Properties

Label 285.10.a.d.1.11
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 4398 x^{10} + 11376 x^{9} + 7070146 x^{8} - 15274638 x^{7} - 5114407260 x^{6} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(33.7980\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+30.7980 q^{2} +81.0000 q^{3} +436.517 q^{4} +625.000 q^{5} +2494.64 q^{6} -2782.02 q^{7} -2324.71 q^{8} +6561.00 q^{9} +19248.8 q^{10} +1151.71 q^{11} +35357.9 q^{12} +39804.6 q^{13} -85680.5 q^{14} +50625.0 q^{15} -295093. q^{16} -175791. q^{17} +202066. q^{18} -130321. q^{19} +272823. q^{20} -225343. q^{21} +35470.4 q^{22} -2.33041e6 q^{23} -188302. q^{24} +390625. q^{25} +1.22590e6 q^{26} +531441. q^{27} -1.21440e6 q^{28} -1.00066e6 q^{29} +1.55915e6 q^{30} -4.83994e6 q^{31} -7.89804e6 q^{32} +93288.5 q^{33} -5.41402e6 q^{34} -1.73876e6 q^{35} +2.86399e6 q^{36} +9.22167e6 q^{37} -4.01363e6 q^{38} +3.22417e6 q^{39} -1.45294e6 q^{40} +1.49454e7 q^{41} -6.94012e6 q^{42} +3.22833e7 q^{43} +502742. q^{44} +4.10062e6 q^{45} -7.17720e7 q^{46} -5.41216e7 q^{47} -2.39026e7 q^{48} -3.26140e7 q^{49} +1.20305e7 q^{50} -1.42391e7 q^{51} +1.73754e7 q^{52} -5.17654e7 q^{53} +1.63673e7 q^{54} +719819. q^{55} +6.46738e6 q^{56} -1.05560e7 q^{57} -3.08184e7 q^{58} -3.49621e7 q^{59} +2.20987e7 q^{60} +1.98210e7 q^{61} -1.49061e8 q^{62} -1.82528e7 q^{63} -9.21560e7 q^{64} +2.48778e7 q^{65} +2.87310e6 q^{66} -7.44306e7 q^{67} -7.67359e7 q^{68} -1.88763e8 q^{69} -5.35503e7 q^{70} -3.42811e8 q^{71} -1.52524e7 q^{72} -3.02412e8 q^{73} +2.84009e8 q^{74} +3.16406e7 q^{75} -5.68874e7 q^{76} -3.20408e6 q^{77} +9.92980e7 q^{78} +3.94342e8 q^{79} -1.84433e8 q^{80} +4.30467e7 q^{81} +4.60288e8 q^{82} -4.79544e8 q^{83} -9.83663e7 q^{84} -1.09869e8 q^{85} +9.94260e8 q^{86} -8.10535e7 q^{87} -2.67739e6 q^{88} +5.64393e8 q^{89} +1.26291e8 q^{90} -1.10737e8 q^{91} -1.01727e9 q^{92} -3.92035e8 q^{93} -1.66684e9 q^{94} -8.14506e7 q^{95} -6.39741e8 q^{96} +1.27447e9 q^{97} -1.00445e9 q^{98} +7.55637e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 33 q^{2} + 972 q^{3} + 2751 q^{4} + 7500 q^{5} - 2673 q^{6} - 5100 q^{7} - 40215 q^{8} + 78732 q^{9} - 20625 q^{10} - 60416 q^{11} + 222831 q^{12} - 164042 q^{13} - 444762 q^{14} + 607500 q^{15}+ \cdots - 396389376 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 30.7980 1.36109 0.680546 0.732705i \(-0.261743\pi\)
0.680546 + 0.732705i \(0.261743\pi\)
\(3\) 81.0000 0.577350
\(4\) 436.517 0.852573
\(5\) 625.000 0.447214
\(6\) 2494.64 0.785827
\(7\) −2782.02 −0.437944 −0.218972 0.975731i \(-0.570270\pi\)
−0.218972 + 0.975731i \(0.570270\pi\)
\(8\) −2324.71 −0.200662
\(9\) 6561.00 0.333333
\(10\) 19248.8 0.608699
\(11\) 1151.71 0.0237179 0.0118589 0.999930i \(-0.496225\pi\)
0.0118589 + 0.999930i \(0.496225\pi\)
\(12\) 35357.9 0.492233
\(13\) 39804.6 0.386534 0.193267 0.981146i \(-0.438092\pi\)
0.193267 + 0.981146i \(0.438092\pi\)
\(14\) −85680.5 −0.596082
\(15\) 50625.0 0.258199
\(16\) −295093. −1.12569
\(17\) −175791. −0.510478 −0.255239 0.966878i \(-0.582154\pi\)
−0.255239 + 0.966878i \(0.582154\pi\)
\(18\) 202066. 0.453698
\(19\) −130321. −0.229416
\(20\) 272823. 0.381282
\(21\) −225343. −0.252847
\(22\) 35470.4 0.0322823
\(23\) −2.33041e6 −1.73643 −0.868215 0.496188i \(-0.834733\pi\)
−0.868215 + 0.496188i \(0.834733\pi\)
\(24\) −188302. −0.115852
\(25\) 390625. 0.200000
\(26\) 1.22590e6 0.526109
\(27\) 531441. 0.192450
\(28\) −1.21440e6 −0.373379
\(29\) −1.00066e6 −0.262722 −0.131361 0.991335i \(-0.541935\pi\)
−0.131361 + 0.991335i \(0.541935\pi\)
\(30\) 1.55915e6 0.351433
\(31\) −4.83994e6 −0.941266 −0.470633 0.882329i \(-0.655974\pi\)
−0.470633 + 0.882329i \(0.655974\pi\)
\(32\) −7.89804e6 −1.33151
\(33\) 93288.5 0.0136935
\(34\) −5.41402e6 −0.694807
\(35\) −1.73876e6 −0.195854
\(36\) 2.86399e6 0.284191
\(37\) 9.22167e6 0.808913 0.404456 0.914557i \(-0.367461\pi\)
0.404456 + 0.914557i \(0.367461\pi\)
\(38\) −4.01363e6 −0.312256
\(39\) 3.22417e6 0.223165
\(40\) −1.45294e6 −0.0897386
\(41\) 1.49454e7 0.825999 0.412999 0.910731i \(-0.364481\pi\)
0.412999 + 0.910731i \(0.364481\pi\)
\(42\) −6.94012e6 −0.344148
\(43\) 3.22833e7 1.44002 0.720011 0.693962i \(-0.244137\pi\)
0.720011 + 0.693962i \(0.244137\pi\)
\(44\) 502742. 0.0202212
\(45\) 4.10062e6 0.149071
\(46\) −7.17720e7 −2.36344
\(47\) −5.41216e7 −1.61782 −0.808910 0.587932i \(-0.799942\pi\)
−0.808910 + 0.587932i \(0.799942\pi\)
\(48\) −2.39026e7 −0.649919
\(49\) −3.26140e7 −0.808205
\(50\) 1.20305e7 0.272219
\(51\) −1.42391e7 −0.294724
\(52\) 1.73754e7 0.329548
\(53\) −5.17654e7 −0.901153 −0.450576 0.892738i \(-0.648781\pi\)
−0.450576 + 0.892738i \(0.648781\pi\)
\(54\) 1.63673e7 0.261942
\(55\) 719819. 0.0106070
\(56\) 6.46738e6 0.0878785
\(57\) −1.05560e7 −0.132453
\(58\) −3.08184e7 −0.357588
\(59\) −3.49621e7 −0.375632 −0.187816 0.982204i \(-0.560141\pi\)
−0.187816 + 0.982204i \(0.560141\pi\)
\(60\) 2.20987e7 0.220133
\(61\) 1.98210e7 0.183291 0.0916454 0.995792i \(-0.470787\pi\)
0.0916454 + 0.995792i \(0.470787\pi\)
\(62\) −1.49061e8 −1.28115
\(63\) −1.82528e7 −0.145981
\(64\) −9.21560e7 −0.686616
\(65\) 2.48778e7 0.172863
\(66\) 2.87310e6 0.0186382
\(67\) −7.44306e7 −0.451248 −0.225624 0.974214i \(-0.572442\pi\)
−0.225624 + 0.974214i \(0.572442\pi\)
\(68\) −7.67359e7 −0.435220
\(69\) −1.88763e8 −1.00253
\(70\) −5.35503e7 −0.266576
\(71\) −3.42811e8 −1.60100 −0.800502 0.599330i \(-0.795434\pi\)
−0.800502 + 0.599330i \(0.795434\pi\)
\(72\) −1.52524e7 −0.0668872
\(73\) −3.02412e8 −1.24637 −0.623185 0.782075i \(-0.714162\pi\)
−0.623185 + 0.782075i \(0.714162\pi\)
\(74\) 2.84009e8 1.10101
\(75\) 3.16406e7 0.115470
\(76\) −5.68874e7 −0.195594
\(77\) −3.20408e6 −0.0103871
\(78\) 9.92980e7 0.303749
\(79\) 3.94342e8 1.13907 0.569536 0.821966i \(-0.307123\pi\)
0.569536 + 0.821966i \(0.307123\pi\)
\(80\) −1.84433e8 −0.503425
\(81\) 4.30467e7 0.111111
\(82\) 4.60288e8 1.12426
\(83\) −4.79544e8 −1.10912 −0.554558 0.832145i \(-0.687112\pi\)
−0.554558 + 0.832145i \(0.687112\pi\)
\(84\) −9.83663e7 −0.215571
\(85\) −1.09869e8 −0.228293
\(86\) 9.94260e8 1.96000
\(87\) −8.10535e7 −0.151682
\(88\) −2.67739e6 −0.00475927
\(89\) 5.64393e8 0.953514 0.476757 0.879035i \(-0.341812\pi\)
0.476757 + 0.879035i \(0.341812\pi\)
\(90\) 1.26291e8 0.202900
\(91\) −1.10737e8 −0.169280
\(92\) −1.01727e9 −1.48043
\(93\) −3.92035e8 −0.543440
\(94\) −1.66684e9 −2.20200
\(95\) −8.14506e7 −0.102598
\(96\) −6.39741e8 −0.768748
\(97\) 1.27447e9 1.46169 0.730845 0.682543i \(-0.239126\pi\)
0.730845 + 0.682543i \(0.239126\pi\)
\(98\) −1.00445e9 −1.10004
\(99\) 7.55637e6 0.00790597
\(100\) 1.70515e8 0.170515
\(101\) 7.95234e8 0.760412 0.380206 0.924902i \(-0.375853\pi\)
0.380206 + 0.924902i \(0.375853\pi\)
\(102\) −4.38535e8 −0.401147
\(103\) 5.01052e8 0.438647 0.219323 0.975652i \(-0.429615\pi\)
0.219323 + 0.975652i \(0.429615\pi\)
\(104\) −9.25341e7 −0.0775625
\(105\) −1.40840e8 −0.113077
\(106\) −1.59427e9 −1.22655
\(107\) −2.61865e9 −1.93130 −0.965652 0.259837i \(-0.916331\pi\)
−0.965652 + 0.259837i \(0.916331\pi\)
\(108\) 2.31983e8 0.164078
\(109\) −1.65433e9 −1.12254 −0.561270 0.827632i \(-0.689687\pi\)
−0.561270 + 0.827632i \(0.689687\pi\)
\(110\) 2.21690e7 0.0144371
\(111\) 7.46955e8 0.467026
\(112\) 8.20954e8 0.492990
\(113\) 1.26156e9 0.727873 0.363937 0.931424i \(-0.381432\pi\)
0.363937 + 0.931424i \(0.381432\pi\)
\(114\) −3.25104e8 −0.180281
\(115\) −1.45651e9 −0.776555
\(116\) −4.36806e8 −0.223989
\(117\) 2.61158e8 0.128845
\(118\) −1.07676e9 −0.511270
\(119\) 4.89054e8 0.223560
\(120\) −1.17689e8 −0.0518106
\(121\) −2.35662e9 −0.999437
\(122\) 6.10447e8 0.249476
\(123\) 1.21057e9 0.476891
\(124\) −2.11272e9 −0.802498
\(125\) 2.44141e8 0.0894427
\(126\) −5.62150e8 −0.198694
\(127\) −1.46488e9 −0.499671 −0.249836 0.968288i \(-0.580377\pi\)
−0.249836 + 0.968288i \(0.580377\pi\)
\(128\) 1.20557e9 0.396962
\(129\) 2.61494e9 0.831397
\(130\) 7.66188e8 0.235283
\(131\) −3.71095e9 −1.10094 −0.550471 0.834855i \(-0.685552\pi\)
−0.550471 + 0.834855i \(0.685552\pi\)
\(132\) 4.07221e7 0.0116747
\(133\) 3.62555e8 0.100471
\(134\) −2.29231e9 −0.614190
\(135\) 3.32151e8 0.0860663
\(136\) 4.08664e8 0.102433
\(137\) 6.10071e9 1.47958 0.739788 0.672840i \(-0.234926\pi\)
0.739788 + 0.672840i \(0.234926\pi\)
\(138\) −5.81353e9 −1.36453
\(139\) −4.69271e8 −0.106625 −0.0533123 0.998578i \(-0.516978\pi\)
−0.0533123 + 0.998578i \(0.516978\pi\)
\(140\) −7.58999e8 −0.166980
\(141\) −4.38385e9 −0.934049
\(142\) −1.05579e10 −2.17911
\(143\) 4.58433e7 0.00916777
\(144\) −1.93611e9 −0.375231
\(145\) −6.25413e8 −0.117493
\(146\) −9.31370e9 −1.69642
\(147\) −2.64173e9 −0.466618
\(148\) 4.02542e9 0.689657
\(149\) −1.09108e10 −1.81350 −0.906750 0.421669i \(-0.861444\pi\)
−0.906750 + 0.421669i \(0.861444\pi\)
\(150\) 9.74468e8 0.157165
\(151\) 1.01608e10 1.59050 0.795249 0.606282i \(-0.207340\pi\)
0.795249 + 0.606282i \(0.207340\pi\)
\(152\) 3.02959e8 0.0460349
\(153\) −1.15337e9 −0.170159
\(154\) −9.86792e7 −0.0141378
\(155\) −3.02496e9 −0.420947
\(156\) 1.40741e9 0.190265
\(157\) 1.19097e10 1.56442 0.782211 0.623013i \(-0.214092\pi\)
0.782211 + 0.623013i \(0.214092\pi\)
\(158\) 1.21450e10 1.55038
\(159\) −4.19300e9 −0.520281
\(160\) −4.93627e9 −0.595469
\(161\) 6.48324e9 0.760459
\(162\) 1.32575e9 0.151233
\(163\) 4.00627e9 0.444524 0.222262 0.974987i \(-0.428656\pi\)
0.222262 + 0.974987i \(0.428656\pi\)
\(164\) 6.52391e9 0.704224
\(165\) 5.83053e7 0.00612393
\(166\) −1.47690e10 −1.50961
\(167\) −5.78334e9 −0.575380 −0.287690 0.957724i \(-0.592887\pi\)
−0.287690 + 0.957724i \(0.592887\pi\)
\(168\) 5.23858e8 0.0507367
\(169\) −9.02010e9 −0.850591
\(170\) −3.38376e9 −0.310727
\(171\) −8.55036e8 −0.0764719
\(172\) 1.40922e10 1.22772
\(173\) −4.11606e9 −0.349361 −0.174680 0.984625i \(-0.555889\pi\)
−0.174680 + 0.984625i \(0.555889\pi\)
\(174\) −2.49629e9 −0.206454
\(175\) −1.08672e9 −0.0875887
\(176\) −3.39862e8 −0.0266991
\(177\) −2.83193e9 −0.216871
\(178\) 1.73822e10 1.29782
\(179\) −1.32967e10 −0.968070 −0.484035 0.875049i \(-0.660829\pi\)
−0.484035 + 0.875049i \(0.660829\pi\)
\(180\) 1.78999e9 0.127094
\(181\) 6.54575e9 0.453321 0.226661 0.973974i \(-0.427219\pi\)
0.226661 + 0.973974i \(0.427219\pi\)
\(182\) −3.41048e9 −0.230406
\(183\) 1.60550e9 0.105823
\(184\) 5.41753e9 0.348435
\(185\) 5.76354e9 0.361757
\(186\) −1.20739e10 −0.739672
\(187\) −2.02460e8 −0.0121075
\(188\) −2.36250e10 −1.37931
\(189\) −1.47848e9 −0.0842823
\(190\) −2.50852e9 −0.139645
\(191\) −1.15900e10 −0.630137 −0.315069 0.949069i \(-0.602028\pi\)
−0.315069 + 0.949069i \(0.602028\pi\)
\(192\) −7.46464e9 −0.396418
\(193\) −3.40240e10 −1.76514 −0.882568 0.470185i \(-0.844187\pi\)
−0.882568 + 0.470185i \(0.844187\pi\)
\(194\) 3.92510e10 1.98950
\(195\) 2.01511e9 0.0998026
\(196\) −1.42366e10 −0.689054
\(197\) 1.70734e10 0.807648 0.403824 0.914837i \(-0.367681\pi\)
0.403824 + 0.914837i \(0.367681\pi\)
\(198\) 2.32721e8 0.0107608
\(199\) −4.29428e9 −0.194112 −0.0970558 0.995279i \(-0.530943\pi\)
−0.0970558 + 0.995279i \(0.530943\pi\)
\(200\) −9.08091e8 −0.0401323
\(201\) −6.02888e9 −0.260528
\(202\) 2.44916e10 1.03499
\(203\) 2.78385e9 0.115057
\(204\) −6.21561e9 −0.251274
\(205\) 9.34086e9 0.369398
\(206\) 1.54314e10 0.597039
\(207\) −1.52898e10 −0.578810
\(208\) −1.17461e10 −0.435118
\(209\) −1.50092e8 −0.00544126
\(210\) −4.33758e9 −0.153908
\(211\) 3.13775e10 1.08980 0.544901 0.838500i \(-0.316567\pi\)
0.544901 + 0.838500i \(0.316567\pi\)
\(212\) −2.25965e10 −0.768299
\(213\) −2.77677e10 −0.924340
\(214\) −8.06493e10 −2.62868
\(215\) 2.01770e10 0.643998
\(216\) −1.23545e9 −0.0386173
\(217\) 1.34648e10 0.412221
\(218\) −5.09500e10 −1.52788
\(219\) −2.44954e10 −0.719592
\(220\) 3.14214e8 0.00904321
\(221\) −6.99729e9 −0.197317
\(222\) 2.30047e10 0.635666
\(223\) −4.74070e9 −0.128372 −0.0641861 0.997938i \(-0.520445\pi\)
−0.0641861 + 0.997938i \(0.520445\pi\)
\(224\) 2.19725e10 0.583126
\(225\) 2.56289e9 0.0666667
\(226\) 3.88536e10 0.990703
\(227\) 4.48664e10 1.12152 0.560758 0.827980i \(-0.310510\pi\)
0.560758 + 0.827980i \(0.310510\pi\)
\(228\) −4.60788e9 −0.112926
\(229\) 4.34555e10 1.04420 0.522102 0.852883i \(-0.325148\pi\)
0.522102 + 0.852883i \(0.325148\pi\)
\(230\) −4.48575e10 −1.05696
\(231\) −2.59530e8 −0.00599700
\(232\) 2.32625e9 0.0527181
\(233\) 7.61271e10 1.69214 0.846072 0.533068i \(-0.178961\pi\)
0.846072 + 0.533068i \(0.178961\pi\)
\(234\) 8.04314e9 0.175370
\(235\) −3.38260e10 −0.723511
\(236\) −1.52615e10 −0.320254
\(237\) 3.19417e10 0.657644
\(238\) 1.50619e10 0.304287
\(239\) 3.59080e10 0.711870 0.355935 0.934511i \(-0.384162\pi\)
0.355935 + 0.934511i \(0.384162\pi\)
\(240\) −1.49391e10 −0.290652
\(241\) −9.27673e10 −1.77141 −0.885703 0.464252i \(-0.846323\pi\)
−0.885703 + 0.464252i \(0.846323\pi\)
\(242\) −7.25792e10 −1.36033
\(243\) 3.48678e9 0.0641500
\(244\) 8.65220e9 0.156269
\(245\) −2.03837e10 −0.361440
\(246\) 3.72833e10 0.649092
\(247\) −5.18737e9 −0.0886770
\(248\) 1.12515e10 0.188876
\(249\) −3.88430e10 −0.640348
\(250\) 7.51905e9 0.121740
\(251\) −8.41177e9 −0.133769 −0.0668845 0.997761i \(-0.521306\pi\)
−0.0668845 + 0.997761i \(0.521306\pi\)
\(252\) −7.96767e9 −0.124460
\(253\) −2.68396e9 −0.0411845
\(254\) −4.51153e10 −0.680099
\(255\) −8.89942e9 −0.131805
\(256\) 8.43131e10 1.22692
\(257\) −8.98210e10 −1.28434 −0.642168 0.766564i \(-0.721965\pi\)
−0.642168 + 0.766564i \(0.721965\pi\)
\(258\) 8.05351e10 1.13161
\(259\) −2.56548e10 −0.354258
\(260\) 1.08596e10 0.147379
\(261\) −6.56533e9 −0.0875739
\(262\) −1.14290e11 −1.49848
\(263\) 9.35545e10 1.20577 0.602884 0.797829i \(-0.294018\pi\)
0.602884 + 0.797829i \(0.294018\pi\)
\(264\) −2.16869e8 −0.00274777
\(265\) −3.23534e10 −0.403008
\(266\) 1.11660e10 0.136751
\(267\) 4.57159e10 0.550511
\(268\) −3.24903e10 −0.384722
\(269\) 1.52794e11 1.77919 0.889594 0.456752i \(-0.150987\pi\)
0.889594 + 0.456752i \(0.150987\pi\)
\(270\) 1.02296e10 0.117144
\(271\) −1.37162e11 −1.54480 −0.772399 0.635138i \(-0.780943\pi\)
−0.772399 + 0.635138i \(0.780943\pi\)
\(272\) 5.18748e10 0.574641
\(273\) −8.96969e9 −0.0977339
\(274\) 1.87890e11 2.01384
\(275\) 4.49887e8 0.00474358
\(276\) −8.23985e10 −0.854729
\(277\) 8.40167e10 0.857445 0.428723 0.903436i \(-0.358964\pi\)
0.428723 + 0.903436i \(0.358964\pi\)
\(278\) −1.44526e10 −0.145126
\(279\) −3.17548e10 −0.313755
\(280\) 4.04211e9 0.0393004
\(281\) 5.98704e10 0.572840 0.286420 0.958104i \(-0.407535\pi\)
0.286420 + 0.958104i \(0.407535\pi\)
\(282\) −1.35014e11 −1.27133
\(283\) 1.64644e11 1.52583 0.762915 0.646499i \(-0.223768\pi\)
0.762915 + 0.646499i \(0.223768\pi\)
\(284\) −1.49643e11 −1.36497
\(285\) −6.59750e9 −0.0592349
\(286\) 1.41188e9 0.0124782
\(287\) −4.15782e10 −0.361741
\(288\) −5.18190e10 −0.443837
\(289\) −8.76854e10 −0.739413
\(290\) −1.92615e10 −0.159918
\(291\) 1.03232e11 0.843907
\(292\) −1.32008e11 −1.06262
\(293\) −7.35831e10 −0.583275 −0.291638 0.956529i \(-0.594200\pi\)
−0.291638 + 0.956529i \(0.594200\pi\)
\(294\) −8.13601e10 −0.635110
\(295\) −2.18513e10 −0.167988
\(296\) −2.14377e10 −0.162318
\(297\) 6.12066e8 0.00456451
\(298\) −3.36030e11 −2.46834
\(299\) −9.27610e10 −0.671189
\(300\) 1.38117e10 0.0984467
\(301\) −8.98125e10 −0.630649
\(302\) 3.12934e11 2.16482
\(303\) 6.44140e10 0.439024
\(304\) 3.84569e10 0.258251
\(305\) 1.23881e10 0.0819702
\(306\) −3.55214e10 −0.231602
\(307\) −2.40045e11 −1.54230 −0.771151 0.636652i \(-0.780319\pi\)
−0.771151 + 0.636652i \(0.780319\pi\)
\(308\) −1.39863e9 −0.00885577
\(309\) 4.05852e10 0.253253
\(310\) −9.31628e10 −0.572948
\(311\) −1.14775e11 −0.695708 −0.347854 0.937549i \(-0.613090\pi\)
−0.347854 + 0.937549i \(0.613090\pi\)
\(312\) −7.49526e9 −0.0447807
\(313\) −3.24935e11 −1.91358 −0.956789 0.290782i \(-0.906085\pi\)
−0.956789 + 0.290782i \(0.906085\pi\)
\(314\) 3.66796e11 2.12932
\(315\) −1.14080e10 −0.0652848
\(316\) 1.72137e11 0.971143
\(317\) 1.06700e11 0.593468 0.296734 0.954960i \(-0.404103\pi\)
0.296734 + 0.954960i \(0.404103\pi\)
\(318\) −1.29136e11 −0.708150
\(319\) −1.15247e9 −0.00623120
\(320\) −5.75975e10 −0.307064
\(321\) −2.12111e11 −1.11504
\(322\) 1.99671e11 1.03505
\(323\) 2.29093e10 0.117112
\(324\) 1.87906e10 0.0947304
\(325\) 1.55487e10 0.0773068
\(326\) 1.23385e11 0.605039
\(327\) −1.34000e11 −0.648099
\(328\) −3.47437e10 −0.165746
\(329\) 1.50567e11 0.708514
\(330\) 1.79569e9 0.00833524
\(331\) −3.46295e11 −1.58570 −0.792850 0.609417i \(-0.791403\pi\)
−0.792850 + 0.609417i \(0.791403\pi\)
\(332\) −2.09329e11 −0.945602
\(333\) 6.05034e10 0.269638
\(334\) −1.78115e11 −0.783145
\(335\) −4.65191e10 −0.201804
\(336\) 6.64973e10 0.284628
\(337\) 1.45369e11 0.613954 0.306977 0.951717i \(-0.400683\pi\)
0.306977 + 0.951717i \(0.400683\pi\)
\(338\) −2.77801e11 −1.15773
\(339\) 1.02187e11 0.420238
\(340\) −4.79599e10 −0.194636
\(341\) −5.57421e9 −0.0223248
\(342\) −2.63334e10 −0.104085
\(343\) 2.02997e11 0.791892
\(344\) −7.50493e10 −0.288957
\(345\) −1.17977e11 −0.448344
\(346\) −1.26766e11 −0.475512
\(347\) −8.39537e10 −0.310854 −0.155427 0.987847i \(-0.549675\pi\)
−0.155427 + 0.987847i \(0.549675\pi\)
\(348\) −3.53813e10 −0.129320
\(349\) 2.87506e11 1.03737 0.518684 0.854966i \(-0.326422\pi\)
0.518684 + 0.854966i \(0.326422\pi\)
\(350\) −3.34690e10 −0.119216
\(351\) 2.11538e10 0.0743885
\(352\) −9.09625e9 −0.0315806
\(353\) 1.61913e11 0.555005 0.277502 0.960725i \(-0.410493\pi\)
0.277502 + 0.960725i \(0.410493\pi\)
\(354\) −8.72177e10 −0.295182
\(355\) −2.14257e11 −0.715991
\(356\) 2.46368e11 0.812940
\(357\) 3.96133e10 0.129073
\(358\) −4.09513e11 −1.31763
\(359\) 4.41518e10 0.140289 0.0701445 0.997537i \(-0.477654\pi\)
0.0701445 + 0.997537i \(0.477654\pi\)
\(360\) −9.53277e9 −0.0299129
\(361\) 1.69836e10 0.0526316
\(362\) 2.01596e11 0.617012
\(363\) −1.90886e11 −0.577025
\(364\) −4.83386e10 −0.144324
\(365\) −1.89008e11 −0.557393
\(366\) 4.94462e10 0.144035
\(367\) −2.25970e11 −0.650210 −0.325105 0.945678i \(-0.605400\pi\)
−0.325105 + 0.945678i \(0.605400\pi\)
\(368\) 6.87689e11 1.95469
\(369\) 9.80566e10 0.275333
\(370\) 1.77506e11 0.492385
\(371\) 1.44012e11 0.394654
\(372\) −1.71130e11 −0.463322
\(373\) −2.52590e10 −0.0675658 −0.0337829 0.999429i \(-0.510755\pi\)
−0.0337829 + 0.999429i \(0.510755\pi\)
\(374\) −6.23538e9 −0.0164794
\(375\) 1.97754e10 0.0516398
\(376\) 1.25817e11 0.324634
\(377\) −3.98308e10 −0.101551
\(378\) −4.55341e10 −0.114716
\(379\) 1.92804e11 0.479999 0.240000 0.970773i \(-0.422853\pi\)
0.240000 + 0.970773i \(0.422853\pi\)
\(380\) −3.55546e10 −0.0874722
\(381\) −1.18655e11 −0.288485
\(382\) −3.56950e11 −0.857675
\(383\) 3.29359e11 0.782123 0.391061 0.920365i \(-0.372108\pi\)
0.391061 + 0.920365i \(0.372108\pi\)
\(384\) 9.76514e10 0.229186
\(385\) −2.00255e9 −0.00464525
\(386\) −1.04787e12 −2.40251
\(387\) 2.11810e11 0.480007
\(388\) 5.56326e11 1.24620
\(389\) 6.86136e11 1.51928 0.759638 0.650346i \(-0.225376\pi\)
0.759638 + 0.650346i \(0.225376\pi\)
\(390\) 6.20612e10 0.135841
\(391\) 4.09665e11 0.886409
\(392\) 7.58182e10 0.162176
\(393\) −3.00587e11 −0.635629
\(394\) 5.25827e11 1.09928
\(395\) 2.46464e11 0.509409
\(396\) 3.29849e9 0.00674041
\(397\) −1.25923e11 −0.254418 −0.127209 0.991876i \(-0.540602\pi\)
−0.127209 + 0.991876i \(0.540602\pi\)
\(398\) −1.32255e11 −0.264204
\(399\) 2.93670e10 0.0580071
\(400\) −1.15271e11 −0.225138
\(401\) 3.47020e11 0.670200 0.335100 0.942183i \(-0.391230\pi\)
0.335100 + 0.942183i \(0.391230\pi\)
\(402\) −1.85677e11 −0.354603
\(403\) −1.92652e11 −0.363831
\(404\) 3.47134e11 0.648307
\(405\) 2.69042e10 0.0496904
\(406\) 8.57371e10 0.156604
\(407\) 1.06207e10 0.0191857
\(408\) 3.31018e10 0.0591399
\(409\) −4.90257e11 −0.866300 −0.433150 0.901322i \(-0.642598\pi\)
−0.433150 + 0.901322i \(0.642598\pi\)
\(410\) 2.87680e11 0.502785
\(411\) 4.94157e11 0.854234
\(412\) 2.18718e11 0.373979
\(413\) 9.72650e10 0.164506
\(414\) −4.70896e11 −0.787814
\(415\) −2.99715e11 −0.496011
\(416\) −3.14378e11 −0.514674
\(417\) −3.80109e10 −0.0615597
\(418\) −4.62254e9 −0.00740606
\(419\) 9.03886e11 1.43268 0.716342 0.697749i \(-0.245815\pi\)
0.716342 + 0.697749i \(0.245815\pi\)
\(420\) −6.14789e10 −0.0964061
\(421\) 1.19112e12 1.84793 0.923967 0.382473i \(-0.124927\pi\)
0.923967 + 0.382473i \(0.124927\pi\)
\(422\) 9.66366e11 1.48332
\(423\) −3.55092e11 −0.539273
\(424\) 1.20340e11 0.180827
\(425\) −6.86684e10 −0.102096
\(426\) −8.55190e11 −1.25811
\(427\) −5.51423e10 −0.0802711
\(428\) −1.14309e12 −1.64658
\(429\) 3.71331e9 0.00529302
\(430\) 6.21412e11 0.876540
\(431\) 5.73251e11 0.800197 0.400098 0.916472i \(-0.368976\pi\)
0.400098 + 0.916472i \(0.368976\pi\)
\(432\) −1.56825e11 −0.216640
\(433\) 1.09093e12 1.49143 0.745714 0.666266i \(-0.232109\pi\)
0.745714 + 0.666266i \(0.232109\pi\)
\(434\) 4.14689e11 0.561072
\(435\) −5.06584e10 −0.0678344
\(436\) −7.22143e11 −0.957048
\(437\) 3.03701e11 0.398364
\(438\) −7.54410e11 −0.979431
\(439\) −2.73492e11 −0.351443 −0.175721 0.984440i \(-0.556226\pi\)
−0.175721 + 0.984440i \(0.556226\pi\)
\(440\) −1.67337e9 −0.00212841
\(441\) −2.13980e11 −0.269402
\(442\) −2.15503e11 −0.268567
\(443\) −7.49545e10 −0.0924658 −0.0462329 0.998931i \(-0.514722\pi\)
−0.0462329 + 0.998931i \(0.514722\pi\)
\(444\) 3.26059e11 0.398174
\(445\) 3.52746e11 0.426424
\(446\) −1.46004e11 −0.174726
\(447\) −8.83773e11 −1.04702
\(448\) 2.56379e11 0.300699
\(449\) −3.55853e10 −0.0413202 −0.0206601 0.999787i \(-0.506577\pi\)
−0.0206601 + 0.999787i \(0.506577\pi\)
\(450\) 7.89319e10 0.0907395
\(451\) 1.72127e10 0.0195909
\(452\) 5.50694e11 0.620565
\(453\) 8.23028e11 0.918275
\(454\) 1.38180e12 1.52649
\(455\) −6.92105e10 −0.0757044
\(456\) 2.45397e10 0.0265783
\(457\) 3.36805e11 0.361207 0.180603 0.983556i \(-0.442195\pi\)
0.180603 + 0.983556i \(0.442195\pi\)
\(458\) 1.33834e12 1.42126
\(459\) −9.34226e10 −0.0982415
\(460\) −6.35791e11 −0.662070
\(461\) 1.71990e12 1.77357 0.886785 0.462182i \(-0.152933\pi\)
0.886785 + 0.462182i \(0.152933\pi\)
\(462\) −7.99301e9 −0.00816247
\(463\) 1.28766e12 1.30222 0.651112 0.758982i \(-0.274303\pi\)
0.651112 + 0.758982i \(0.274303\pi\)
\(464\) 2.95288e11 0.295744
\(465\) −2.45022e11 −0.243034
\(466\) 2.34456e12 2.30317
\(467\) −9.12843e11 −0.888117 −0.444058 0.895998i \(-0.646462\pi\)
−0.444058 + 0.895998i \(0.646462\pi\)
\(468\) 1.14000e11 0.109849
\(469\) 2.07067e11 0.197621
\(470\) −1.04177e12 −0.984766
\(471\) 9.64689e11 0.903220
\(472\) 8.12767e10 0.0753750
\(473\) 3.71810e10 0.0341543
\(474\) 9.83742e11 0.895114
\(475\) −5.09066e10 −0.0458831
\(476\) 2.13480e11 0.190602
\(477\) −3.39633e11 −0.300384
\(478\) 1.10590e12 0.968921
\(479\) −3.70513e11 −0.321584 −0.160792 0.986988i \(-0.551405\pi\)
−0.160792 + 0.986988i \(0.551405\pi\)
\(480\) −3.99838e11 −0.343794
\(481\) 3.67064e11 0.312672
\(482\) −2.85705e12 −2.41105
\(483\) 5.25142e11 0.439051
\(484\) −1.02871e12 −0.852094
\(485\) 7.96541e11 0.653688
\(486\) 1.07386e11 0.0873141
\(487\) −1.09971e12 −0.885929 −0.442965 0.896539i \(-0.646073\pi\)
−0.442965 + 0.896539i \(0.646073\pi\)
\(488\) −4.60781e10 −0.0367794
\(489\) 3.24507e11 0.256646
\(490\) −6.27779e11 −0.491954
\(491\) −1.16248e12 −0.902648 −0.451324 0.892360i \(-0.649048\pi\)
−0.451324 + 0.892360i \(0.649048\pi\)
\(492\) 5.28437e11 0.406584
\(493\) 1.75907e11 0.134114
\(494\) −1.59761e11 −0.120698
\(495\) 4.72273e9 0.00353566
\(496\) 1.42823e12 1.05958
\(497\) 9.53706e11 0.701150
\(498\) −1.19629e12 −0.871573
\(499\) 1.89801e12 1.37040 0.685198 0.728357i \(-0.259716\pi\)
0.685198 + 0.728357i \(0.259716\pi\)
\(500\) 1.06572e11 0.0762565
\(501\) −4.68450e11 −0.332196
\(502\) −2.59066e11 −0.182072
\(503\) 6.71585e11 0.467784 0.233892 0.972263i \(-0.424854\pi\)
0.233892 + 0.972263i \(0.424854\pi\)
\(504\) 4.24325e10 0.0292928
\(505\) 4.97021e11 0.340067
\(506\) −8.26606e10 −0.0560559
\(507\) −7.30628e11 −0.491089
\(508\) −6.39444e11 −0.426006
\(509\) −6.25114e11 −0.412790 −0.206395 0.978469i \(-0.566173\pi\)
−0.206395 + 0.978469i \(0.566173\pi\)
\(510\) −2.74085e11 −0.179399
\(511\) 8.41316e11 0.545840
\(512\) 1.97942e12 1.27299
\(513\) −6.92579e10 −0.0441511
\(514\) −2.76631e12 −1.74810
\(515\) 3.13157e11 0.196169
\(516\) 1.14147e12 0.708827
\(517\) −6.23324e10 −0.0383713
\(518\) −7.90117e11 −0.482178
\(519\) −3.33401e11 −0.201703
\(520\) −5.78338e10 −0.0346870
\(521\) 1.53513e11 0.0912801 0.0456401 0.998958i \(-0.485467\pi\)
0.0456401 + 0.998958i \(0.485467\pi\)
\(522\) −2.02199e11 −0.119196
\(523\) 3.35387e10 0.0196015 0.00980074 0.999952i \(-0.496880\pi\)
0.00980074 + 0.999952i \(0.496880\pi\)
\(524\) −1.61989e12 −0.938633
\(525\) −8.80247e10 −0.0505694
\(526\) 2.88129e12 1.64116
\(527\) 8.50818e11 0.480495
\(528\) −2.75288e10 −0.0154147
\(529\) 3.62966e12 2.01519
\(530\) −9.96420e11 −0.548531
\(531\) −2.29386e11 −0.125211
\(532\) 1.58262e11 0.0856590
\(533\) 5.94894e11 0.319277
\(534\) 1.40796e12 0.749297
\(535\) −1.63666e12 −0.863706
\(536\) 1.73030e11 0.0905481
\(537\) −1.07704e12 −0.558915
\(538\) 4.70576e12 2.42164
\(539\) −3.75619e10 −0.0191689
\(540\) 1.44990e11 0.0733778
\(541\) 1.21969e12 0.612156 0.306078 0.952006i \(-0.400983\pi\)
0.306078 + 0.952006i \(0.400983\pi\)
\(542\) −4.22431e12 −2.10261
\(543\) 5.30206e11 0.261725
\(544\) 1.38840e12 0.679706
\(545\) −1.03395e12 −0.502016
\(546\) −2.76248e11 −0.133025
\(547\) −2.58499e12 −1.23457 −0.617284 0.786740i \(-0.711767\pi\)
−0.617284 + 0.786740i \(0.711767\pi\)
\(548\) 2.66306e12 1.26145
\(549\) 1.30045e11 0.0610969
\(550\) 1.38556e10 0.00645645
\(551\) 1.30407e11 0.0602725
\(552\) 4.38820e11 0.201169
\(553\) −1.09707e12 −0.498850
\(554\) 2.58755e12 1.16706
\(555\) 4.66847e11 0.208860
\(556\) −2.04845e11 −0.0909052
\(557\) −2.79411e12 −1.22997 −0.614985 0.788539i \(-0.710838\pi\)
−0.614985 + 0.788539i \(0.710838\pi\)
\(558\) −9.77986e11 −0.427050
\(559\) 1.28502e12 0.556618
\(560\) 5.13097e11 0.220472
\(561\) −1.63993e10 −0.00699024
\(562\) 1.84389e12 0.779688
\(563\) 1.75088e12 0.734463 0.367231 0.930130i \(-0.380306\pi\)
0.367231 + 0.930130i \(0.380306\pi\)
\(564\) −1.91363e12 −0.796345
\(565\) 7.88477e11 0.325515
\(566\) 5.07070e12 2.07680
\(567\) −1.19757e11 −0.0486604
\(568\) 7.96937e11 0.321260
\(569\) −2.15562e12 −0.862119 −0.431060 0.902323i \(-0.641860\pi\)
−0.431060 + 0.902323i \(0.641860\pi\)
\(570\) −2.03190e11 −0.0806242
\(571\) 1.35671e12 0.534101 0.267050 0.963683i \(-0.413951\pi\)
0.267050 + 0.963683i \(0.413951\pi\)
\(572\) 2.00114e10 0.00781620
\(573\) −9.38794e11 −0.363810
\(574\) −1.28053e12 −0.492363
\(575\) −9.10317e11 −0.347286
\(576\) −6.04636e11 −0.228872
\(577\) −2.81402e10 −0.0105690 −0.00528452 0.999986i \(-0.501682\pi\)
−0.00528452 + 0.999986i \(0.501682\pi\)
\(578\) −2.70053e12 −1.00641
\(579\) −2.75595e12 −1.01910
\(580\) −2.73004e11 −0.100171
\(581\) 1.33410e12 0.485730
\(582\) 3.17933e12 1.14864
\(583\) −5.96188e10 −0.0213734
\(584\) 7.03022e11 0.250098
\(585\) 1.63224e11 0.0576211
\(586\) −2.26621e12 −0.793892
\(587\) −2.10751e12 −0.732653 −0.366326 0.930486i \(-0.619385\pi\)
−0.366326 + 0.930486i \(0.619385\pi\)
\(588\) −1.15316e12 −0.397826
\(589\) 6.30746e11 0.215941
\(590\) −6.72976e11 −0.228647
\(591\) 1.38295e12 0.466296
\(592\) −2.72125e12 −0.910587
\(593\) −5.28692e11 −0.175573 −0.0877863 0.996139i \(-0.527979\pi\)
−0.0877863 + 0.996139i \(0.527979\pi\)
\(594\) 1.88504e10 0.00621272
\(595\) 3.05658e11 0.0999793
\(596\) −4.76275e12 −1.54614
\(597\) −3.47837e11 −0.112070
\(598\) −2.85685e12 −0.913551
\(599\) −4.36326e12 −1.38481 −0.692406 0.721508i \(-0.743449\pi\)
−0.692406 + 0.721508i \(0.743449\pi\)
\(600\) −7.35553e10 −0.0231704
\(601\) −4.12015e12 −1.28818 −0.644092 0.764948i \(-0.722765\pi\)
−0.644092 + 0.764948i \(0.722765\pi\)
\(602\) −2.76605e12 −0.858371
\(603\) −4.88339e11 −0.150416
\(604\) 4.43538e12 1.35602
\(605\) −1.47289e12 −0.446962
\(606\) 1.98382e12 0.597552
\(607\) 3.04102e12 0.909224 0.454612 0.890690i \(-0.349778\pi\)
0.454612 + 0.890690i \(0.349778\pi\)
\(608\) 1.02928e12 0.305469
\(609\) 2.25492e11 0.0664284
\(610\) 3.81529e11 0.111569
\(611\) −2.15429e12 −0.625343
\(612\) −5.03464e11 −0.145073
\(613\) 5.17191e12 1.47938 0.739689 0.672949i \(-0.234973\pi\)
0.739689 + 0.672949i \(0.234973\pi\)
\(614\) −7.39290e12 −2.09922
\(615\) 7.56609e11 0.213272
\(616\) 7.44855e9 0.00208429
\(617\) −5.29471e12 −1.47082 −0.735409 0.677623i \(-0.763010\pi\)
−0.735409 + 0.677623i \(0.763010\pi\)
\(618\) 1.24994e12 0.344701
\(619\) −8.50875e10 −0.0232947 −0.0116474 0.999932i \(-0.503708\pi\)
−0.0116474 + 0.999932i \(0.503708\pi\)
\(620\) −1.32045e12 −0.358888
\(621\) −1.23848e12 −0.334176
\(622\) −3.53486e12 −0.946924
\(623\) −1.57015e12 −0.417585
\(624\) −9.51431e11 −0.251216
\(625\) 1.52588e11 0.0400000
\(626\) −1.00073e13 −2.60456
\(627\) −1.21575e10 −0.00314151
\(628\) 5.19881e12 1.33378
\(629\) −1.62109e12 −0.412932
\(630\) −3.51344e11 −0.0888587
\(631\) 3.70696e12 0.930862 0.465431 0.885084i \(-0.345899\pi\)
0.465431 + 0.885084i \(0.345899\pi\)
\(632\) −9.16732e11 −0.228568
\(633\) 2.54158e12 0.629198
\(634\) 3.28614e12 0.807765
\(635\) −9.15548e11 −0.223460
\(636\) −1.83032e12 −0.443577
\(637\) −1.29819e12 −0.312399
\(638\) −3.54938e10 −0.00848125
\(639\) −2.24918e12 −0.533668
\(640\) 7.53483e11 0.177527
\(641\) −2.42257e12 −0.566781 −0.283391 0.959005i \(-0.591459\pi\)
−0.283391 + 0.959005i \(0.591459\pi\)
\(642\) −6.53259e12 −1.51767
\(643\) −5.39995e12 −1.24578 −0.622889 0.782311i \(-0.714041\pi\)
−0.622889 + 0.782311i \(0.714041\pi\)
\(644\) 2.83005e12 0.648347
\(645\) 1.63434e12 0.371812
\(646\) 7.05560e11 0.159400
\(647\) −7.72344e12 −1.73277 −0.866386 0.499375i \(-0.833563\pi\)
−0.866386 + 0.499375i \(0.833563\pi\)
\(648\) −1.00071e11 −0.0222957
\(649\) −4.02662e10 −0.00890921
\(650\) 4.78868e11 0.105222
\(651\) 1.09065e12 0.237996
\(652\) 1.74880e12 0.378989
\(653\) 2.40816e12 0.518293 0.259146 0.965838i \(-0.416559\pi\)
0.259146 + 0.965838i \(0.416559\pi\)
\(654\) −4.12695e12 −0.882123
\(655\) −2.31934e12 −0.492356
\(656\) −4.41028e12 −0.929820
\(657\) −1.98413e12 −0.415456
\(658\) 4.63717e12 0.964354
\(659\) 8.31254e12 1.71692 0.858459 0.512883i \(-0.171422\pi\)
0.858459 + 0.512883i \(0.171422\pi\)
\(660\) 2.54513e10 0.00522110
\(661\) −2.38376e12 −0.485686 −0.242843 0.970066i \(-0.578080\pi\)
−0.242843 + 0.970066i \(0.578080\pi\)
\(662\) −1.06652e13 −2.15828
\(663\) −5.66780e11 −0.113921
\(664\) 1.11480e12 0.222557
\(665\) 2.26597e11 0.0449321
\(666\) 1.86338e12 0.367002
\(667\) 2.33195e12 0.456198
\(668\) −2.52453e12 −0.490553
\(669\) −3.83997e11 −0.0741157
\(670\) −1.43270e12 −0.274674
\(671\) 2.28280e10 0.00434727
\(672\) 1.77977e12 0.336668
\(673\) −5.22205e12 −0.981236 −0.490618 0.871375i \(-0.663229\pi\)
−0.490618 + 0.871375i \(0.663229\pi\)
\(674\) 4.47706e12 0.835648
\(675\) 2.07594e11 0.0384900
\(676\) −3.93743e12 −0.725191
\(677\) −9.27082e12 −1.69617 −0.848085 0.529860i \(-0.822244\pi\)
−0.848085 + 0.529860i \(0.822244\pi\)
\(678\) 3.14714e12 0.571983
\(679\) −3.54558e12 −0.640138
\(680\) 2.55415e11 0.0458095
\(681\) 3.63418e12 0.647507
\(682\) −1.71675e11 −0.0303862
\(683\) 1.03618e12 0.182197 0.0910985 0.995842i \(-0.470962\pi\)
0.0910985 + 0.995842i \(0.470962\pi\)
\(684\) −3.73238e11 −0.0651979
\(685\) 3.81294e12 0.661687
\(686\) 6.25190e12 1.07784
\(687\) 3.51990e12 0.602871
\(688\) −9.52658e12 −1.62102
\(689\) −2.06050e12 −0.348326
\(690\) −3.63346e12 −0.610238
\(691\) 6.02122e12 1.00469 0.502346 0.864667i \(-0.332470\pi\)
0.502346 + 0.864667i \(0.332470\pi\)
\(692\) −1.79673e12 −0.297855
\(693\) −2.10219e10 −0.00346237
\(694\) −2.58561e12 −0.423102
\(695\) −2.93294e11 −0.0476839
\(696\) 1.88426e11 0.0304368
\(697\) −2.62726e12 −0.421654
\(698\) 8.85462e12 1.41195
\(699\) 6.16629e12 0.976960
\(700\) −4.74374e11 −0.0746758
\(701\) −1.02410e13 −1.60181 −0.800903 0.598794i \(-0.795647\pi\)
−0.800903 + 0.598794i \(0.795647\pi\)
\(702\) 6.51494e11 0.101250
\(703\) −1.20178e12 −0.185577
\(704\) −1.06137e11 −0.0162851
\(705\) −2.73991e12 −0.417719
\(706\) 4.98661e12 0.755413
\(707\) −2.21235e12 −0.333018
\(708\) −1.23619e12 −0.184899
\(709\) −4.01293e12 −0.596422 −0.298211 0.954500i \(-0.596390\pi\)
−0.298211 + 0.954500i \(0.596390\pi\)
\(710\) −6.59869e12 −0.974530
\(711\) 2.58728e12 0.379691
\(712\) −1.31205e12 −0.191334
\(713\) 1.12790e13 1.63444
\(714\) 1.22001e12 0.175680
\(715\) 2.86521e10 0.00409995
\(716\) −5.80426e12 −0.825350
\(717\) 2.90855e12 0.410998
\(718\) 1.35979e12 0.190946
\(719\) −1.02819e13 −1.43481 −0.717406 0.696655i \(-0.754671\pi\)
−0.717406 + 0.696655i \(0.754671\pi\)
\(720\) −1.21007e12 −0.167808
\(721\) −1.39393e12 −0.192103
\(722\) 5.23060e11 0.0716365
\(723\) −7.51415e12 −1.02272
\(724\) 2.85734e12 0.386489
\(725\) −3.90883e11 −0.0525443
\(726\) −5.87892e12 −0.785385
\(727\) 3.68797e11 0.0489646 0.0244823 0.999700i \(-0.492206\pi\)
0.0244823 + 0.999700i \(0.492206\pi\)
\(728\) 2.57431e11 0.0339680
\(729\) 2.82430e11 0.0370370
\(730\) −5.82106e12 −0.758664
\(731\) −5.67511e12 −0.735099
\(732\) 7.00828e11 0.0902219
\(733\) 6.45808e12 0.826295 0.413148 0.910664i \(-0.364429\pi\)
0.413148 + 0.910664i \(0.364429\pi\)
\(734\) −6.95943e12 −0.884996
\(735\) −1.65108e12 −0.208678
\(736\) 1.84057e13 2.31207
\(737\) −8.57225e10 −0.0107026
\(738\) 3.01995e12 0.374754
\(739\) −5.44774e12 −0.671919 −0.335959 0.941876i \(-0.609060\pi\)
−0.335959 + 0.941876i \(0.609060\pi\)
\(740\) 2.51589e12 0.308424
\(741\) −4.20177e11 −0.0511977
\(742\) 4.43529e12 0.537161
\(743\) −5.12022e12 −0.616366 −0.308183 0.951327i \(-0.599721\pi\)
−0.308183 + 0.951327i \(0.599721\pi\)
\(744\) 9.11369e11 0.109048
\(745\) −6.81924e12 −0.811022
\(746\) −7.77928e11 −0.0919633
\(747\) −3.14629e12 −0.369705
\(748\) −8.83775e10 −0.0103225
\(749\) 7.28513e12 0.845803
\(750\) 6.09043e11 0.0702865
\(751\) 6.79016e12 0.778934 0.389467 0.921040i \(-0.372659\pi\)
0.389467 + 0.921040i \(0.372659\pi\)
\(752\) 1.59709e13 1.82117
\(753\) −6.81353e11 −0.0772316
\(754\) −1.22671e12 −0.138220
\(755\) 6.35052e12 0.711293
\(756\) −6.45381e11 −0.0718568
\(757\) −8.06088e12 −0.892177 −0.446088 0.894989i \(-0.647183\pi\)
−0.446088 + 0.894989i \(0.647183\pi\)
\(758\) 5.93799e12 0.653323
\(759\) −2.17401e11 −0.0237779
\(760\) 1.89349e11 0.0205874
\(761\) 8.37191e12 0.904886 0.452443 0.891793i \(-0.350553\pi\)
0.452443 + 0.891793i \(0.350553\pi\)
\(762\) −3.65434e12 −0.392655
\(763\) 4.60236e12 0.491610
\(764\) −5.05926e12 −0.537238
\(765\) −7.20853e11 −0.0760975
\(766\) 1.01436e13 1.06454
\(767\) −1.39165e12 −0.145195
\(768\) 6.82936e12 0.708361
\(769\) −4.89308e12 −0.504561 −0.252280 0.967654i \(-0.581181\pi\)
−0.252280 + 0.967654i \(0.581181\pi\)
\(770\) −6.16745e10 −0.00632262
\(771\) −7.27550e12 −0.741512
\(772\) −1.48521e13 −1.50491
\(773\) −1.21911e11 −0.0122811 −0.00614054 0.999981i \(-0.501955\pi\)
−0.00614054 + 0.999981i \(0.501955\pi\)
\(774\) 6.52334e12 0.653335
\(775\) −1.89060e12 −0.188253
\(776\) −2.96277e12 −0.293305
\(777\) −2.07804e12 −0.204531
\(778\) 2.11316e13 2.06788
\(779\) −1.94770e12 −0.189497
\(780\) 8.79629e11 0.0850891
\(781\) −3.94819e11 −0.0379725
\(782\) 1.26169e13 1.20648
\(783\) −5.31792e11 −0.0505608
\(784\) 9.62418e12 0.909790
\(785\) 7.44359e12 0.699631
\(786\) −9.25748e12 −0.865150
\(787\) 9.93051e12 0.922753 0.461376 0.887205i \(-0.347356\pi\)
0.461376 + 0.887205i \(0.347356\pi\)
\(788\) 7.45284e12 0.688579
\(789\) 7.57791e12 0.696150
\(790\) 7.59060e12 0.693353
\(791\) −3.50969e12 −0.318768
\(792\) −1.75664e10 −0.00158642
\(793\) 7.88965e11 0.0708481
\(794\) −3.87818e12 −0.346287
\(795\) −2.62062e12 −0.232677
\(796\) −1.87453e12 −0.165494
\(797\) −7.87450e12 −0.691291 −0.345645 0.938365i \(-0.612340\pi\)
−0.345645 + 0.938365i \(0.612340\pi\)
\(798\) 9.04444e11 0.0789530
\(799\) 9.51410e12 0.825861
\(800\) −3.08517e12 −0.266302
\(801\) 3.70299e12 0.317838
\(802\) 1.06875e13 0.912205
\(803\) −3.48292e11 −0.0295613
\(804\) −2.63171e12 −0.222119
\(805\) 4.05202e12 0.340087
\(806\) −5.93329e12 −0.495208
\(807\) 1.23763e13 1.02721
\(808\) −1.84869e12 −0.152585
\(809\) −4.03673e12 −0.331330 −0.165665 0.986182i \(-0.552977\pi\)
−0.165665 + 0.986182i \(0.552977\pi\)
\(810\) 8.28596e11 0.0676332
\(811\) 1.51544e12 0.123011 0.0615056 0.998107i \(-0.480410\pi\)
0.0615056 + 0.998107i \(0.480410\pi\)
\(812\) 1.21520e12 0.0980948
\(813\) −1.11101e13 −0.891889
\(814\) 3.27096e11 0.0261135
\(815\) 2.50392e12 0.198797
\(816\) 4.20186e12 0.331769
\(817\) −4.20719e12 −0.330364
\(818\) −1.50989e13 −1.17912
\(819\) −7.26545e11 −0.0564267
\(820\) 4.07745e12 0.314939
\(821\) −2.26437e13 −1.73941 −0.869707 0.493568i \(-0.835693\pi\)
−0.869707 + 0.493568i \(0.835693\pi\)
\(822\) 1.52191e13 1.16269
\(823\) −4.04735e11 −0.0307519 −0.0153759 0.999882i \(-0.504895\pi\)
−0.0153759 + 0.999882i \(0.504895\pi\)
\(824\) −1.16480e12 −0.0880196
\(825\) 3.64408e10 0.00273871
\(826\) 2.99557e12 0.223908
\(827\) 6.96675e12 0.517911 0.258956 0.965889i \(-0.416622\pi\)
0.258956 + 0.965889i \(0.416622\pi\)
\(828\) −6.67428e12 −0.493478
\(829\) 9.54746e12 0.702090 0.351045 0.936359i \(-0.385826\pi\)
0.351045 + 0.936359i \(0.385826\pi\)
\(830\) −9.23062e12 −0.675117
\(831\) 6.80535e12 0.495046
\(832\) −3.66823e12 −0.265400
\(833\) 5.73325e12 0.412571
\(834\) −1.17066e12 −0.0837884
\(835\) −3.61459e12 −0.257318
\(836\) −6.55178e10 −0.00463907
\(837\) −2.57214e12 −0.181147
\(838\) 2.78379e13 1.95002
\(839\) 1.19112e13 0.829902 0.414951 0.909844i \(-0.363799\pi\)
0.414951 + 0.909844i \(0.363799\pi\)
\(840\) 3.27411e11 0.0226901
\(841\) −1.35058e13 −0.930977
\(842\) 3.66841e13 2.51521
\(843\) 4.84950e12 0.330729
\(844\) 1.36968e13 0.929137
\(845\) −5.63756e12 −0.380396
\(846\) −1.09361e13 −0.734001
\(847\) 6.55616e12 0.437697
\(848\) 1.52756e13 1.01442
\(849\) 1.33361e13 0.880938
\(850\) −2.11485e12 −0.138961
\(851\) −2.14903e13 −1.40462
\(852\) −1.21211e13 −0.788068
\(853\) 2.54020e13 1.64284 0.821422 0.570320i \(-0.193181\pi\)
0.821422 + 0.570320i \(0.193181\pi\)
\(854\) −1.69827e12 −0.109256
\(855\) −5.34398e11 −0.0341993
\(856\) 6.08761e12 0.387539
\(857\) −2.56377e13 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(858\) 1.14363e11 0.00720429
\(859\) −2.10765e13 −1.32077 −0.660387 0.750926i \(-0.729608\pi\)
−0.660387 + 0.750926i \(0.729608\pi\)
\(860\) 8.80763e12 0.549055
\(861\) −3.36784e12 −0.208851
\(862\) 1.76550e13 1.08914
\(863\) 9.48317e12 0.581976 0.290988 0.956727i \(-0.406016\pi\)
0.290988 + 0.956727i \(0.406016\pi\)
\(864\) −4.19734e12 −0.256249
\(865\) −2.57254e12 −0.156239
\(866\) 3.35985e13 2.02997
\(867\) −7.10251e12 −0.426900
\(868\) 5.87761e12 0.351449
\(869\) 4.54168e11 0.0270164
\(870\) −1.56018e12 −0.0923289
\(871\) −2.96268e12 −0.174423
\(872\) 3.84583e12 0.225251
\(873\) 8.36177e12 0.487230
\(874\) 9.35340e12 0.542211
\(875\) −6.79203e11 −0.0391709
\(876\) −1.06927e13 −0.613505
\(877\) 8.55003e12 0.488056 0.244028 0.969768i \(-0.421531\pi\)
0.244028 + 0.969768i \(0.421531\pi\)
\(878\) −8.42301e12 −0.478346
\(879\) −5.96023e12 −0.336754
\(880\) −2.12414e11 −0.0119402
\(881\) 9.61493e12 0.537718 0.268859 0.963180i \(-0.413353\pi\)
0.268859 + 0.963180i \(0.413353\pi\)
\(882\) −6.59017e12 −0.366681
\(883\) −1.80164e13 −0.997341 −0.498671 0.866792i \(-0.666178\pi\)
−0.498671 + 0.866792i \(0.666178\pi\)
\(884\) −3.05444e12 −0.168227
\(885\) −1.76995e12 −0.0969878
\(886\) −2.30845e12 −0.125854
\(887\) −3.05992e13 −1.65979 −0.829897 0.557917i \(-0.811601\pi\)
−0.829897 + 0.557917i \(0.811601\pi\)
\(888\) −1.73646e12 −0.0937142
\(889\) 4.07531e12 0.218828
\(890\) 1.08639e13 0.580403
\(891\) 4.95774e10 0.00263532
\(892\) −2.06940e12 −0.109447
\(893\) 7.05318e12 0.371153
\(894\) −2.72185e13 −1.42510
\(895\) −8.31046e12 −0.432934
\(896\) −3.35392e12 −0.173847
\(897\) −7.51364e12 −0.387511
\(898\) −1.09596e12 −0.0562406
\(899\) 4.84314e12 0.247291
\(900\) 1.11875e12 0.0568382
\(901\) 9.09990e12 0.460018
\(902\) 5.30118e11 0.0266651
\(903\) −7.27481e12 −0.364105
\(904\) −2.93277e12 −0.146056
\(905\) 4.09110e12 0.202731
\(906\) 2.53476e13 1.24986
\(907\) 1.30788e13 0.641703 0.320852 0.947129i \(-0.396031\pi\)
0.320852 + 0.947129i \(0.396031\pi\)
\(908\) 1.95850e13 0.956174
\(909\) 5.21753e12 0.253471
\(910\) −2.13155e12 −0.103041
\(911\) −8.21342e12 −0.395086 −0.197543 0.980294i \(-0.563296\pi\)
−0.197543 + 0.980294i \(0.563296\pi\)
\(912\) 3.11501e12 0.149102
\(913\) −5.52295e11 −0.0263059
\(914\) 1.03729e13 0.491636
\(915\) 1.00344e12 0.0473255
\(916\) 1.89691e13 0.890260
\(917\) 1.03239e13 0.482150
\(918\) −2.87723e12 −0.133716
\(919\) −2.09082e13 −0.966936 −0.483468 0.875362i \(-0.660623\pi\)
−0.483468 + 0.875362i \(0.660623\pi\)
\(920\) 3.38596e12 0.155825
\(921\) −1.94436e13 −0.890449
\(922\) 5.29694e13 2.41399
\(923\) −1.36454e13 −0.618842
\(924\) −1.13289e11 −0.00511288
\(925\) 3.60221e12 0.161783
\(926\) 3.96573e13 1.77245
\(927\) 3.28740e12 0.146216
\(928\) 7.90326e12 0.349816
\(929\) −3.77790e13 −1.66410 −0.832051 0.554699i \(-0.812833\pi\)
−0.832051 + 0.554699i \(0.812833\pi\)
\(930\) −7.54619e12 −0.330792
\(931\) 4.25029e12 0.185415
\(932\) 3.32308e13 1.44268
\(933\) −9.29681e12 −0.401667
\(934\) −2.81138e13 −1.20881
\(935\) −1.26538e11 −0.00541462
\(936\) −6.07116e11 −0.0258542
\(937\) −7.01705e12 −0.297390 −0.148695 0.988883i \(-0.547507\pi\)
−0.148695 + 0.988883i \(0.547507\pi\)
\(938\) 6.37725e12 0.268981
\(939\) −2.63197e13 −1.10481
\(940\) −1.47656e13 −0.616846
\(941\) −3.74660e13 −1.55770 −0.778850 0.627210i \(-0.784197\pi\)
−0.778850 + 0.627210i \(0.784197\pi\)
\(942\) 2.97105e13 1.22937
\(943\) −3.48289e13 −1.43429
\(944\) 1.03171e13 0.422846
\(945\) −9.24048e11 −0.0376922
\(946\) 1.14510e12 0.0464872
\(947\) 1.45907e13 0.589524 0.294762 0.955571i \(-0.404760\pi\)
0.294762 + 0.955571i \(0.404760\pi\)
\(948\) 1.39431e13 0.560690
\(949\) −1.20374e13 −0.481764
\(950\) −1.56782e12 −0.0624512
\(951\) 8.64269e12 0.342639
\(952\) −1.13691e12 −0.0448600
\(953\) 4.45651e13 1.75016 0.875078 0.483982i \(-0.160810\pi\)
0.875078 + 0.483982i \(0.160810\pi\)
\(954\) −1.04600e13 −0.408851
\(955\) −7.24378e12 −0.281806
\(956\) 1.56745e13 0.606921
\(957\) −9.33502e10 −0.00359759
\(958\) −1.14111e13 −0.437705
\(959\) −1.69723e13 −0.647971
\(960\) −4.66540e12 −0.177283
\(961\) −3.01461e12 −0.114019
\(962\) 1.13049e13 0.425576
\(963\) −1.71810e13 −0.643768
\(964\) −4.04945e13 −1.51025
\(965\) −2.12650e13 −0.789393
\(966\) 1.61733e13 0.597589
\(967\) −3.76646e13 −1.38520 −0.692602 0.721320i \(-0.743536\pi\)
−0.692602 + 0.721320i \(0.743536\pi\)
\(968\) 5.47847e12 0.200549
\(969\) 1.85565e12 0.0676144
\(970\) 2.45319e13 0.889729
\(971\) −1.31198e13 −0.473631 −0.236816 0.971555i \(-0.576104\pi\)
−0.236816 + 0.971555i \(0.576104\pi\)
\(972\) 1.52204e12 0.0546926
\(973\) 1.30552e12 0.0466955
\(974\) −3.38690e13 −1.20583
\(975\) 1.25944e12 0.0446331
\(976\) −5.84904e12 −0.206329
\(977\) −3.02751e13 −1.06306 −0.531532 0.847038i \(-0.678384\pi\)
−0.531532 + 0.847038i \(0.678384\pi\)
\(978\) 9.99418e12 0.349319
\(979\) 6.50018e11 0.0226153
\(980\) −8.89786e12 −0.308154
\(981\) −1.08540e13 −0.374180
\(982\) −3.58020e13 −1.22859
\(983\) −1.79214e13 −0.612181 −0.306091 0.952002i \(-0.599021\pi\)
−0.306091 + 0.952002i \(0.599021\pi\)
\(984\) −2.81424e12 −0.0956936
\(985\) 1.06709e13 0.361191
\(986\) 5.41759e12 0.182541
\(987\) 1.21959e13 0.409061
\(988\) −2.26438e12 −0.0756036
\(989\) −7.52332e13 −2.50050
\(990\) 1.45451e11 0.00481235
\(991\) −2.22633e13 −0.733259 −0.366630 0.930367i \(-0.619488\pi\)
−0.366630 + 0.930367i \(0.619488\pi\)
\(992\) 3.82260e13 1.25330
\(993\) −2.80499e13 −0.915504
\(994\) 2.93722e13 0.954330
\(995\) −2.68393e12 −0.0868094
\(996\) −1.69557e13 −0.545943
\(997\) 3.89578e13 1.24872 0.624362 0.781135i \(-0.285359\pi\)
0.624362 + 0.781135i \(0.285359\pi\)
\(998\) 5.84549e13 1.86524
\(999\) 4.90077e12 0.155675
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.d.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.d.1.11 12 1.1 even 1 trivial