0.287690 0.957724i 0.592887π-0.592887\pi
−0.287690 + 0.957724i 0.592887π0.592887\pi
168168 5.23858e8 0.0507367
169169 −9.02010e9 −0.850591
170170 −3.38376e9 −0.310727
171171 −8.55036e8 −0.0764719
172172 1.40922e10 1.22772
173173 −4.11606e9 −0.349361 −0.174680 0.984625i 0.555889π-0.555889\pi
−0.174680 + 0.984625i 0.555889π0.555889\pi
174174 −2.49629e9 −0.206454
175175 −1.08672e9 −0.0875887
176176 −3.39862e8 −0.0266991
177177 −2.83193e9 −0.216871
178178 1.73822e10 1.29782
179179 −1.32967e10 −0.968070 −0.484035 0.875049i 0.660829π-0.660829\pi
−0.484035 + 0.875049i 0.660829π0.660829\pi
180180 1.78999e9 0.127094
181181 6.54575e9 0.453321 0.226661 0.973974i 0.427219π-0.427219\pi
0.226661 + 0.973974i 0.427219π0.427219\pi
182182 −3.41048e9 −0.230406
183183 1.60550e9 0.105823
184184 5.41753e9 0.348435
185185 5.76354e9 0.361757
186186 −1.20739e10 −0.739672
187187 −2.02460e8 −0.0121075
188188 −2.36250e10 −1.37931
189189 −1.47848e9 −0.0842823
190190 −2.50852e9 −0.139645
191191 −1.15900e10 −0.630137 −0.315069 0.949069i 0.602028π-0.602028\pi
−0.315069 + 0.949069i 0.602028π0.602028\pi
192192 −7.46464e9 −0.396418
193193 −3.40240e10 −1.76514 −0.882568 0.470185i 0.844187π-0.844187\pi
−0.882568 + 0.470185i 0.844187π0.844187\pi
194194 3.92510e10 1.98950
195195 2.01511e9 0.0998026
196196 −1.42366e10 −0.689054
197197 1.70734e10 0.807648 0.403824 0.914837i 0.367681π-0.367681\pi
0.403824 + 0.914837i 0.367681π0.367681\pi
198198 2.32721e8 0.0107608
199199 −4.29428e9 −0.194112 −0.0970558 0.995279i 0.530943π-0.530943\pi
−0.0970558 + 0.995279i 0.530943π0.530943\pi
200200 −9.08091e8 −0.0401323
201201 −6.02888e9 −0.260528
202202 2.44916e10 1.03499
203203 2.78385e9 0.115057
204204 −6.21561e9 −0.251274
205205 9.34086e9 0.369398
206206 1.54314e10 0.597039
207207 −1.52898e10 −0.578810
208208 −1.17461e10 −0.435118
209209 −1.50092e8 −0.00544126
210210 −4.33758e9 −0.153908
211211 3.13775e10 1.08980 0.544901 0.838500i 0.316567π-0.316567\pi
0.544901 + 0.838500i 0.316567π0.316567\pi
212212 −2.25965e10 −0.768299
213213 −2.77677e10 −0.924340
214214 −8.06493e10 −2.62868
215215 2.01770e10 0.643998
216216 −1.23545e9 −0.0386173
217217 1.34648e10 0.412221
218218 −5.09500e10 −1.52788
219219 −2.44954e10 −0.719592
220220 3.14214e8 0.00904321
221221 −6.99729e9 −0.197317
222222 2.30047e10 0.635666
223223 −4.74070e9 −0.128372 −0.0641861 0.997938i 0.520445π-0.520445\pi
−0.0641861 + 0.997938i 0.520445π0.520445\pi
224224 2.19725e10 0.583126
225225 2.56289e9 0.0666667
226226 3.88536e10 0.990703
227227 4.48664e10 1.12152 0.560758 0.827980i 0.310510π-0.310510\pi
0.560758 + 0.827980i 0.310510π0.310510\pi
228228 −4.60788e9 −0.112926
229229 4.34555e10 1.04420 0.522102 0.852883i 0.325148π-0.325148\pi
0.522102 + 0.852883i 0.325148π0.325148\pi
230230 −4.48575e10 −1.05696
231231 −2.59530e8 −0.00599700
232232 2.32625e9 0.0527181
233233 7.61271e10 1.69214 0.846072 0.533068i 0.178961π-0.178961\pi
0.846072 + 0.533068i 0.178961π0.178961\pi
234234 8.04314e9 0.175370
235235 −3.38260e10 −0.723511
236236 −1.52615e10 −0.320254
237237 3.19417e10 0.657644
238238 1.50619e10 0.304287
239239 3.59080e10 0.711870 0.355935 0.934511i 0.384162π-0.384162\pi
0.355935 + 0.934511i 0.384162π0.384162\pi
240240 −1.49391e10 −0.290652
241241 −9.27673e10 −1.77141 −0.885703 0.464252i 0.846323π-0.846323\pi
−0.885703 + 0.464252i 0.846323π0.846323\pi
242242 −7.25792e10 −1.36033
243243 3.48678e9 0.0641500
244244 8.65220e9 0.156269
245245 −2.03837e10 −0.361440
246246 3.72833e10 0.649092
247247 −5.18737e9 −0.0886770
248248 1.12515e10 0.188876
249249 −3.88430e10 −0.640348
250250 7.51905e9 0.121740
251251 −8.41177e9 −0.133769 −0.0668845 0.997761i 0.521306π-0.521306\pi
−0.0668845 + 0.997761i 0.521306π0.521306\pi
252252 −7.96767e9 −0.124460
253253 −2.68396e9 −0.0411845
254254 −4.51153e10 −0.680099
255255 −8.89942e9 −0.131805
256256 8.43131e10 1.22692
257257 −8.98210e10 −1.28434 −0.642168 0.766564i 0.721965π-0.721965\pi
−0.642168 + 0.766564i 0.721965π0.721965\pi
258258 8.05351e10 1.13161
259259 −2.56548e10 −0.354258
260260 1.08596e10 0.147379
261261 −6.56533e9 −0.0875739
262262 −1.14290e11 −1.49848
263263 9.35545e10 1.20577 0.602884 0.797829i 0.294018π-0.294018\pi
0.602884 + 0.797829i 0.294018π0.294018\pi
264264 −2.16869e8 −0.00274777
265265 −3.23534e10 −0.403008
266266 1.11660e10 0.136751
267267 4.57159e10 0.550511
268268 −3.24903e10 −0.384722
269269 1.52794e11 1.77919 0.889594 0.456752i 0.150987π-0.150987\pi
0.889594 + 0.456752i 0.150987π0.150987\pi
270270 1.02296e10 0.117144
271271 −1.37162e11 −1.54480 −0.772399 0.635138i 0.780943π-0.780943\pi
−0.772399 + 0.635138i 0.780943π0.780943\pi
272272 5.18748e10 0.574641
273273 −8.96969e9 −0.0977339
274274 1.87890e11 2.01384
275275 4.49887e8 0.00474358
276276 −8.23985e10 −0.854729
277277 8.40167e10 0.857445 0.428723 0.903436i 0.358964π-0.358964\pi
0.428723 + 0.903436i 0.358964π0.358964\pi
278278 −1.44526e10 −0.145126
279279 −3.17548e10 −0.313755
280280 4.04211e9 0.0393004
281281 5.98704e10 0.572840 0.286420 0.958104i 0.407535π-0.407535\pi
0.286420 + 0.958104i 0.407535π0.407535\pi
282282 −1.35014e11 −1.27133
283283 1.64644e11 1.52583 0.762915 0.646499i 0.223768π-0.223768\pi
0.762915 + 0.646499i 0.223768π0.223768\pi
284284 −1.49643e11 −1.36497
285285 −6.59750e9 −0.0592349
286286 1.41188e9 0.0124782
287287 −4.15782e10 −0.361741
288288 −5.18190e10 −0.443837
289289 −8.76854e10 −0.739413
290290 −1.92615e10 −0.159918
291291 1.03232e11 0.843907
292292 −1.32008e11 −1.06262
293293 −7.35831e10 −0.583275 −0.291638 0.956529i 0.594200π-0.594200\pi
−0.291638 + 0.956529i 0.594200π0.594200\pi
294294 −8.13601e10 −0.635110
295295 −2.18513e10 −0.167988
296296 −2.14377e10 −0.162318
297297 6.12066e8 0.00456451
298298 −3.36030e11 −2.46834
299299 −9.27610e10 −0.671189
300300 1.38117e10 0.0984467
301301 −8.98125e10 −0.630649
302302 3.12934e11 2.16482
303303 6.44140e10 0.439024
304304 3.84569e10 0.258251
305305 1.23881e10 0.0819702
306306 −3.55214e10 −0.231602
307307 −2.40045e11 −1.54230 −0.771151 0.636652i 0.780319π-0.780319\pi
−0.771151 + 0.636652i 0.780319π0.780319\pi
308308 −1.39863e9 −0.00885577
309309 4.05852e10 0.253253
310310 −9.31628e10 −0.572948
311311 −1.14775e11 −0.695708 −0.347854 0.937549i 0.613090π-0.613090\pi
−0.347854 + 0.937549i 0.613090π0.613090\pi
312312 −7.49526e9 −0.0447807
313313 −3.24935e11 −1.91358 −0.956789 0.290782i 0.906085π-0.906085\pi
−0.956789 + 0.290782i 0.906085π0.906085\pi
314314 3.66796e11 2.12932
315315 −1.14080e10 −0.0652848
316316 1.72137e11 0.971143
317317 1.06700e11 0.593468 0.296734 0.954960i 0.404103π-0.404103\pi
0.296734 + 0.954960i 0.404103π0.404103\pi
318318 −1.29136e11 −0.708150
319319 −1.15247e9 −0.00623120
320320 −5.75975e10 −0.307064
321321 −2.12111e11 −1.11504
322322 1.99671e11 1.03505
323323 2.29093e10 0.117112
324324 1.87906e10 0.0947304
325325 1.55487e10 0.0773068
326326 1.23385e11 0.605039
327327 −1.34000e11 −0.648099
328328 −3.47437e10 −0.165746
329329 1.50567e11 0.708514
330330 1.79569e9 0.00833524
331331 −3.46295e11 −1.58570 −0.792850 0.609417i 0.791403π-0.791403\pi
−0.792850 + 0.609417i 0.791403π0.791403\pi
332332 −2.09329e11 −0.945602
333333 6.05034e10 0.269638
334334 −1.78115e11 −0.783145
335335 −4.65191e10 −0.201804
336336 6.64973e10 0.284628
337337 1.45369e11 0.613954 0.306977 0.951717i 0.400683π-0.400683\pi
0.306977 + 0.951717i 0.400683π0.400683\pi
338338 −2.77801e11 −1.15773
339339 1.02187e11 0.420238
340340 −4.79599e10 −0.194636
341341 −5.57421e9 −0.0223248
342342 −2.63334e10 −0.104085
343343 2.02997e11 0.791892
344344 −7.50493e10 −0.288957
345345 −1.17977e11 −0.448344
346346 −1.26766e11 −0.475512
347347 −8.39537e10 −0.310854 −0.155427 0.987847i 0.549675π-0.549675\pi
−0.155427 + 0.987847i 0.549675π0.549675\pi
348348 −3.53813e10 −0.129320
349349 2.87506e11 1.03737 0.518684 0.854966i 0.326422π-0.326422\pi
0.518684 + 0.854966i 0.326422π0.326422\pi
350350 −3.34690e10 −0.119216
351351 2.11538e10 0.0743885
352352 −9.09625e9 −0.0315806
353353 1.61913e11 0.555005 0.277502 0.960725i 0.410493π-0.410493\pi
0.277502 + 0.960725i 0.410493π0.410493\pi
354354 −8.72177e10 −0.295182
355355 −2.14257e11 −0.715991
356356 2.46368e11 0.812940
357357 3.96133e10 0.129073
358358 −4.09513e11 −1.31763
359359 4.41518e10 0.140289 0.0701445 0.997537i 0.477654π-0.477654\pi
0.0701445 + 0.997537i 0.477654π0.477654\pi
360360 −9.53277e9 −0.0299129
361361 1.69836e10 0.0526316
362362 2.01596e11 0.617012
363363 −1.90886e11 −0.577025
364364 −4.83386e10 −0.144324
365365 −1.89008e11 −0.557393
366366 4.94462e10 0.144035
367367 −2.25970e11 −0.650210 −0.325105 0.945678i 0.605400π-0.605400\pi
−0.325105 + 0.945678i 0.605400π0.605400\pi
368368 6.87689e11 1.95469
369369 9.80566e10 0.275333
370370 1.77506e11 0.492385
371371 1.44012e11 0.394654
372372 −1.71130e11 −0.463322
373373 −2.52590e10 −0.0675658 −0.0337829 0.999429i 0.510755π-0.510755\pi
−0.0337829 + 0.999429i 0.510755π0.510755\pi
374374 −6.23538e9 −0.0164794
375375 1.97754e10 0.0516398
376376 1.25817e11 0.324634
377377 −3.98308e10 −0.101551
378378 −4.55341e10 −0.114716
379379 1.92804e11 0.479999 0.240000 0.970773i 0.422853π-0.422853\pi
0.240000 + 0.970773i 0.422853π0.422853\pi
380380 −3.55546e10 −0.0874722
381381 −1.18655e11 −0.288485
382382 −3.56950e11 −0.857675
383383 3.29359e11 0.782123 0.391061 0.920365i 0.372108π-0.372108\pi
0.391061 + 0.920365i 0.372108π0.372108\pi
384384 9.76514e10 0.229186
385385 −2.00255e9 −0.00464525
386386 −1.04787e12 −2.40251
387387 2.11810e11 0.480007
388388 5.56326e11 1.24620
389389 6.86136e11 1.51928 0.759638 0.650346i 0.225376π-0.225376\pi
0.759638 + 0.650346i 0.225376π0.225376\pi
390390 6.20612e10 0.135841
391391 4.09665e11 0.886409
392392 7.58182e10 0.162176
393393 −3.00587e11 −0.635629
394394 5.25827e11 1.09928
395395 2.46464e11 0.509409
396396 3.29849e9 0.00674041
397397 −1.25923e11 −0.254418 −0.127209 0.991876i 0.540602π-0.540602\pi
−0.127209 + 0.991876i 0.540602π0.540602\pi
398398 −1.32255e11 −0.264204
399399 2.93670e10 0.0580071
400400 −1.15271e11 −0.225138
401401 3.47020e11 0.670200 0.335100 0.942183i 0.391230π-0.391230\pi
0.335100 + 0.942183i 0.391230π0.391230\pi
402402 −1.85677e11 −0.354603
403403 −1.92652e11 −0.363831
404404 3.47134e11 0.648307
405405 2.69042e10 0.0496904
406406 8.57371e10 0.156604
407407 1.06207e10 0.0191857
408408 3.31018e10 0.0591399
409409 −4.90257e11 −0.866300 −0.433150 0.901322i 0.642598π-0.642598\pi
−0.433150 + 0.901322i 0.642598π0.642598\pi
410410 2.87680e11 0.502785
411411 4.94157e11 0.854234
412412 2.18718e11 0.373979
413413 9.72650e10 0.164506
414414 −4.70896e11 −0.787814
415415 −2.99715e11 −0.496011
416416 −3.14378e11 −0.514674
417417 −3.80109e10 −0.0615597
418418 −4.62254e9 −0.00740606
419419 9.03886e11 1.43268 0.716342 0.697749i 0.245815π-0.245815\pi
0.716342 + 0.697749i 0.245815π0.245815\pi
420420 −6.14789e10 −0.0964061
421421 1.19112e12 1.84793 0.923967 0.382473i 0.124927π-0.124927\pi
0.923967 + 0.382473i 0.124927π0.124927\pi
422422 9.66366e11 1.48332
423423 −3.55092e11 −0.539273
424424 1.20340e11 0.180827
425425 −6.86684e10 −0.102096
426426 −8.55190e11 −1.25811
427427 −5.51423e10 −0.0802711
428428 −1.14309e12 −1.64658
429429 3.71331e9 0.00529302
430430 6.21412e11 0.876540
431431 5.73251e11 0.800197 0.400098 0.916472i 0.368976π-0.368976\pi
0.400098 + 0.916472i 0.368976π0.368976\pi
432432 −1.56825e11 −0.216640
433433 1.09093e12 1.49143 0.745714 0.666266i 0.232109π-0.232109\pi
0.745714 + 0.666266i 0.232109π0.232109\pi
434434 4.14689e11 0.561072
435435 −5.06584e10 −0.0678344
436436 −7.22143e11 −0.957048
437437 3.03701e11 0.398364
438438 −7.54410e11 −0.979431
439439 −2.73492e11 −0.351443 −0.175721 0.984440i 0.556226π-0.556226\pi
−0.175721 + 0.984440i 0.556226π0.556226\pi
440440 −1.67337e9 −0.00212841
441441 −2.13980e11 −0.269402
442442 −2.15503e11 −0.268567
443443 −7.49545e10 −0.0924658 −0.0462329 0.998931i 0.514722π-0.514722\pi
−0.0462329 + 0.998931i 0.514722π0.514722\pi
444444 3.26059e11 0.398174
445445 3.52746e11 0.426424
446446 −1.46004e11 −0.174726
447447 −8.83773e11 −1.04702
448448 2.56379e11 0.300699
449449 −3.55853e10 −0.0413202 −0.0206601 0.999787i 0.506577π-0.506577\pi
−0.0206601 + 0.999787i 0.506577π0.506577\pi
450450 7.89319e10 0.0907395
451451 1.72127e10 0.0195909
452452 5.50694e11 0.620565
453453 8.23028e11 0.918275
454454 1.38180e12 1.52649
455455 −6.92105e10 −0.0757044
456456 2.45397e10 0.0265783
457457 3.36805e11 0.361207 0.180603 0.983556i 0.442195π-0.442195\pi
0.180603 + 0.983556i 0.442195π0.442195\pi
458458 1.33834e12 1.42126
459459 −9.34226e10 −0.0982415
460460 −6.35791e11 −0.662070
461461 1.71990e12 1.77357 0.886785 0.462182i 0.152933π-0.152933\pi
0.886785 + 0.462182i 0.152933π0.152933\pi
462462 −7.99301e9 −0.00816247
463463 1.28766e12 1.30222 0.651112 0.758982i 0.274303π-0.274303\pi
0.651112 + 0.758982i 0.274303π0.274303\pi
464464 2.95288e11 0.295744
465465 −2.45022e11 −0.243034
466466 2.34456e12 2.30317
467467 −9.12843e11 −0.888117 −0.444058 0.895998i 0.646462π-0.646462\pi
−0.444058 + 0.895998i 0.646462π0.646462\pi
468468 1.14000e11 0.109849
469469 2.07067e11 0.197621
470470 −1.04177e12 −0.984766
471471 9.64689e11 0.903220
472472 8.12767e10 0.0753750
473473 3.71810e10 0.0341543
474474 9.83742e11 0.895114
475475 −5.09066e10 −0.0458831
476476 2.13480e11 0.190602
477477 −3.39633e11 −0.300384
478478 1.10590e12 0.968921
479479 −3.70513e11 −0.321584 −0.160792 0.986988i 0.551405π-0.551405\pi
−0.160792 + 0.986988i 0.551405π0.551405\pi
480480 −3.99838e11 −0.343794
481481 3.67064e11 0.312672
482482 −2.85705e12 −2.41105
483483 5.25142e11 0.439051
484484 −1.02871e12 −0.852094
485485 7.96541e11 0.653688
486486 1.07386e11 0.0873141
487487 −1.09971e12 −0.885929 −0.442965 0.896539i 0.646073π-0.646073\pi
−0.442965 + 0.896539i 0.646073π0.646073\pi
488488 −4.60781e10 −0.0367794
489489 3.24507e11 0.256646
490490 −6.27779e11 −0.491954
491491 −1.16248e12 −0.902648 −0.451324 0.892360i 0.649048π-0.649048\pi
−0.451324 + 0.892360i 0.649048π0.649048\pi
492492 5.28437e11 0.406584
493493 1.75907e11 0.134114
494494 −1.59761e11 −0.120698
495495 4.72273e9 0.00353566
496496 1.42823e12 1.05958
497497 9.53706e11 0.701150
498498 −1.19629e12 −0.871573
499499 1.89801e12 1.37040 0.685198 0.728357i 0.259716π-0.259716\pi
0.685198 + 0.728357i 0.259716π0.259716\pi
500500 1.06572e11 0.0762565
501501 −4.68450e11 −0.332196
502502 −2.59066e11 −0.182072
503503 6.71585e11 0.467784 0.233892 0.972263i 0.424854π-0.424854\pi
0.233892 + 0.972263i 0.424854π0.424854\pi
504504 4.24325e10 0.0292928
505505 4.97021e11 0.340067
506506 −8.26606e10 −0.0560559
507507 −7.30628e11 −0.491089
508508 −6.39444e11 −0.426006
509509 −6.25114e11 −0.412790 −0.206395 0.978469i 0.566173π-0.566173\pi
−0.206395 + 0.978469i 0.566173π0.566173\pi
510510 −2.74085e11 −0.179399
511511 8.41316e11 0.545840
512512 1.97942e12 1.27299
513513 −6.92579e10 −0.0441511
514514 −2.76631e12 −1.74810
515515 3.13157e11 0.196169
516516 1.14147e12 0.708827
517517 −6.23324e10 −0.0383713
518518 −7.90117e11 −0.482178
519519 −3.33401e11 −0.201703
520520 −5.78338e10 −0.0346870
521521 1.53513e11 0.0912801 0.0456401 0.998958i 0.485467π-0.485467\pi
0.0456401 + 0.998958i 0.485467π0.485467\pi
522522 −2.02199e11 −0.119196
523523 3.35387e10 0.0196015 0.00980074 0.999952i 0.496880π-0.496880\pi
0.00980074 + 0.999952i 0.496880π0.496880\pi
524524 −1.61989e12 −0.938633
525525 −8.80247e10 −0.0505694
526526 2.88129e12 1.64116
527527 8.50818e11 0.480495
528528 −2.75288e10 −0.0154147
529529 3.62966e12 2.01519
530530 −9.96420e11 −0.548531
531531 −2.29386e11 −0.125211
532532 1.58262e11 0.0856590
533533 5.94894e11 0.319277
534534 1.40796e12 0.749297
535535 −1.63666e12 −0.863706
536536 1.73030e11 0.0905481
537537 −1.07704e12 −0.558915
538538 4.70576e12 2.42164
539539 −3.75619e10 −0.0191689
540540 1.44990e11 0.0733778
541541 1.21969e12 0.612156 0.306078 0.952006i 0.400983π-0.400983\pi
0.306078 + 0.952006i 0.400983π0.400983\pi
542542 −4.22431e12 −2.10261
543543 5.30206e11 0.261725
544544 1.38840e12 0.679706
545545 −1.03395e12 −0.502016
546546 −2.76248e11 −0.133025
547547 −2.58499e12 −1.23457 −0.617284 0.786740i 0.711767π-0.711767\pi
−0.617284 + 0.786740i 0.711767π0.711767\pi
548548 2.66306e12 1.26145
549549 1.30045e11 0.0610969
550550 1.38556e10 0.00645645
551551 1.30407e11 0.0602725
552552 4.38820e11 0.201169
553553 −1.09707e12 −0.498850
554554 2.58755e12 1.16706
555555 4.66847e11 0.208860
556556 −2.04845e11 −0.0909052
557557 −2.79411e12 −1.22997 −0.614985 0.788539i 0.710838π-0.710838\pi
−0.614985 + 0.788539i 0.710838π0.710838\pi
558558 −9.77986e11 −0.427050
559559 1.28502e12 0.556618
560560 5.13097e11 0.220472
561561 −1.63993e10 −0.00699024
562562 1.84389e12 0.779688
563563 1.75088e12 0.734463 0.367231 0.930130i 0.380306π-0.380306\pi
0.367231 + 0.930130i 0.380306π0.380306\pi
564564 −1.91363e12 −0.796345
565565 7.88477e11 0.325515
566566 5.07070e12 2.07680
567567 −1.19757e11 −0.0486604
568568 7.96937e11 0.321260
569569 −2.15562e12 −0.862119 −0.431060 0.902323i 0.641860π-0.641860\pi
−0.431060 + 0.902323i 0.641860π0.641860\pi
570570 −2.03190e11 −0.0806242
571571 1.35671e12 0.534101 0.267050 0.963683i 0.413951π-0.413951\pi
0.267050 + 0.963683i 0.413951π0.413951\pi
572572 2.00114e10 0.00781620
573573 −9.38794e11 −0.363810
574574 −1.28053e12 −0.492363
575575 −9.10317e11 −0.347286
576576 −6.04636e11 −0.228872
577577 −2.81402e10 −0.0105690 −0.00528452 0.999986i 0.501682π-0.501682\pi
−0.00528452 + 0.999986i 0.501682π0.501682\pi
578578 −2.70053e12 −1.00641
579579 −2.75595e12 −1.01910
580580 −2.73004e11 −0.100171
581581 1.33410e12 0.485730
582582 3.17933e12 1.14864
583583 −5.96188e10 −0.0213734
584584 7.03022e11 0.250098
585585 1.63224e11 0.0576211
586586 −2.26621e12 −0.793892
587587 −2.10751e12 −0.732653 −0.366326 0.930486i 0.619385π-0.619385\pi
−0.366326 + 0.930486i 0.619385π0.619385\pi
588588 −1.15316e12 −0.397826
589589 6.30746e11 0.215941
590590 −6.72976e11 −0.228647
591591 1.38295e12 0.466296
592592 −2.72125e12 −0.910587
593593 −5.28692e11 −0.175573 −0.0877863 0.996139i 0.527979π-0.527979\pi
−0.0877863 + 0.996139i 0.527979π0.527979\pi
594594 1.88504e10 0.00621272
595595 3.05658e11 0.0999793
596596 −4.76275e12 −1.54614
597597 −3.47837e11 −0.112070
598598 −2.85685e12 −0.913551
599599 −4.36326e12 −1.38481 −0.692406 0.721508i 0.743449π-0.743449\pi
−0.692406 + 0.721508i 0.743449π0.743449\pi
600600 −7.35553e10 −0.0231704
601601 −4.12015e12 −1.28818 −0.644092 0.764948i 0.722765π-0.722765\pi
−0.644092 + 0.764948i 0.722765π0.722765\pi
602602 −2.76605e12 −0.858371
603603 −4.88339e11 −0.150416
604604 4.43538e12 1.35602
605605 −1.47289e12 −0.446962
606606 1.98382e12 0.597552
607607 3.04102e12 0.909224 0.454612 0.890690i 0.349778π-0.349778\pi
0.454612 + 0.890690i 0.349778π0.349778\pi
608608 1.02928e12 0.305469
609609 2.25492e11 0.0664284
610610 3.81529e11 0.111569
611611 −2.15429e12 −0.625343
612612 −5.03464e11 −0.145073
613613 5.17191e12 1.47938 0.739689 0.672949i 0.234973π-0.234973\pi
0.739689 + 0.672949i 0.234973π0.234973\pi
614614 −7.39290e12 −2.09922
615615 7.56609e11 0.213272
616616 7.44855e9 0.00208429
617617 −5.29471e12 −1.47082 −0.735409 0.677623i 0.763010π-0.763010\pi
−0.735409 + 0.677623i 0.763010π0.763010\pi
618618 1.24994e12 0.344701
619619 −8.50875e10 −0.0232947 −0.0116474 0.999932i 0.503708π-0.503708\pi
−0.0116474 + 0.999932i 0.503708π0.503708\pi
620620 −1.32045e12 −0.358888
621621 −1.23848e12 −0.334176
622622 −3.53486e12 −0.946924
623623 −1.57015e12 −0.417585
624624 −9.51431e11 −0.251216
625625 1.52588e11 0.0400000
626626 −1.00073e13 −2.60456
627627 −1.21575e10 −0.00314151
628628 5.19881e12 1.33378
629629 −1.62109e12 −0.412932
630630 −3.51344e11 −0.0888587
631631 3.70696e12 0.930862 0.465431 0.885084i 0.345899π-0.345899\pi
0.465431 + 0.885084i 0.345899π0.345899\pi
632632 −9.16732e11 −0.228568
633633 2.54158e12 0.629198
634634 3.28614e12 0.807765
635635 −9.15548e11 −0.223460
636636 −1.83032e12 −0.443577
637637 −1.29819e12 −0.312399
638638 −3.54938e10 −0.00848125
639639 −2.24918e12 −0.533668
640640 7.53483e11 0.177527
641641 −2.42257e12 −0.566781 −0.283391 0.959005i 0.591459π-0.591459\pi
−0.283391 + 0.959005i 0.591459π0.591459\pi
642642 −6.53259e12 −1.51767
643643 −5.39995e12 −1.24578 −0.622889 0.782311i 0.714041π-0.714041\pi
−0.622889 + 0.782311i 0.714041π0.714041\pi
644644 2.83005e12 0.648347
645645 1.63434e12 0.371812
646646 7.05560e11 0.159400
647647 −7.72344e12 −1.73277 −0.866386 0.499375i 0.833563π-0.833563\pi
−0.866386 + 0.499375i 0.833563π0.833563\pi
648648 −1.00071e11 −0.0222957
649649 −4.02662e10 −0.00890921
650650 4.78868e11 0.105222
651651 1.09065e12 0.237996
652652 1.74880e12 0.378989
653653 2.40816e12 0.518293 0.259146 0.965838i 0.416559π-0.416559\pi
0.259146 + 0.965838i 0.416559π0.416559\pi
654654 −4.12695e12 −0.882123
655655 −2.31934e12 −0.492356
656656 −4.41028e12 −0.929820
657657 −1.98413e12 −0.415456
658658 4.63717e12 0.964354
659659 8.31254e12 1.71692 0.858459 0.512883i 0.171422π-0.171422\pi
0.858459 + 0.512883i 0.171422π0.171422\pi
660660 2.54513e10 0.00522110
661661 −2.38376e12 −0.485686 −0.242843 0.970066i 0.578080π-0.578080\pi
−0.242843 + 0.970066i 0.578080π0.578080\pi
662662 −1.06652e13 −2.15828
663663 −5.66780e11 −0.113921
664664 1.11480e12 0.222557
665665 2.26597e11 0.0449321
666666 1.86338e12 0.367002
667667 2.33195e12 0.456198
668668 −2.52453e12 −0.490553
669669 −3.83997e11 −0.0741157
670670 −1.43270e12 −0.274674
671671 2.28280e10 0.00434727
672672 1.77977e12 0.336668
673673 −5.22205e12 −0.981236 −0.490618 0.871375i 0.663229π-0.663229\pi
−0.490618 + 0.871375i 0.663229π0.663229\pi
674674 4.47706e12 0.835648
675675 2.07594e11 0.0384900
676676 −3.93743e12 −0.725191
677677 −9.27082e12 −1.69617 −0.848085 0.529860i 0.822244π-0.822244\pi
−0.848085 + 0.529860i 0.822244π0.822244\pi
678678 3.14714e12 0.571983
679679 −3.54558e12 −0.640138
680680 2.55415e11 0.0458095
681681 3.63418e12 0.647507
682682 −1.71675e11 −0.0303862
683683 1.03618e12 0.182197 0.0910985 0.995842i 0.470962π-0.470962\pi
0.0910985 + 0.995842i 0.470962π0.470962\pi
684684 −3.73238e11 −0.0651979
685685 3.81294e12 0.661687
686686 6.25190e12 1.07784
687687 3.51990e12 0.602871
688688 −9.52658e12 −1.62102
689689 −2.06050e12 −0.348326
690690 −3.63346e12 −0.610238
691691 6.02122e12 1.00469 0.502346 0.864667i 0.332470π-0.332470\pi
0.502346 + 0.864667i 0.332470π0.332470\pi
692692 −1.79673e12 −0.297855
693693 −2.10219e10 −0.00346237
694694 −2.58561e12 −0.423102
695695 −2.93294e11 −0.0476839
696696 1.88426e11 0.0304368
697697 −2.62726e12 −0.421654
698698 8.85462e12 1.41195
699699 6.16629e12 0.976960
700700 −4.74374e11 −0.0746758
701701 −1.02410e13 −1.60181 −0.800903 0.598794i 0.795647π-0.795647\pi
−0.800903 + 0.598794i 0.795647π0.795647\pi
702702 6.51494e11 0.101250
703703 −1.20178e12 −0.185577
704704 −1.06137e11 −0.0162851
705705 −2.73991e12 −0.417719
706706 4.98661e12 0.755413
707707 −2.21235e12 −0.333018
708708 −1.23619e12 −0.184899
709709 −4.01293e12 −0.596422 −0.298211 0.954500i 0.596390π-0.596390\pi
−0.298211 + 0.954500i 0.596390π0.596390\pi
710710 −6.59869e12 −0.974530
711711 2.58728e12 0.379691
712712 −1.31205e12 −0.191334
713713 1.12790e13 1.63444
714714 1.22001e12 0.175680
715715 2.86521e10 0.00409995
716716 −5.80426e12 −0.825350
717717 2.90855e12 0.410998
718718 1.35979e12 0.190946
719719 −1.02819e13 −1.43481 −0.717406 0.696655i 0.754671π-0.754671\pi
−0.717406 + 0.696655i 0.754671π0.754671\pi
720720 −1.21007e12 −0.167808
721721 −1.39393e12 −0.192103
722722 5.23060e11 0.0716365
723723 −7.51415e12 −1.02272
724724 2.85734e12 0.386489
725725 −3.90883e11 −0.0525443
726726 −5.87892e12 −0.785385
727727 3.68797e11 0.0489646 0.0244823 0.999700i 0.492206π-0.492206\pi
0.0244823 + 0.999700i 0.492206π0.492206\pi
728728 2.57431e11 0.0339680
729729 2.82430e11 0.0370370
730730 −5.82106e12 −0.758664
731731 −5.67511e12 −0.735099
732732 7.00828e11 0.0902219
733733 6.45808e12 0.826295 0.413148 0.910664i 0.364429π-0.364429\pi
0.413148 + 0.910664i 0.364429π0.364429\pi
734734 −6.95943e12 −0.884996
735735 −1.65108e12 −0.208678
736736 1.84057e13 2.31207
737737 −8.57225e10 −0.0107026
738738 3.01995e12 0.374754
739739 −5.44774e12 −0.671919 −0.335959 0.941876i 0.609060π-0.609060\pi
−0.335959 + 0.941876i 0.609060π0.609060\pi
740740 2.51589e12 0.308424
741741 −4.20177e11 −0.0511977
742742 4.43529e12 0.537161
743743 −5.12022e12 −0.616366 −0.308183 0.951327i 0.599721π-0.599721\pi
−0.308183 + 0.951327i 0.599721π0.599721\pi
744744 9.11369e11 0.109048
745745 −6.81924e12 −0.811022
746746 −7.77928e11 −0.0919633
747747 −3.14629e12 −0.369705
748748 −8.83775e10 −0.0103225
749749 7.28513e12 0.845803
750750 6.09043e11 0.0702865
751751 6.79016e12 0.778934 0.389467 0.921040i 0.372659π-0.372659\pi
0.389467 + 0.921040i 0.372659π0.372659\pi
752752 1.59709e13 1.82117
753753 −6.81353e11 −0.0772316
754754 −1.22671e12 −0.138220
755755 6.35052e12 0.711293
756756 −6.45381e11 −0.0718568
757757 −8.06088e12 −0.892177 −0.446088 0.894989i 0.647183π-0.647183\pi
−0.446088 + 0.894989i 0.647183π0.647183\pi
758758 5.93799e12 0.653323
759759 −2.17401e11 −0.0237779
760760 1.89349e11 0.0205874
761761 8.37191e12 0.904886 0.452443 0.891793i 0.350553π-0.350553\pi
0.452443 + 0.891793i 0.350553π0.350553\pi
762762 −3.65434e12 −0.392655
763763 4.60236e12 0.491610
764764 −5.05926e12 −0.537238
765765 −7.20853e11 −0.0760975
766766 1.01436e13 1.06454
767767 −1.39165e12 −0.145195
768768 6.82936e12 0.708361
769769 −4.89308e12 −0.504561 −0.252280 0.967654i 0.581181π-0.581181\pi
−0.252280 + 0.967654i 0.581181π0.581181\pi
770770 −6.16745e10 −0.00632262
771771 −7.27550e12 −0.741512
772772 −1.48521e13 −1.50491
773773 −1.21911e11 −0.0122811 −0.00614054 0.999981i 0.501955π-0.501955\pi
−0.00614054 + 0.999981i 0.501955π0.501955\pi
774774 6.52334e12 0.653335
775775 −1.89060e12 −0.188253
776776 −2.96277e12 −0.293305
777777 −2.07804e12 −0.204531
778778 2.11316e13 2.06788
779779 −1.94770e12 −0.189497
780780 8.79629e11 0.0850891
781781 −3.94819e11 −0.0379725
782782 1.26169e13 1.20648
783783 −5.31792e11 −0.0505608
784784 9.62418e12 0.909790
785785 7.44359e12 0.699631
786786 −9.25748e12 −0.865150
787787 9.93051e12 0.922753 0.461376 0.887205i 0.347356π-0.347356\pi
0.461376 + 0.887205i 0.347356π0.347356\pi
788788 7.45284e12 0.688579
789789 7.57791e12 0.696150
790790 7.59060e12 0.693353
791791 −3.50969e12 −0.318768
792792 −1.75664e10 −0.00158642
793793 7.88965e11 0.0708481
794794 −3.87818e12 −0.346287
795795 −2.62062e12 −0.232677
796796 −1.87453e12 −0.165494
797797 −7.87450e12 −0.691291 −0.345645 0.938365i 0.612340π-0.612340\pi
−0.345645 + 0.938365i 0.612340π0.612340\pi
798798 9.04444e11 0.0789530
799799 9.51410e12 0.825861
800800 −3.08517e12 −0.266302
801801 3.70299e12 0.317838
802802 1.06875e13 0.912205
803803 −3.48292e11 −0.0295613
804804 −2.63171e12 −0.222119
805805 4.05202e12 0.340087
806806 −5.93329e12 −0.495208
807807 1.23763e13 1.02721
808808 −1.84869e12 −0.152585
809809 −4.03673e12 −0.331330 −0.165665 0.986182i 0.552977π-0.552977\pi
−0.165665 + 0.986182i 0.552977π0.552977\pi
810810 8.28596e11 0.0676332
811811 1.51544e12 0.123011 0.0615056 0.998107i 0.480410π-0.480410\pi
0.0615056 + 0.998107i 0.480410π0.480410\pi
812812 1.21520e12 0.0980948
813813 −1.11101e13 −0.891889
814814 3.27096e11 0.0261135
815815 2.50392e12 0.198797
816816 4.20186e12 0.331769
817817 −4.20719e12 −0.330364
818818 −1.50989e13 −1.17912
819819 −7.26545e11 −0.0564267
820820 4.07745e12 0.314939
821821 −2.26437e13 −1.73941 −0.869707 0.493568i 0.835693π-0.835693\pi
−0.869707 + 0.493568i 0.835693π0.835693\pi
822822 1.52191e13 1.16269
823823 −4.04735e11 −0.0307519 −0.0153759 0.999882i 0.504895π-0.504895\pi
−0.0153759 + 0.999882i 0.504895π0.504895\pi
824824 −1.16480e12 −0.0880196
825825 3.64408e10 0.00273871
826826 2.99557e12 0.223908
827827 6.96675e12 0.517911 0.258956 0.965889i 0.416622π-0.416622\pi
0.258956 + 0.965889i 0.416622π0.416622\pi
828828 −6.67428e12 −0.493478
829829 9.54746e12 0.702090 0.351045 0.936359i 0.385826π-0.385826\pi
0.351045 + 0.936359i 0.385826π0.385826\pi
830830 −9.23062e12 −0.675117
831831 6.80535e12 0.495046
832832 −3.66823e12 −0.265400
833833 5.73325e12 0.412571
834834 −1.17066e12 −0.0837884
835835 −3.61459e12 −0.257318
836836 −6.55178e10 −0.00463907
837837 −2.57214e12 −0.181147
838838 2.78379e13 1.95002
839839 1.19112e13 0.829902 0.414951 0.909844i 0.363799π-0.363799\pi
0.414951 + 0.909844i 0.363799π0.363799\pi
840840 3.27411e11 0.0226901
841841 −1.35058e13 −0.930977
842842 3.66841e13 2.51521
843843 4.84950e12 0.330729
844844 1.36968e13 0.929137
845845 −5.63756e12 −0.380396
846846 −1.09361e13 −0.734001
847847 6.55616e12 0.437697
848848 1.52756e13 1.01442
849849 1.33361e13 0.880938
850850 −2.11485e12 −0.138961
851851 −2.14903e13 −1.40462
852852 −1.21211e13 −0.788068
853853 2.54020e13 1.64284 0.821422 0.570320i 0.193181π-0.193181\pi
0.821422 + 0.570320i 0.193181π0.193181\pi
854854 −1.69827e12 −0.109256
855855 −5.34398e11 −0.0341993
856856 6.08761e12 0.387539
857857 −2.56377e13 −1.62355 −0.811775 0.583970i 0.801498π-0.801498\pi
−0.811775 + 0.583970i 0.801498π0.801498\pi
858858 1.14363e11 0.00720429
859859 −2.10765e13 −1.32077 −0.660387 0.750926i 0.729608π-0.729608\pi
−0.660387 + 0.750926i 0.729608π0.729608\pi
860860 8.80763e12 0.549055
861861 −3.36784e12 −0.208851
862862 1.76550e13 1.08914
863863 9.48317e12 0.581976 0.290988 0.956727i 0.406016π-0.406016\pi
0.290988 + 0.956727i 0.406016π0.406016\pi
864864 −4.19734e12 −0.256249
865865 −2.57254e12 −0.156239
866866 3.35985e13 2.02997
867867 −7.10251e12 −0.426900
868868 5.87761e12 0.351449
869869 4.54168e11 0.0270164
870870 −1.56018e12 −0.0923289
871871 −2.96268e12 −0.174423
872872 3.84583e12 0.225251
873873 8.36177e12 0.487230
874874 9.35340e12 0.542211
875875 −6.79203e11 −0.0391709
876876 −1.06927e13 −0.613505
877877 8.55003e12 0.488056 0.244028 0.969768i 0.421531π-0.421531\pi
0.244028 + 0.969768i 0.421531π0.421531\pi
878878 −8.42301e12 −0.478346
879879 −5.96023e12 −0.336754
880880 −2.12414e11 −0.0119402
881881 9.61493e12 0.537718 0.268859 0.963180i 0.413353π-0.413353\pi
0.268859 + 0.963180i 0.413353π0.413353\pi
882882 −6.59017e12 −0.366681
883883 −1.80164e13 −0.997341 −0.498671 0.866792i 0.666178π-0.666178\pi
−0.498671 + 0.866792i 0.666178π0.666178\pi
884884 −3.05444e12 −0.168227
885885 −1.76995e12 −0.0969878
886886 −2.30845e12 −0.125854
887887 −3.05992e13 −1.65979 −0.829897 0.557917i 0.811601π-0.811601\pi
−0.829897 + 0.557917i 0.811601π0.811601\pi
888888 −1.73646e12 −0.0937142
889889 4.07531e12 0.218828
890890 1.08639e13 0.580403
891891 4.95774e10 0.00263532
892892 −2.06940e12 −0.109447
893893 7.05318e12 0.371153
894894 −2.72185e13 −1.42510
895895 −8.31046e12 −0.432934
896896 −3.35392e12 −0.173847
897897 −7.51364e12 −0.387511
898898 −1.09596e12 −0.0562406
899899 4.84314e12 0.247291
900900 1.11875e12 0.0568382
901901 9.09990e12 0.460018
902902 5.30118e11 0.0266651
903903 −7.27481e12 −0.364105
904904 −2.93277e12 −0.146056
905905 4.09110e12 0.202731
906906 2.53476e13 1.24986
907907 1.30788e13 0.641703 0.320852 0.947129i 0.396031π-0.396031\pi
0.320852 + 0.947129i 0.396031π0.396031\pi
908908 1.95850e13 0.956174
909909 5.21753e12 0.253471
910910 −2.13155e12 −0.103041
911911 −8.21342e12 −0.395086 −0.197543 0.980294i 0.563296π-0.563296\pi
−0.197543 + 0.980294i 0.563296π0.563296\pi
912912 3.11501e12 0.149102
913913 −5.52295e11 −0.0263059
914914 1.03729e13 0.491636
915915 1.00344e12 0.0473255
916916 1.89691e13 0.890260
917917 1.03239e13 0.482150
918918 −2.87723e12 −0.133716
919919 −2.09082e13 −0.966936 −0.483468 0.875362i 0.660623π-0.660623\pi
−0.483468 + 0.875362i 0.660623π0.660623\pi
920920 3.38596e12 0.155825
921921 −1.94436e13 −0.890449
922922 5.29694e13 2.41399
923923 −1.36454e13 −0.618842
924924 −1.13289e11 −0.00511288
925925 3.60221e12 0.161783
926926 3.96573e13 1.77245
927927 3.28740e12 0.146216
928928 7.90326e12 0.349816
929929 −3.77790e13 −1.66410 −0.832051 0.554699i 0.812833π-0.812833\pi
−0.832051 + 0.554699i 0.812833π0.812833\pi
930930 −7.54619e12 −0.330792
931931 4.25029e12 0.185415
932932 3.32308e13 1.44268
933933 −9.29681e12 −0.401667
934934 −2.81138e13 −1.20881
935935 −1.26538e11 −0.00541462
936936 −6.07116e11 −0.0258542
937937 −7.01705e12 −0.297390 −0.148695 0.988883i 0.547507π-0.547507\pi
−0.148695 + 0.988883i 0.547507π0.547507\pi
938938 6.37725e12 0.268981
939939 −2.63197e13 −1.10481
940940 −1.47656e13 −0.616846
941941 −3.74660e13 −1.55770 −0.778850 0.627210i 0.784197π-0.784197\pi
−0.778850 + 0.627210i 0.784197π0.784197\pi
942942 2.97105e13 1.22937
943943 −3.48289e13 −1.43429
944944 1.03171e13 0.422846
945945 −9.24048e11 −0.0376922
946946 1.14510e12 0.0464872
947947 1.45907e13 0.589524 0.294762 0.955571i 0.404760π-0.404760\pi
0.294762 + 0.955571i 0.404760π0.404760\pi
948948 1.39431e13 0.560690
949949 −1.20374e13 −0.481764
950950 −1.56782e12 −0.0624512
951951 8.64269e12 0.342639
952952 −1.13691e12 −0.0448600
953953 4.45651e13 1.75016 0.875078 0.483982i 0.160810π-0.160810\pi
0.875078 + 0.483982i 0.160810π0.160810\pi
954954 −1.04600e13 −0.408851
955955 −7.24378e12 −0.281806
956956 1.56745e13 0.606921
957957 −9.33502e10 −0.00359759
958958 −1.14111e13 −0.437705
959959 −1.69723e13 −0.647971
960960 −4.66540e12 −0.177283
961961 −3.01461e12 −0.114019
962962 1.13049e13 0.425576
963963 −1.71810e13 −0.643768
964964 −4.04945e13 −1.51025
965965 −2.12650e13 −0.789393
966966 1.61733e13 0.597589
967967 −3.76646e13 −1.38520 −0.692602 0.721320i 0.743536π-0.743536\pi
−0.692602 + 0.721320i 0.743536π0.743536\pi
968968 5.47847e12 0.200549
969969 1.85565e12 0.0676144
970970 2.45319e13 0.889729
971971 −1.31198e13 −0.473631 −0.236816 0.971555i 0.576104π-0.576104\pi
−0.236816 + 0.971555i 0.576104π0.576104\pi
972972 1.52204e12 0.0546926
973973 1.30552e12 0.0466955
974974 −3.38690e13 −1.20583
975975 1.25944e12 0.0446331
976976 −5.84904e12 −0.206329
977977 −3.02751e13 −1.06306 −0.531532 0.847038i 0.678384π-0.678384\pi
−0.531532 + 0.847038i 0.678384π0.678384\pi
978978 9.99418e12 0.349319
979979 6.50018e11 0.0226153
980980 −8.89786e12 −0.308154
981981 −1.08540e13 −0.374180
982982 −3.58020e13 −1.22859
983983 −1.79214e13 −0.612181 −0.306091 0.952002i 0.599021π-0.599021\pi
−0.306091 + 0.952002i 0.599021π0.599021\pi
984984 −2.81424e12 −0.0956936
985985 1.06709e13 0.361191
986986 5.41759e12 0.182541
987987 1.21959e13 0.409061
988988 −2.26438e12 −0.0756036
989989 −7.52332e13 −2.50050
990990 1.45451e11 0.00481235
991991 −2.22633e13 −0.733259 −0.366630 0.930367i 0.619488π-0.619488\pi
−0.366630 + 0.930367i 0.619488π0.619488\pi
992992 3.82260e13 1.25330
993993 −2.80499e13 −0.915504
994994 2.93722e13 0.954330
995995 −2.68393e12 −0.0868094
996996 −1.69557e13 −0.545943
997997 3.89578e13 1.24872 0.624362 0.781135i 0.285359π-0.285359\pi
0.624362 + 0.781135i 0.285359π0.285359\pi
998998 5.84549e13 1.86524
999999 4.90077e12 0.155675
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.d.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.d.1.11 12 1.1 even 1 trivial