Properties

Label 285.10.a.d.1.8
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 4398 x^{10} + 11376 x^{9} + 7070146 x^{8} - 15274638 x^{7} - 5114407260 x^{6} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(11.5013\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.50131 q^{2} +81.0000 q^{3} -439.728 q^{4} +625.000 q^{5} +688.606 q^{6} -8602.42 q^{7} -8090.93 q^{8} +6561.00 q^{9} +5313.32 q^{10} -2144.81 q^{11} -35617.9 q^{12} +70308.7 q^{13} -73131.8 q^{14} +50625.0 q^{15} +156357. q^{16} +263687. q^{17} +55777.1 q^{18} -130321. q^{19} -274830. q^{20} -696796. q^{21} -18233.7 q^{22} +295644. q^{23} -655366. q^{24} +390625. q^{25} +597716. q^{26} +531441. q^{27} +3.78272e6 q^{28} +1.37332e6 q^{29} +430379. q^{30} +5.69212e6 q^{31} +5.47180e6 q^{32} -173729. q^{33} +2.24168e6 q^{34} -5.37651e6 q^{35} -2.88505e6 q^{36} +2.06086e6 q^{37} -1.10790e6 q^{38} +5.69500e6 q^{39} -5.05683e6 q^{40} +4.65536e6 q^{41} -5.92368e6 q^{42} -2.99326e7 q^{43} +943131. q^{44} +4.10062e6 q^{45} +2.51336e6 q^{46} -4.23360e7 q^{47} +1.26649e7 q^{48} +3.36479e7 q^{49} +3.32082e6 q^{50} +2.13586e7 q^{51} -3.09167e7 q^{52} +1.46136e6 q^{53} +4.51795e6 q^{54} -1.34050e6 q^{55} +6.96016e7 q^{56} -1.05560e7 q^{57} +1.16750e7 q^{58} -1.52959e8 q^{59} -2.22612e7 q^{60} +3.93525e7 q^{61} +4.83905e7 q^{62} -5.64404e7 q^{63} -3.35374e7 q^{64} +4.39429e7 q^{65} -1.47693e6 q^{66} +8.09717e7 q^{67} -1.15950e8 q^{68} +2.39472e7 q^{69} -4.57074e7 q^{70} -2.70449e8 q^{71} -5.30846e7 q^{72} -2.60740e8 q^{73} +1.75200e7 q^{74} +3.16406e7 q^{75} +5.73058e7 q^{76} +1.84505e7 q^{77} +4.84150e7 q^{78} -4.52449e8 q^{79} +9.77232e7 q^{80} +4.30467e7 q^{81} +3.95767e7 q^{82} +3.90244e8 q^{83} +3.06400e8 q^{84} +1.64804e8 q^{85} -2.54466e8 q^{86} +1.11239e8 q^{87} +1.73535e7 q^{88} +2.57339e8 q^{89} +3.48607e7 q^{90} -6.04825e8 q^{91} -1.30003e8 q^{92} +4.61062e8 q^{93} -3.59911e8 q^{94} -8.14506e7 q^{95} +4.43216e8 q^{96} -6.90478e8 q^{97} +2.86052e8 q^{98} -1.40721e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 33 q^{2} + 972 q^{3} + 2751 q^{4} + 7500 q^{5} - 2673 q^{6} - 5100 q^{7} - 40215 q^{8} + 78732 q^{9} - 20625 q^{10} - 60416 q^{11} + 222831 q^{12} - 164042 q^{13} - 444762 q^{14} + 607500 q^{15}+ \cdots - 396389376 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.50131 0.375708 0.187854 0.982197i \(-0.439847\pi\)
0.187854 + 0.982197i \(0.439847\pi\)
\(3\) 81.0000 0.577350
\(4\) −439.728 −0.858843
\(5\) 625.000 0.447214
\(6\) 688.606 0.216915
\(7\) −8602.42 −1.35419 −0.677094 0.735896i \(-0.736761\pi\)
−0.677094 + 0.735896i \(0.736761\pi\)
\(8\) −8090.93 −0.698383
\(9\) 6561.00 0.333333
\(10\) 5313.32 0.168022
\(11\) −2144.81 −0.0441694 −0.0220847 0.999756i \(-0.507030\pi\)
−0.0220847 + 0.999756i \(0.507030\pi\)
\(12\) −35617.9 −0.495853
\(13\) 70308.7 0.682753 0.341377 0.939927i \(-0.389107\pi\)
0.341377 + 0.939927i \(0.389107\pi\)
\(14\) −73131.8 −0.508780
\(15\) 50625.0 0.258199
\(16\) 156357. 0.596455
\(17\) 263687. 0.765717 0.382858 0.923807i \(-0.374940\pi\)
0.382858 + 0.923807i \(0.374940\pi\)
\(18\) 55777.1 0.125236
\(19\) −130321. −0.229416
\(20\) −274830. −0.384086
\(21\) −696796. −0.781841
\(22\) −18233.7 −0.0165948
\(23\) 295644. 0.220290 0.110145 0.993916i \(-0.464869\pi\)
0.110145 + 0.993916i \(0.464869\pi\)
\(24\) −655366. −0.403212
\(25\) 390625. 0.200000
\(26\) 597716. 0.256516
\(27\) 531441. 0.192450
\(28\) 3.78272e6 1.16304
\(29\) 1.37332e6 0.360562 0.180281 0.983615i \(-0.442299\pi\)
0.180281 + 0.983615i \(0.442299\pi\)
\(30\) 430379. 0.0970075
\(31\) 5.69212e6 1.10700 0.553499 0.832850i \(-0.313292\pi\)
0.553499 + 0.832850i \(0.313292\pi\)
\(32\) 5.47180e6 0.922476
\(33\) −173729. −0.0255012
\(34\) 2.24168e6 0.287686
\(35\) −5.37651e6 −0.605612
\(36\) −2.88505e6 −0.286281
\(37\) 2.06086e6 0.180776 0.0903882 0.995907i \(-0.471189\pi\)
0.0903882 + 0.995907i \(0.471189\pi\)
\(38\) −1.10790e6 −0.0861934
\(39\) 5.69500e6 0.394188
\(40\) −5.05683e6 −0.312326
\(41\) 4.65536e6 0.257292 0.128646 0.991691i \(-0.458937\pi\)
0.128646 + 0.991691i \(0.458937\pi\)
\(42\) −5.92368e6 −0.293744
\(43\) −2.99326e7 −1.33517 −0.667585 0.744534i \(-0.732672\pi\)
−0.667585 + 0.744534i \(0.732672\pi\)
\(44\) 943131. 0.0379346
\(45\) 4.10062e6 0.149071
\(46\) 2.51336e6 0.0827647
\(47\) −4.23360e7 −1.26552 −0.632760 0.774348i \(-0.718078\pi\)
−0.632760 + 0.774348i \(0.718078\pi\)
\(48\) 1.26649e7 0.344363
\(49\) 3.36479e7 0.833827
\(50\) 3.32082e6 0.0751417
\(51\) 2.13586e7 0.442087
\(52\) −3.09167e7 −0.586378
\(53\) 1.46136e6 0.0254400 0.0127200 0.999919i \(-0.495951\pi\)
0.0127200 + 0.999919i \(0.495951\pi\)
\(54\) 4.51795e6 0.0723051
\(55\) −1.34050e6 −0.0197531
\(56\) 6.96016e7 0.945743
\(57\) −1.05560e7 −0.132453
\(58\) 1.16750e7 0.135466
\(59\) −1.52959e8 −1.64339 −0.821695 0.569928i \(-0.806971\pi\)
−0.821695 + 0.569928i \(0.806971\pi\)
\(60\) −2.22612e7 −0.221752
\(61\) 3.93525e7 0.363905 0.181952 0.983307i \(-0.441758\pi\)
0.181952 + 0.983307i \(0.441758\pi\)
\(62\) 4.83905e7 0.415908
\(63\) −5.64404e7 −0.451396
\(64\) −3.35374e7 −0.249873
\(65\) 4.39429e7 0.305337
\(66\) −1.47693e6 −0.00958101
\(67\) 8.09717e7 0.490904 0.245452 0.969409i \(-0.421064\pi\)
0.245452 + 0.969409i \(0.421064\pi\)
\(68\) −1.15950e8 −0.657630
\(69\) 2.39472e7 0.127184
\(70\) −4.57074e7 −0.227533
\(71\) −2.70449e8 −1.26306 −0.631529 0.775352i \(-0.717572\pi\)
−0.631529 + 0.775352i \(0.717572\pi\)
\(72\) −5.30846e7 −0.232794
\(73\) −2.60740e8 −1.07462 −0.537310 0.843385i \(-0.680559\pi\)
−0.537310 + 0.843385i \(0.680559\pi\)
\(74\) 1.75200e7 0.0679192
\(75\) 3.16406e7 0.115470
\(76\) 5.73058e7 0.197032
\(77\) 1.84505e7 0.0598137
\(78\) 4.84150e7 0.148100
\(79\) −4.52449e8 −1.30691 −0.653457 0.756963i \(-0.726682\pi\)
−0.653457 + 0.756963i \(0.726682\pi\)
\(80\) 9.77232e7 0.266743
\(81\) 4.30467e7 0.111111
\(82\) 3.95767e7 0.0966667
\(83\) 3.90244e8 0.902578 0.451289 0.892378i \(-0.350964\pi\)
0.451289 + 0.892378i \(0.350964\pi\)
\(84\) 3.06400e8 0.671479
\(85\) 1.64804e8 0.342439
\(86\) −2.54466e8 −0.501634
\(87\) 1.11239e8 0.208171
\(88\) 1.73535e7 0.0308471
\(89\) 2.57339e8 0.434760 0.217380 0.976087i \(-0.430249\pi\)
0.217380 + 0.976087i \(0.430249\pi\)
\(90\) 3.48607e7 0.0560073
\(91\) −6.04825e8 −0.924577
\(92\) −1.30003e8 −0.189194
\(93\) 4.61062e8 0.639125
\(94\) −3.59911e8 −0.475467
\(95\) −8.14506e7 −0.102598
\(96\) 4.43216e8 0.532592
\(97\) −6.90478e8 −0.791912 −0.395956 0.918269i \(-0.629587\pi\)
−0.395956 + 0.918269i \(0.629587\pi\)
\(98\) 2.86052e8 0.313276
\(99\) −1.40721e7 −0.0147231
\(100\) −1.71769e8 −0.171769
\(101\) 8.09329e8 0.773889 0.386945 0.922103i \(-0.373530\pi\)
0.386945 + 0.922103i \(0.373530\pi\)
\(102\) 1.81576e8 0.166096
\(103\) −4.61235e8 −0.403789 −0.201895 0.979407i \(-0.564710\pi\)
−0.201895 + 0.979407i \(0.564710\pi\)
\(104\) −5.68863e8 −0.476823
\(105\) −4.35497e8 −0.349650
\(106\) 1.24235e7 0.00955801
\(107\) 2.07157e9 1.52782 0.763910 0.645323i \(-0.223277\pi\)
0.763910 + 0.645323i \(0.223277\pi\)
\(108\) −2.33689e8 −0.165284
\(109\) −1.48763e9 −1.00943 −0.504716 0.863286i \(-0.668403\pi\)
−0.504716 + 0.863286i \(0.668403\pi\)
\(110\) −1.13960e7 −0.00742142
\(111\) 1.66930e8 0.104371
\(112\) −1.34505e9 −0.807712
\(113\) −1.80621e9 −1.04212 −0.521058 0.853521i \(-0.674462\pi\)
−0.521058 + 0.853521i \(0.674462\pi\)
\(114\) −8.97398e7 −0.0497638
\(115\) 1.84778e8 0.0985165
\(116\) −6.03886e8 −0.309666
\(117\) 4.61295e8 0.227584
\(118\) −1.30035e9 −0.617435
\(119\) −2.26834e9 −1.03692
\(120\) −4.09604e8 −0.180322
\(121\) −2.35335e9 −0.998049
\(122\) 3.34548e8 0.136722
\(123\) 3.77084e8 0.148547
\(124\) −2.50298e9 −0.950737
\(125\) 2.44141e8 0.0894427
\(126\) −4.79818e8 −0.169593
\(127\) 5.96178e7 0.0203357 0.0101679 0.999948i \(-0.496763\pi\)
0.0101679 + 0.999948i \(0.496763\pi\)
\(128\) −3.08667e9 −1.01636
\(129\) −2.42454e9 −0.770860
\(130\) 3.73572e8 0.114718
\(131\) −1.77693e9 −0.527170 −0.263585 0.964636i \(-0.584905\pi\)
−0.263585 + 0.964636i \(0.584905\pi\)
\(132\) 7.63936e7 0.0219015
\(133\) 1.12108e9 0.310672
\(134\) 6.88365e8 0.184437
\(135\) 3.32151e8 0.0860663
\(136\) −2.13347e9 −0.534763
\(137\) 5.67513e9 1.37636 0.688182 0.725538i \(-0.258409\pi\)
0.688182 + 0.725538i \(0.258409\pi\)
\(138\) 2.03582e8 0.0477842
\(139\) −3.44001e9 −0.781615 −0.390808 0.920472i \(-0.627804\pi\)
−0.390808 + 0.920472i \(0.627804\pi\)
\(140\) 2.36420e9 0.520125
\(141\) −3.42921e9 −0.730649
\(142\) −2.29917e9 −0.474541
\(143\) −1.50799e8 −0.0301568
\(144\) 1.02586e9 0.198818
\(145\) 8.58323e8 0.161248
\(146\) −2.21663e9 −0.403744
\(147\) 2.72548e9 0.481411
\(148\) −9.06219e8 −0.155259
\(149\) 2.87682e9 0.478162 0.239081 0.971000i \(-0.423154\pi\)
0.239081 + 0.971000i \(0.423154\pi\)
\(150\) 2.68987e8 0.0433831
\(151\) 1.91829e9 0.300274 0.150137 0.988665i \(-0.452029\pi\)
0.150137 + 0.988665i \(0.452029\pi\)
\(152\) 1.05442e9 0.160220
\(153\) 1.73005e9 0.255239
\(154\) 1.56854e8 0.0224725
\(155\) 3.55758e9 0.495064
\(156\) −2.50425e9 −0.338546
\(157\) −8.04093e9 −1.05623 −0.528114 0.849173i \(-0.677101\pi\)
−0.528114 + 0.849173i \(0.677101\pi\)
\(158\) −3.84641e9 −0.491019
\(159\) 1.18370e8 0.0146878
\(160\) 3.41987e9 0.412544
\(161\) −2.54325e9 −0.298314
\(162\) 3.65954e8 0.0417454
\(163\) 1.11263e9 0.123455 0.0617273 0.998093i \(-0.480339\pi\)
0.0617273 + 0.998093i \(0.480339\pi\)
\(164\) −2.04709e9 −0.220973
\(165\) −1.08581e8 −0.0114045
\(166\) 3.31759e9 0.339106
\(167\) 2.76400e9 0.274988 0.137494 0.990503i \(-0.456095\pi\)
0.137494 + 0.990503i \(0.456095\pi\)
\(168\) 5.63773e9 0.546025
\(169\) −5.66119e9 −0.533848
\(170\) 1.40105e9 0.128657
\(171\) −8.55036e8 −0.0764719
\(172\) 1.31622e10 1.14670
\(173\) 3.79638e9 0.322227 0.161114 0.986936i \(-0.448491\pi\)
0.161114 + 0.986936i \(0.448491\pi\)
\(174\) 9.45675e8 0.0782114
\(175\) −3.36032e9 −0.270838
\(176\) −3.35356e8 −0.0263450
\(177\) −1.23897e10 −0.948811
\(178\) 2.18772e9 0.163343
\(179\) 1.07013e10 0.779107 0.389554 0.921004i \(-0.372629\pi\)
0.389554 + 0.921004i \(0.372629\pi\)
\(180\) −1.80316e9 −0.128029
\(181\) 2.07548e10 1.43736 0.718679 0.695342i \(-0.244747\pi\)
0.718679 + 0.695342i \(0.244747\pi\)
\(182\) −5.14180e9 −0.347371
\(183\) 3.18755e9 0.210101
\(184\) −2.39204e9 −0.153847
\(185\) 1.28804e9 0.0808456
\(186\) 3.91963e9 0.240125
\(187\) −5.65557e8 −0.0338212
\(188\) 1.86163e10 1.08688
\(189\) −4.57168e9 −0.260614
\(190\) −6.92437e8 −0.0385469
\(191\) −1.39914e10 −0.760695 −0.380348 0.924844i \(-0.624196\pi\)
−0.380348 + 0.924844i \(0.624196\pi\)
\(192\) −2.71653e9 −0.144264
\(193\) −2.41922e10 −1.25507 −0.627535 0.778588i \(-0.715936\pi\)
−0.627535 + 0.778588i \(0.715936\pi\)
\(194\) −5.86997e9 −0.297528
\(195\) 3.55938e9 0.176286
\(196\) −1.47959e10 −0.716127
\(197\) 6.24104e9 0.295229 0.147615 0.989045i \(-0.452840\pi\)
0.147615 + 0.989045i \(0.452840\pi\)
\(198\) −1.19631e8 −0.00553160
\(199\) −3.55762e10 −1.60813 −0.804064 0.594543i \(-0.797333\pi\)
−0.804064 + 0.594543i \(0.797333\pi\)
\(200\) −3.16052e9 −0.139677
\(201\) 6.55871e9 0.283424
\(202\) 6.88035e9 0.290757
\(203\) −1.18138e10 −0.488269
\(204\) −9.39198e9 −0.379683
\(205\) 2.90960e9 0.115064
\(206\) −3.92110e9 −0.151707
\(207\) 1.93972e9 0.0734299
\(208\) 1.09933e10 0.407232
\(209\) 2.79513e8 0.0101331
\(210\) −3.70230e9 −0.131366
\(211\) −1.51159e10 −0.525003 −0.262501 0.964932i \(-0.584547\pi\)
−0.262501 + 0.964932i \(0.584547\pi\)
\(212\) −6.42602e8 −0.0218489
\(213\) −2.19064e10 −0.729227
\(214\) 1.76110e10 0.574015
\(215\) −1.87079e10 −0.597106
\(216\) −4.29985e9 −0.134404
\(217\) −4.89660e10 −1.49908
\(218\) −1.26468e10 −0.379252
\(219\) −2.11199e10 −0.620432
\(220\) 5.89457e8 0.0169649
\(221\) 1.85395e10 0.522796
\(222\) 1.41912e9 0.0392132
\(223\) −2.92879e10 −0.793080 −0.396540 0.918018i \(-0.629789\pi\)
−0.396540 + 0.918018i \(0.629789\pi\)
\(224\) −4.70707e10 −1.24921
\(225\) 2.56289e9 0.0666667
\(226\) −1.53552e10 −0.391531
\(227\) −6.62027e10 −1.65485 −0.827426 0.561574i \(-0.810196\pi\)
−0.827426 + 0.561574i \(0.810196\pi\)
\(228\) 4.64177e9 0.113757
\(229\) −2.98555e10 −0.717406 −0.358703 0.933452i \(-0.616781\pi\)
−0.358703 + 0.933452i \(0.616781\pi\)
\(230\) 1.57085e9 0.0370135
\(231\) 1.49449e9 0.0345334
\(232\) −1.11114e10 −0.251810
\(233\) −1.62148e10 −0.360421 −0.180211 0.983628i \(-0.557678\pi\)
−0.180211 + 0.983628i \(0.557678\pi\)
\(234\) 3.92161e9 0.0855054
\(235\) −2.64600e10 −0.565958
\(236\) 6.72602e10 1.41141
\(237\) −3.66483e10 −0.754548
\(238\) −1.92839e10 −0.389581
\(239\) −8.99004e10 −1.78226 −0.891130 0.453749i \(-0.850086\pi\)
−0.891130 + 0.453749i \(0.850086\pi\)
\(240\) 7.91558e9 0.154004
\(241\) 9.07409e10 1.73271 0.866356 0.499426i \(-0.166456\pi\)
0.866356 + 0.499426i \(0.166456\pi\)
\(242\) −2.00065e10 −0.374975
\(243\) 3.48678e9 0.0641500
\(244\) −1.73044e10 −0.312537
\(245\) 2.10300e10 0.372899
\(246\) 3.20571e9 0.0558105
\(247\) −9.16270e9 −0.156634
\(248\) −4.60546e10 −0.773108
\(249\) 3.16098e10 0.521104
\(250\) 2.07552e9 0.0336044
\(251\) −1.91156e10 −0.303987 −0.151994 0.988381i \(-0.548569\pi\)
−0.151994 + 0.988381i \(0.548569\pi\)
\(252\) 2.48184e10 0.387679
\(253\) −6.34100e8 −0.00973005
\(254\) 5.06830e8 0.00764030
\(255\) 1.33491e10 0.197707
\(256\) −9.06964e9 −0.131981
\(257\) 4.66528e10 0.667081 0.333541 0.942736i \(-0.391757\pi\)
0.333541 + 0.942736i \(0.391757\pi\)
\(258\) −2.06118e10 −0.289619
\(259\) −1.77284e10 −0.244805
\(260\) −1.93229e10 −0.262236
\(261\) 9.01034e9 0.120187
\(262\) −1.51063e10 −0.198062
\(263\) −3.87982e10 −0.500047 −0.250023 0.968240i \(-0.580438\pi\)
−0.250023 + 0.968240i \(0.580438\pi\)
\(264\) 1.40563e9 0.0178096
\(265\) 9.13352e8 0.0113771
\(266\) 9.53061e9 0.116722
\(267\) 2.08444e10 0.251009
\(268\) −3.56055e10 −0.421609
\(269\) 3.81888e10 0.444683 0.222342 0.974969i \(-0.428630\pi\)
0.222342 + 0.974969i \(0.428630\pi\)
\(270\) 2.82372e9 0.0323358
\(271\) 1.12956e11 1.27218 0.636088 0.771617i \(-0.280552\pi\)
0.636088 + 0.771617i \(0.280552\pi\)
\(272\) 4.12293e10 0.456715
\(273\) −4.89908e10 −0.533805
\(274\) 4.82460e10 0.517111
\(275\) −8.37815e8 −0.00883387
\(276\) −1.05302e10 −0.109231
\(277\) −1.75341e11 −1.78947 −0.894737 0.446594i \(-0.852637\pi\)
−0.894737 + 0.446594i \(0.852637\pi\)
\(278\) −2.92446e10 −0.293659
\(279\) 3.73460e10 0.368999
\(280\) 4.35010e10 0.422949
\(281\) −7.22309e10 −0.691105 −0.345553 0.938399i \(-0.612309\pi\)
−0.345553 + 0.938399i \(0.612309\pi\)
\(282\) −2.91528e10 −0.274511
\(283\) −8.68728e10 −0.805090 −0.402545 0.915400i \(-0.631874\pi\)
−0.402545 + 0.915400i \(0.631874\pi\)
\(284\) 1.18924e11 1.08477
\(285\) −6.59750e9 −0.0592349
\(286\) −1.28199e9 −0.0113302
\(287\) −4.00473e10 −0.348422
\(288\) 3.59005e10 0.307492
\(289\) −4.90572e10 −0.413678
\(290\) 7.29688e9 0.0605823
\(291\) −5.59287e10 −0.457211
\(292\) 1.14655e11 0.922930
\(293\) −1.30875e11 −1.03742 −0.518708 0.854951i \(-0.673587\pi\)
−0.518708 + 0.854951i \(0.673587\pi\)
\(294\) 2.31702e10 0.180870
\(295\) −9.55993e10 −0.734946
\(296\) −1.66743e10 −0.126251
\(297\) −1.13984e9 −0.00850040
\(298\) 2.44568e10 0.179650
\(299\) 2.07863e10 0.150403
\(300\) −1.39133e10 −0.0991707
\(301\) 2.57493e11 1.80807
\(302\) 1.63080e10 0.112815
\(303\) 6.55556e10 0.446805
\(304\) −2.03766e10 −0.136836
\(305\) 2.45953e10 0.162743
\(306\) 1.47077e10 0.0958954
\(307\) −1.56180e11 −1.00346 −0.501732 0.865023i \(-0.667304\pi\)
−0.501732 + 0.865023i \(0.667304\pi\)
\(308\) −8.11321e9 −0.0513706
\(309\) −3.73600e10 −0.233128
\(310\) 3.02441e10 0.186000
\(311\) 2.89274e10 0.175343 0.0876713 0.996149i \(-0.472057\pi\)
0.0876713 + 0.996149i \(0.472057\pi\)
\(312\) −4.60779e10 −0.275294
\(313\) 9.15012e10 0.538862 0.269431 0.963020i \(-0.413164\pi\)
0.269431 + 0.963020i \(0.413164\pi\)
\(314\) −6.83585e10 −0.396834
\(315\) −3.52753e10 −0.201871
\(316\) 1.98954e11 1.12244
\(317\) −5.26556e10 −0.292872 −0.146436 0.989220i \(-0.546780\pi\)
−0.146436 + 0.989220i \(0.546780\pi\)
\(318\) 1.00630e9 0.00551832
\(319\) −2.94550e9 −0.0159258
\(320\) −2.09608e10 −0.111746
\(321\) 1.67797e11 0.882087
\(322\) −2.16210e10 −0.112079
\(323\) −3.43639e10 −0.175667
\(324\) −1.89288e10 −0.0954270
\(325\) 2.74643e10 0.136551
\(326\) 9.45882e9 0.0463829
\(327\) −1.20498e11 −0.582795
\(328\) −3.76662e10 −0.179688
\(329\) 3.64192e11 1.71375
\(330\) −9.23080e8 −0.00428476
\(331\) −1.18390e11 −0.542111 −0.271056 0.962564i \(-0.587373\pi\)
−0.271056 + 0.962564i \(0.587373\pi\)
\(332\) −1.71601e11 −0.775173
\(333\) 1.35213e10 0.0602588
\(334\) 2.34977e10 0.103315
\(335\) 5.06073e10 0.219539
\(336\) −1.08949e11 −0.466333
\(337\) 5.53843e10 0.233912 0.116956 0.993137i \(-0.462686\pi\)
0.116956 + 0.993137i \(0.462686\pi\)
\(338\) −4.81275e10 −0.200571
\(339\) −1.46303e11 −0.601666
\(340\) −7.24690e10 −0.294101
\(341\) −1.22085e10 −0.0488954
\(342\) −7.26893e9 −0.0287311
\(343\) 5.76849e10 0.225029
\(344\) 2.42183e11 0.932459
\(345\) 1.49670e10 0.0568785
\(346\) 3.22742e10 0.121063
\(347\) 1.58194e11 0.585744 0.292872 0.956152i \(-0.405389\pi\)
0.292872 + 0.956152i \(0.405389\pi\)
\(348\) −4.89147e10 −0.178786
\(349\) −3.34223e11 −1.20593 −0.602964 0.797768i \(-0.706014\pi\)
−0.602964 + 0.797768i \(0.706014\pi\)
\(350\) −2.85671e10 −0.101756
\(351\) 3.73649e10 0.131396
\(352\) −1.17360e10 −0.0407452
\(353\) 2.89176e11 0.991233 0.495616 0.868542i \(-0.334942\pi\)
0.495616 + 0.868542i \(0.334942\pi\)
\(354\) −1.05328e11 −0.356476
\(355\) −1.69031e11 −0.564857
\(356\) −1.13159e11 −0.373391
\(357\) −1.83736e11 −0.598669
\(358\) 9.09749e10 0.292717
\(359\) 5.54463e11 1.76176 0.880882 0.473336i \(-0.156950\pi\)
0.880882 + 0.473336i \(0.156950\pi\)
\(360\) −3.31779e10 −0.104109
\(361\) 1.69836e10 0.0526316
\(362\) 1.76443e11 0.540027
\(363\) −1.90621e11 −0.576224
\(364\) 2.65958e11 0.794067
\(365\) −1.62963e11 −0.480585
\(366\) 2.70984e10 0.0789365
\(367\) −1.93025e11 −0.555414 −0.277707 0.960666i \(-0.589574\pi\)
−0.277707 + 0.960666i \(0.589574\pi\)
\(368\) 4.62260e10 0.131393
\(369\) 3.05438e10 0.0857639
\(370\) 1.09500e10 0.0303744
\(371\) −1.25712e10 −0.0344505
\(372\) −2.02742e11 −0.548908
\(373\) 2.11386e11 0.565441 0.282720 0.959202i \(-0.408763\pi\)
0.282720 + 0.959202i \(0.408763\pi\)
\(374\) −4.80798e9 −0.0127069
\(375\) 1.97754e10 0.0516398
\(376\) 3.42538e11 0.883818
\(377\) 9.65562e10 0.246175
\(378\) −3.88652e10 −0.0979148
\(379\) 3.57260e11 0.889422 0.444711 0.895674i \(-0.353306\pi\)
0.444711 + 0.895674i \(0.353306\pi\)
\(380\) 3.58161e10 0.0881155
\(381\) 4.82905e9 0.0117408
\(382\) −1.18945e11 −0.285800
\(383\) −5.89233e11 −1.39924 −0.699621 0.714515i \(-0.746648\pi\)
−0.699621 + 0.714515i \(0.746648\pi\)
\(384\) −2.50020e11 −0.586793
\(385\) 1.15316e10 0.0267495
\(386\) −2.05666e11 −0.471541
\(387\) −1.96388e11 −0.445056
\(388\) 3.03622e11 0.680128
\(389\) −6.40517e11 −1.41827 −0.709133 0.705075i \(-0.750913\pi\)
−0.709133 + 0.705075i \(0.750913\pi\)
\(390\) 3.02594e10 0.0662322
\(391\) 7.79574e10 0.168679
\(392\) −2.72243e11 −0.582331
\(393\) −1.43932e11 −0.304362
\(394\) 5.30570e10 0.110920
\(395\) −2.82780e11 −0.584470
\(396\) 6.18788e9 0.0126449
\(397\) 5.48741e11 1.10869 0.554345 0.832287i \(-0.312969\pi\)
0.554345 + 0.832287i \(0.312969\pi\)
\(398\) −3.02444e11 −0.604187
\(399\) 9.08071e10 0.179367
\(400\) 6.10770e10 0.119291
\(401\) 2.21962e11 0.428676 0.214338 0.976760i \(-0.431241\pi\)
0.214338 + 0.976760i \(0.431241\pi\)
\(402\) 5.57576e10 0.106485
\(403\) 4.00205e11 0.755806
\(404\) −3.55884e11 −0.664649
\(405\) 2.69042e10 0.0496904
\(406\) −1.00433e11 −0.183447
\(407\) −4.42016e9 −0.00798478
\(408\) −1.72811e11 −0.308746
\(409\) −9.17718e10 −0.162164 −0.0810820 0.996707i \(-0.525838\pi\)
−0.0810820 + 0.996707i \(0.525838\pi\)
\(410\) 2.47354e10 0.0432306
\(411\) 4.59685e11 0.794644
\(412\) 2.02818e11 0.346792
\(413\) 1.31582e12 2.22546
\(414\) 1.64902e10 0.0275882
\(415\) 2.43903e11 0.403645
\(416\) 3.84715e11 0.629824
\(417\) −2.78641e11 −0.451266
\(418\) 2.37623e9 0.00380711
\(419\) 8.34752e11 1.32311 0.661553 0.749899i \(-0.269898\pi\)
0.661553 + 0.749899i \(0.269898\pi\)
\(420\) 1.91500e11 0.300295
\(421\) −3.68245e11 −0.571304 −0.285652 0.958333i \(-0.592210\pi\)
−0.285652 + 0.958333i \(0.592210\pi\)
\(422\) −1.28505e11 −0.197248
\(423\) −2.77766e11 −0.421840
\(424\) −1.18238e10 −0.0177668
\(425\) 1.03003e11 0.153143
\(426\) −1.86233e11 −0.273977
\(427\) −3.38526e11 −0.492796
\(428\) −9.10926e11 −1.31216
\(429\) −1.22147e10 −0.0174110
\(430\) −1.59041e11 −0.224338
\(431\) −5.03089e11 −0.702259 −0.351129 0.936327i \(-0.614202\pi\)
−0.351129 + 0.936327i \(0.614202\pi\)
\(432\) 8.30945e10 0.114788
\(433\) 8.95533e11 1.22430 0.612148 0.790743i \(-0.290306\pi\)
0.612148 + 0.790743i \(0.290306\pi\)
\(434\) −4.16275e11 −0.563218
\(435\) 6.95242e10 0.0930967
\(436\) 6.54154e11 0.866943
\(437\) −3.85286e10 −0.0505379
\(438\) −1.79547e11 −0.233102
\(439\) 4.16326e11 0.534987 0.267494 0.963560i \(-0.413805\pi\)
0.267494 + 0.963560i \(0.413805\pi\)
\(440\) 1.08459e10 0.0137953
\(441\) 2.20764e11 0.277942
\(442\) 1.57610e11 0.196419
\(443\) 8.58126e11 1.05861 0.529303 0.848433i \(-0.322453\pi\)
0.529303 + 0.848433i \(0.322453\pi\)
\(444\) −7.34037e10 −0.0896386
\(445\) 1.60837e11 0.194431
\(446\) −2.48986e11 −0.297967
\(447\) 2.33023e11 0.276067
\(448\) 2.88502e11 0.338375
\(449\) 8.93036e11 1.03696 0.518478 0.855091i \(-0.326499\pi\)
0.518478 + 0.855091i \(0.326499\pi\)
\(450\) 2.17879e10 0.0250472
\(451\) −9.98485e9 −0.0113644
\(452\) 7.94242e11 0.895014
\(453\) 1.55381e11 0.173363
\(454\) −5.62810e11 −0.621742
\(455\) −3.78015e11 −0.413483
\(456\) 8.54079e10 0.0925031
\(457\) 9.88248e11 1.05985 0.529924 0.848045i \(-0.322221\pi\)
0.529924 + 0.848045i \(0.322221\pi\)
\(458\) −2.53811e11 −0.269535
\(459\) 1.40134e11 0.147362
\(460\) −8.12518e10 −0.0846102
\(461\) 5.23638e11 0.539979 0.269989 0.962863i \(-0.412980\pi\)
0.269989 + 0.962863i \(0.412980\pi\)
\(462\) 1.27051e10 0.0129745
\(463\) −2.36334e11 −0.239008 −0.119504 0.992834i \(-0.538130\pi\)
−0.119504 + 0.992834i \(0.538130\pi\)
\(464\) 2.14728e11 0.215059
\(465\) 2.88164e11 0.285825
\(466\) −1.37847e11 −0.135413
\(467\) −3.42883e11 −0.333595 −0.166798 0.985991i \(-0.553343\pi\)
−0.166798 + 0.985991i \(0.553343\pi\)
\(468\) −2.02844e11 −0.195459
\(469\) −6.96552e11 −0.664777
\(470\) −2.24945e11 −0.212635
\(471\) −6.51316e11 −0.609814
\(472\) 1.23758e12 1.14772
\(473\) 6.41996e10 0.0589736
\(474\) −3.11559e11 −0.283490
\(475\) −5.09066e10 −0.0458831
\(476\) 9.97453e11 0.890556
\(477\) 9.58800e9 0.00847999
\(478\) −7.64271e11 −0.669610
\(479\) −9.37114e11 −0.813359 −0.406680 0.913571i \(-0.633313\pi\)
−0.406680 + 0.913571i \(0.633313\pi\)
\(480\) 2.77010e11 0.238182
\(481\) 1.44897e11 0.123426
\(482\) 7.71417e11 0.650995
\(483\) −2.06004e11 −0.172232
\(484\) 1.03483e12 0.857168
\(485\) −4.31549e11 −0.354154
\(486\) 2.96422e10 0.0241017
\(487\) 7.19365e11 0.579520 0.289760 0.957099i \(-0.406424\pi\)
0.289760 + 0.957099i \(0.406424\pi\)
\(488\) −3.18398e11 −0.254145
\(489\) 9.01231e10 0.0712765
\(490\) 1.78782e11 0.140101
\(491\) −3.72813e11 −0.289484 −0.144742 0.989469i \(-0.546235\pi\)
−0.144742 + 0.989469i \(0.546235\pi\)
\(492\) −1.65814e11 −0.127579
\(493\) 3.62126e11 0.276088
\(494\) −7.78949e10 −0.0588489
\(495\) −8.79505e9 −0.00658438
\(496\) 8.90003e11 0.660274
\(497\) 2.32652e12 1.71042
\(498\) 2.68725e11 0.195783
\(499\) 1.06787e11 0.0771022 0.0385511 0.999257i \(-0.487726\pi\)
0.0385511 + 0.999257i \(0.487726\pi\)
\(500\) −1.07355e11 −0.0768173
\(501\) 2.23884e11 0.158765
\(502\) −1.62507e11 −0.114211
\(503\) 4.25008e11 0.296034 0.148017 0.988985i \(-0.452711\pi\)
0.148017 + 0.988985i \(0.452711\pi\)
\(504\) 4.56656e11 0.315248
\(505\) 5.05830e11 0.346094
\(506\) −5.39068e9 −0.00365566
\(507\) −4.58556e11 −0.308217
\(508\) −2.62156e10 −0.0174652
\(509\) 1.79395e12 1.18462 0.592310 0.805710i \(-0.298216\pi\)
0.592310 + 0.805710i \(0.298216\pi\)
\(510\) 1.13485e11 0.0742802
\(511\) 2.24299e12 1.45524
\(512\) 1.50327e12 0.966769
\(513\) −6.92579e10 −0.0441511
\(514\) 3.96610e11 0.250628
\(515\) −2.88272e11 −0.180580
\(516\) 1.06614e12 0.662048
\(517\) 9.08025e10 0.0558972
\(518\) −1.50715e11 −0.0919754
\(519\) 3.07507e11 0.186038
\(520\) −3.55539e11 −0.213242
\(521\) −6.85487e11 −0.407596 −0.203798 0.979013i \(-0.565329\pi\)
−0.203798 + 0.979013i \(0.565329\pi\)
\(522\) 7.65997e10 0.0451554
\(523\) −2.20856e12 −1.29078 −0.645390 0.763853i \(-0.723305\pi\)
−0.645390 + 0.763853i \(0.723305\pi\)
\(524\) 7.81368e11 0.452756
\(525\) −2.72186e11 −0.156368
\(526\) −3.29836e11 −0.187872
\(527\) 1.50094e12 0.847646
\(528\) −2.71638e10 −0.0152103
\(529\) −1.71375e12 −0.951472
\(530\) 7.76469e9 0.00427447
\(531\) −1.00356e12 −0.547796
\(532\) −4.92968e11 −0.266819
\(533\) 3.27312e11 0.175667
\(534\) 1.77205e11 0.0943062
\(535\) 1.29473e12 0.683262
\(536\) −6.55136e11 −0.342839
\(537\) 8.66804e11 0.449818
\(538\) 3.24655e11 0.167071
\(539\) −7.21684e10 −0.0368296
\(540\) −1.46056e11 −0.0739175
\(541\) −4.05993e11 −0.203765 −0.101883 0.994796i \(-0.532487\pi\)
−0.101883 + 0.994796i \(0.532487\pi\)
\(542\) 9.60273e11 0.477967
\(543\) 1.68114e12 0.829859
\(544\) 1.44284e12 0.706355
\(545\) −9.29771e11 −0.451431
\(546\) −4.16486e11 −0.200555
\(547\) −6.34987e11 −0.303265 −0.151632 0.988437i \(-0.548453\pi\)
−0.151632 + 0.988437i \(0.548453\pi\)
\(548\) −2.49551e12 −1.18208
\(549\) 2.58192e11 0.121302
\(550\) −7.12253e9 −0.00331896
\(551\) −1.78972e11 −0.0827186
\(552\) −1.93755e11 −0.0888233
\(553\) 3.89215e12 1.76981
\(554\) −1.49063e12 −0.672320
\(555\) 1.04331e11 0.0466763
\(556\) 1.51267e12 0.671285
\(557\) −1.86712e11 −0.0821909 −0.0410955 0.999155i \(-0.513085\pi\)
−0.0410955 + 0.999155i \(0.513085\pi\)
\(558\) 3.17490e11 0.138636
\(559\) −2.10452e12 −0.911591
\(560\) −8.40655e11 −0.361220
\(561\) −4.58101e10 −0.0195267
\(562\) −6.14057e11 −0.259654
\(563\) 6.11205e11 0.256389 0.128194 0.991749i \(-0.459082\pi\)
0.128194 + 0.991749i \(0.459082\pi\)
\(564\) 1.50792e12 0.627513
\(565\) −1.12888e12 −0.466048
\(566\) −7.38532e11 −0.302479
\(567\) −3.70306e11 −0.150465
\(568\) 2.18819e12 0.882098
\(569\) −2.16442e12 −0.865638 −0.432819 0.901481i \(-0.642481\pi\)
−0.432819 + 0.901481i \(0.642481\pi\)
\(570\) −5.60874e10 −0.0222550
\(571\) 7.99521e11 0.314751 0.157376 0.987539i \(-0.449697\pi\)
0.157376 + 0.987539i \(0.449697\pi\)
\(572\) 6.63103e10 0.0258999
\(573\) −1.13330e12 −0.439188
\(574\) −3.40455e11 −0.130905
\(575\) 1.15486e11 0.0440579
\(576\) −2.20039e11 −0.0832909
\(577\) −2.52485e12 −0.948296 −0.474148 0.880445i \(-0.657244\pi\)
−0.474148 + 0.880445i \(0.657244\pi\)
\(578\) −4.17051e11 −0.155422
\(579\) −1.95957e12 −0.724615
\(580\) −3.77429e11 −0.138487
\(581\) −3.35704e12 −1.22226
\(582\) −4.75467e11 −0.171778
\(583\) −3.13434e9 −0.00112367
\(584\) 2.10963e12 0.750496
\(585\) 2.88310e11 0.101779
\(586\) −1.11261e12 −0.389766
\(587\) −3.03439e12 −1.05487 −0.527436 0.849595i \(-0.676846\pi\)
−0.527436 + 0.849595i \(0.676846\pi\)
\(588\) −1.19847e12 −0.413456
\(589\) −7.41803e11 −0.253963
\(590\) −8.12719e11 −0.276125
\(591\) 5.05524e11 0.170451
\(592\) 3.22231e11 0.107825
\(593\) 3.40070e12 1.12933 0.564667 0.825319i \(-0.309005\pi\)
0.564667 + 0.825319i \(0.309005\pi\)
\(594\) −9.69012e9 −0.00319367
\(595\) −1.41771e12 −0.463727
\(596\) −1.26502e12 −0.410666
\(597\) −2.88167e12 −0.928453
\(598\) 1.76711e11 0.0565079
\(599\) −4.61319e12 −1.46413 −0.732066 0.681234i \(-0.761444\pi\)
−0.732066 + 0.681234i \(0.761444\pi\)
\(600\) −2.56002e11 −0.0806423
\(601\) −5.97933e11 −0.186947 −0.0934733 0.995622i \(-0.529797\pi\)
−0.0934733 + 0.995622i \(0.529797\pi\)
\(602\) 2.18902e12 0.679308
\(603\) 5.31255e11 0.163635
\(604\) −8.43524e11 −0.257888
\(605\) −1.47084e12 −0.446341
\(606\) 5.57309e11 0.167868
\(607\) −5.36203e12 −1.60317 −0.801586 0.597880i \(-0.796010\pi\)
−0.801586 + 0.597880i \(0.796010\pi\)
\(608\) −7.13090e11 −0.211631
\(609\) −9.56922e11 −0.281902
\(610\) 2.09092e11 0.0611440
\(611\) −2.97659e12 −0.864039
\(612\) −7.60750e11 −0.219210
\(613\) 4.13132e12 1.18173 0.590864 0.806772i \(-0.298787\pi\)
0.590864 + 0.806772i \(0.298787\pi\)
\(614\) −1.32773e12 −0.377010
\(615\) 2.35678e11 0.0664324
\(616\) −1.49282e11 −0.0417728
\(617\) −4.64600e12 −1.29061 −0.645307 0.763923i \(-0.723271\pi\)
−0.645307 + 0.763923i \(0.723271\pi\)
\(618\) −3.17609e11 −0.0875881
\(619\) 6.83793e12 1.87205 0.936023 0.351939i \(-0.114478\pi\)
0.936023 + 0.351939i \(0.114478\pi\)
\(620\) −1.56436e12 −0.425182
\(621\) 1.57117e11 0.0423948
\(622\) 2.45921e11 0.0658777
\(623\) −2.21373e12 −0.588748
\(624\) 8.90454e11 0.235115
\(625\) 1.52588e11 0.0400000
\(626\) 7.77880e11 0.202455
\(627\) 2.26406e10 0.00585038
\(628\) 3.53582e12 0.907135
\(629\) 5.43422e11 0.138423
\(630\) −2.99886e11 −0.0758445
\(631\) −3.00641e12 −0.754947 −0.377473 0.926020i \(-0.623207\pi\)
−0.377473 + 0.926020i \(0.623207\pi\)
\(632\) 3.66073e12 0.912727
\(633\) −1.22438e12 −0.303111
\(634\) −4.47641e11 −0.110034
\(635\) 3.72612e10 0.00909441
\(636\) −5.20507e10 −0.0126145
\(637\) 2.36574e12 0.569299
\(638\) −2.50406e10 −0.00598346
\(639\) −1.77442e12 −0.421019
\(640\) −1.92917e12 −0.454528
\(641\) −5.29420e12 −1.23862 −0.619311 0.785145i \(-0.712588\pi\)
−0.619311 + 0.785145i \(0.712588\pi\)
\(642\) 1.42649e12 0.331408
\(643\) −9.52256e11 −0.219687 −0.109843 0.993949i \(-0.535035\pi\)
−0.109843 + 0.993949i \(0.535035\pi\)
\(644\) 1.11834e12 0.256205
\(645\) −1.51534e12 −0.344739
\(646\) −2.92138e11 −0.0659997
\(647\) −2.22683e12 −0.499595 −0.249797 0.968298i \(-0.580364\pi\)
−0.249797 + 0.968298i \(0.580364\pi\)
\(648\) −3.48288e11 −0.0775981
\(649\) 3.28067e11 0.0725875
\(650\) 2.33483e11 0.0513032
\(651\) −3.96624e12 −0.865496
\(652\) −4.89255e11 −0.106028
\(653\) −8.67231e12 −1.86649 −0.933244 0.359242i \(-0.883035\pi\)
−0.933244 + 0.359242i \(0.883035\pi\)
\(654\) −1.02439e12 −0.218961
\(655\) −1.11058e12 −0.235758
\(656\) 7.27898e11 0.153463
\(657\) −1.71072e12 −0.358207
\(658\) 3.09611e12 0.643872
\(659\) −3.26232e12 −0.673817 −0.336909 0.941537i \(-0.609381\pi\)
−0.336909 + 0.941537i \(0.609381\pi\)
\(660\) 4.77460e10 0.00979466
\(661\) 9.63423e12 1.96296 0.981478 0.191575i \(-0.0613595\pi\)
0.981478 + 0.191575i \(0.0613595\pi\)
\(662\) −1.00647e12 −0.203676
\(663\) 1.50170e12 0.301836
\(664\) −3.15744e12 −0.630345
\(665\) 7.00672e11 0.138937
\(666\) 1.14949e11 0.0226397
\(667\) 4.06013e11 0.0794281
\(668\) −1.21541e12 −0.236172
\(669\) −2.37232e12 −0.457885
\(670\) 4.30228e11 0.0824826
\(671\) −8.44035e10 −0.0160734
\(672\) −3.81272e12 −0.721230
\(673\) 6.68101e12 1.25538 0.627689 0.778464i \(-0.284001\pi\)
0.627689 + 0.778464i \(0.284001\pi\)
\(674\) 4.70839e11 0.0878827
\(675\) 2.07594e11 0.0384900
\(676\) 2.48938e12 0.458492
\(677\) −1.83095e12 −0.334987 −0.167494 0.985873i \(-0.553567\pi\)
−0.167494 + 0.985873i \(0.553567\pi\)
\(678\) −1.24377e12 −0.226051
\(679\) 5.93978e12 1.07240
\(680\) −1.33342e12 −0.239153
\(681\) −5.36242e12 −0.955430
\(682\) −1.03788e11 −0.0183704
\(683\) −1.57939e12 −0.277712 −0.138856 0.990313i \(-0.544343\pi\)
−0.138856 + 0.990313i \(0.544343\pi\)
\(684\) 3.75983e11 0.0656774
\(685\) 3.54695e12 0.615528
\(686\) 4.90397e11 0.0845453
\(687\) −2.41830e12 −0.414195
\(688\) −4.68017e12 −0.796368
\(689\) 1.02746e11 0.0173692
\(690\) 1.27239e11 0.0213697
\(691\) −3.29925e12 −0.550509 −0.275255 0.961371i \(-0.588762\pi\)
−0.275255 + 0.961371i \(0.588762\pi\)
\(692\) −1.66937e12 −0.276743
\(693\) 1.21054e11 0.0199379
\(694\) 1.34486e12 0.220069
\(695\) −2.15001e12 −0.349549
\(696\) −9.00025e11 −0.145383
\(697\) 1.22756e12 0.197013
\(698\) −2.84133e12 −0.453078
\(699\) −1.31340e12 −0.208089
\(700\) 1.47763e12 0.232607
\(701\) 5.89829e12 0.922561 0.461280 0.887254i \(-0.347390\pi\)
0.461280 + 0.887254i \(0.347390\pi\)
\(702\) 3.17651e11 0.0493666
\(703\) −2.68574e11 −0.0414729
\(704\) 7.19311e10 0.0110367
\(705\) −2.14326e12 −0.326756
\(706\) 2.45837e12 0.372415
\(707\) −6.96218e12 −1.04799
\(708\) 5.44808e12 0.814880
\(709\) 1.10767e13 1.64628 0.823138 0.567842i \(-0.192222\pi\)
0.823138 + 0.567842i \(0.192222\pi\)
\(710\) −1.43698e12 −0.212221
\(711\) −2.96852e12 −0.435638
\(712\) −2.08211e12 −0.303629
\(713\) 1.68284e12 0.243860
\(714\) −1.56199e12 −0.224925
\(715\) −9.42491e10 −0.0134865
\(716\) −4.70565e12 −0.669131
\(717\) −7.28193e12 −1.02899
\(718\) 4.71366e12 0.661910
\(719\) 4.32684e12 0.603797 0.301898 0.953340i \(-0.402380\pi\)
0.301898 + 0.953340i \(0.402380\pi\)
\(720\) 6.41162e11 0.0889142
\(721\) 3.96774e12 0.546807
\(722\) 1.44383e11 0.0197741
\(723\) 7.35002e12 1.00038
\(724\) −9.12646e12 −1.23446
\(725\) 5.36452e11 0.0721124
\(726\) −1.62053e12 −0.216492
\(727\) 3.86448e12 0.513081 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(728\) 4.89359e12 0.645709
\(729\) 2.82430e11 0.0370370
\(730\) −1.38540e12 −0.180560
\(731\) −7.89282e12 −1.02236
\(732\) −1.40165e12 −0.180443
\(733\) 4.95097e12 0.633465 0.316732 0.948515i \(-0.397414\pi\)
0.316732 + 0.948515i \(0.397414\pi\)
\(734\) −1.64097e12 −0.208674
\(735\) 1.70343e12 0.215293
\(736\) 1.61770e12 0.203212
\(737\) −1.73669e11 −0.0216829
\(738\) 2.59662e11 0.0322222
\(739\) 5.28526e11 0.0651878 0.0325939 0.999469i \(-0.489623\pi\)
0.0325939 + 0.999469i \(0.489623\pi\)
\(740\) −5.66387e11 −0.0694337
\(741\) −7.42179e11 −0.0904329
\(742\) −1.06872e11 −0.0129434
\(743\) 1.87009e11 0.0225119 0.0112560 0.999937i \(-0.496417\pi\)
0.0112560 + 0.999937i \(0.496417\pi\)
\(744\) −3.73042e12 −0.446354
\(745\) 1.79802e12 0.213841
\(746\) 1.79706e12 0.212441
\(747\) 2.56039e12 0.300859
\(748\) 2.48691e11 0.0290471
\(749\) −1.78205e13 −2.06896
\(750\) 1.68117e11 0.0194015
\(751\) −3.65018e12 −0.418730 −0.209365 0.977838i \(-0.567140\pi\)
−0.209365 + 0.977838i \(0.567140\pi\)
\(752\) −6.61953e12 −0.754826
\(753\) −1.54836e12 −0.175507
\(754\) 8.20854e11 0.0924900
\(755\) 1.19893e12 0.134286
\(756\) 2.01029e12 0.223826
\(757\) 1.00306e13 1.11019 0.555095 0.831787i \(-0.312682\pi\)
0.555095 + 0.831787i \(0.312682\pi\)
\(758\) 3.03718e12 0.334163
\(759\) −5.13621e10 −0.00561765
\(760\) 6.59012e11 0.0716526
\(761\) 3.29762e12 0.356426 0.178213 0.983992i \(-0.442968\pi\)
0.178213 + 0.983992i \(0.442968\pi\)
\(762\) 4.10532e10 0.00441113
\(763\) 1.27972e13 1.36696
\(764\) 6.15240e12 0.653318
\(765\) 1.08128e12 0.114146
\(766\) −5.00925e12 −0.525707
\(767\) −1.07543e13 −1.12203
\(768\) −7.34640e11 −0.0761990
\(769\) −1.76109e12 −0.181599 −0.0907994 0.995869i \(-0.528942\pi\)
−0.0907994 + 0.995869i \(0.528942\pi\)
\(770\) 9.80335e10 0.0100500
\(771\) 3.77888e12 0.385139
\(772\) 1.06380e13 1.07791
\(773\) 1.71547e12 0.172813 0.0864063 0.996260i \(-0.472462\pi\)
0.0864063 + 0.996260i \(0.472462\pi\)
\(774\) −1.66955e12 −0.167211
\(775\) 2.22348e12 0.221399
\(776\) 5.58661e12 0.553058
\(777\) −1.43600e12 −0.141338
\(778\) −5.44524e12 −0.532854
\(779\) −6.06691e11 −0.0590268
\(780\) −1.56516e12 −0.151402
\(781\) 5.80061e11 0.0557885
\(782\) 6.62740e11 0.0633743
\(783\) 7.29837e11 0.0693902
\(784\) 5.26109e12 0.497340
\(785\) −5.02558e12 −0.472360
\(786\) −1.22361e12 −0.114351
\(787\) −2.08698e13 −1.93924 −0.969619 0.244618i \(-0.921337\pi\)
−0.969619 + 0.244618i \(0.921337\pi\)
\(788\) −2.74436e12 −0.253555
\(789\) −3.14265e12 −0.288702
\(790\) −2.40400e12 −0.219590
\(791\) 1.55378e13 1.41122
\(792\) 1.13856e11 0.0102824
\(793\) 2.76682e12 0.248457
\(794\) 4.66502e12 0.416544
\(795\) 7.39815e10 0.00656857
\(796\) 1.56438e13 1.38113
\(797\) −9.92675e12 −0.871454 −0.435727 0.900079i \(-0.643509\pi\)
−0.435727 + 0.900079i \(0.643509\pi\)
\(798\) 7.71979e11 0.0673896
\(799\) −1.11634e13 −0.969030
\(800\) 2.13742e12 0.184495
\(801\) 1.68840e12 0.144920
\(802\) 1.88697e12 0.161057
\(803\) 5.59237e11 0.0474653
\(804\) −2.88404e12 −0.243416
\(805\) −1.58953e12 −0.133410
\(806\) 3.40227e12 0.283963
\(807\) 3.09329e12 0.256738
\(808\) −6.54822e12 −0.540471
\(809\) −1.97003e13 −1.61698 −0.808490 0.588510i \(-0.799715\pi\)
−0.808490 + 0.588510i \(0.799715\pi\)
\(810\) 2.28721e11 0.0186691
\(811\) −1.49518e13 −1.21366 −0.606832 0.794830i \(-0.707560\pi\)
−0.606832 + 0.794830i \(0.707560\pi\)
\(812\) 5.19488e12 0.419347
\(813\) 9.14943e12 0.734491
\(814\) −3.75771e10 −0.00299995
\(815\) 6.95394e11 0.0552105
\(816\) 3.33957e12 0.263685
\(817\) 3.90085e12 0.306309
\(818\) −7.80180e11 −0.0609264
\(819\) −3.96825e12 −0.308192
\(820\) −1.27943e12 −0.0988222
\(821\) 5.64204e11 0.0433403 0.0216701 0.999765i \(-0.493102\pi\)
0.0216701 + 0.999765i \(0.493102\pi\)
\(822\) 3.90793e12 0.298554
\(823\) 2.11916e13 1.61015 0.805073 0.593175i \(-0.202126\pi\)
0.805073 + 0.593175i \(0.202126\pi\)
\(824\) 3.73182e12 0.282000
\(825\) −6.78630e10 −0.00510024
\(826\) 1.11862e13 0.836124
\(827\) 2.90210e12 0.215743 0.107872 0.994165i \(-0.465596\pi\)
0.107872 + 0.994165i \(0.465596\pi\)
\(828\) −8.52949e11 −0.0630647
\(829\) −1.48771e13 −1.09401 −0.547006 0.837128i \(-0.684233\pi\)
−0.547006 + 0.837128i \(0.684233\pi\)
\(830\) 2.07349e12 0.151653
\(831\) −1.42026e13 −1.03315
\(832\) −2.35797e12 −0.170601
\(833\) 8.87251e12 0.638475
\(834\) −2.36881e12 −0.169544
\(835\) 1.72750e12 0.122979
\(836\) −1.22910e11 −0.00870278
\(837\) 3.02503e12 0.213042
\(838\) 7.09649e12 0.497102
\(839\) −1.09689e13 −0.764248 −0.382124 0.924111i \(-0.624807\pi\)
−0.382124 + 0.924111i \(0.624807\pi\)
\(840\) 3.52358e12 0.244190
\(841\) −1.26211e13 −0.869995
\(842\) −3.13056e12 −0.214644
\(843\) −5.85070e12 −0.399010
\(844\) 6.64686e12 0.450895
\(845\) −3.53824e12 −0.238744
\(846\) −2.36138e12 −0.158489
\(847\) 2.02445e13 1.35155
\(848\) 2.28494e11 0.0151738
\(849\) −7.03669e12 −0.464819
\(850\) 8.75657e11 0.0575372
\(851\) 6.09282e11 0.0398231
\(852\) 9.63285e12 0.626291
\(853\) −1.82093e13 −1.17767 −0.588835 0.808254i \(-0.700413\pi\)
−0.588835 + 0.808254i \(0.700413\pi\)
\(854\) −2.87792e12 −0.185148
\(855\) −5.34398e11 −0.0341993
\(856\) −1.67609e13 −1.06700
\(857\) −3.77462e12 −0.239034 −0.119517 0.992832i \(-0.538135\pi\)
−0.119517 + 0.992832i \(0.538135\pi\)
\(858\) −1.03841e11 −0.00654147
\(859\) −7.89410e12 −0.494690 −0.247345 0.968927i \(-0.579558\pi\)
−0.247345 + 0.968927i \(0.579558\pi\)
\(860\) 8.22637e12 0.512820
\(861\) −3.24383e12 −0.201161
\(862\) −4.27692e12 −0.263845
\(863\) −6.96799e12 −0.427621 −0.213810 0.976875i \(-0.568587\pi\)
−0.213810 + 0.976875i \(0.568587\pi\)
\(864\) 2.90794e12 0.177531
\(865\) 2.37274e12 0.144104
\(866\) 7.61321e12 0.459978
\(867\) −3.97364e12 −0.238837
\(868\) 2.15317e13 1.28748
\(869\) 9.70415e11 0.0577256
\(870\) 5.91047e11 0.0349772
\(871\) 5.69301e12 0.335166
\(872\) 1.20363e13 0.704970
\(873\) −4.53023e12 −0.263971
\(874\) −3.27544e11 −0.0189875
\(875\) −2.10020e12 −0.121122
\(876\) 9.28702e12 0.532854
\(877\) −2.60614e13 −1.48765 −0.743824 0.668375i \(-0.766990\pi\)
−0.743824 + 0.668375i \(0.766990\pi\)
\(878\) 3.53932e12 0.200999
\(879\) −1.06009e13 −0.598953
\(880\) −2.09597e11 −0.0117819
\(881\) 1.73552e13 0.970593 0.485296 0.874350i \(-0.338712\pi\)
0.485296 + 0.874350i \(0.338712\pi\)
\(882\) 1.87678e12 0.104425
\(883\) −3.13519e12 −0.173556 −0.0867782 0.996228i \(-0.527657\pi\)
−0.0867782 + 0.996228i \(0.527657\pi\)
\(884\) −8.15231e12 −0.448999
\(885\) −7.74354e12 −0.424321
\(886\) 7.29520e12 0.397727
\(887\) 2.15561e13 1.16927 0.584633 0.811298i \(-0.301238\pi\)
0.584633 + 0.811298i \(0.301238\pi\)
\(888\) −1.35062e12 −0.0728911
\(889\) −5.12857e11 −0.0275384
\(890\) 1.36732e12 0.0730493
\(891\) −9.23269e10 −0.00490771
\(892\) 1.28787e13 0.681131
\(893\) 5.51727e12 0.290330
\(894\) 1.98100e12 0.103721
\(895\) 6.68830e12 0.348427
\(896\) 2.65528e13 1.37634
\(897\) 1.68369e12 0.0868355
\(898\) 7.59198e12 0.389593
\(899\) 7.81709e12 0.399141
\(900\) −1.12697e12 −0.0572562
\(901\) 3.85342e11 0.0194798
\(902\) −8.48843e10 −0.00426971
\(903\) 2.08569e13 1.04389
\(904\) 1.46139e13 0.727796
\(905\) 1.29717e13 0.642806
\(906\) 1.32094e12 0.0651340
\(907\) 1.84546e13 0.905467 0.452734 0.891646i \(-0.350449\pi\)
0.452734 + 0.891646i \(0.350449\pi\)
\(908\) 2.91112e13 1.42126
\(909\) 5.31001e12 0.257963
\(910\) −3.21363e12 −0.155349
\(911\) 1.94952e13 0.937766 0.468883 0.883260i \(-0.344657\pi\)
0.468883 + 0.883260i \(0.344657\pi\)
\(912\) −1.65051e12 −0.0790024
\(913\) −8.36998e11 −0.0398663
\(914\) 8.40141e12 0.398194
\(915\) 1.99222e12 0.0939598
\(916\) 1.31283e13 0.616139
\(917\) 1.52859e13 0.713888
\(918\) 1.19132e12 0.0553652
\(919\) 1.25306e13 0.579498 0.289749 0.957103i \(-0.406428\pi\)
0.289749 + 0.957103i \(0.406428\pi\)
\(920\) −1.49502e12 −0.0688023
\(921\) −1.26506e13 −0.579351
\(922\) 4.45161e12 0.202875
\(923\) −1.90149e13 −0.862357
\(924\) −6.57170e11 −0.0296588
\(925\) 8.05025e11 0.0361553
\(926\) −2.00915e12 −0.0897974
\(927\) −3.02616e12 −0.134596
\(928\) 7.51452e12 0.332610
\(929\) −3.45751e13 −1.52298 −0.761488 0.648179i \(-0.775531\pi\)
−0.761488 + 0.648179i \(0.775531\pi\)
\(930\) 2.44977e12 0.107387
\(931\) −4.38503e12 −0.191293
\(932\) 7.13010e12 0.309545
\(933\) 2.34312e12 0.101234
\(934\) −2.91496e12 −0.125335
\(935\) −3.53473e11 −0.0151253
\(936\) −3.73231e12 −0.158941
\(937\) 5.46318e12 0.231535 0.115768 0.993276i \(-0.463067\pi\)
0.115768 + 0.993276i \(0.463067\pi\)
\(938\) −5.92161e12 −0.249762
\(939\) 7.41160e12 0.311112
\(940\) 1.16352e13 0.486069
\(941\) −3.27531e12 −0.136176 −0.0680879 0.997679i \(-0.521690\pi\)
−0.0680879 + 0.997679i \(0.521690\pi\)
\(942\) −5.53704e12 −0.229112
\(943\) 1.37633e12 0.0566787
\(944\) −2.39162e13 −0.980208
\(945\) −2.85730e12 −0.116550
\(946\) 5.45781e11 0.0221569
\(947\) −2.09027e13 −0.844555 −0.422278 0.906467i \(-0.638769\pi\)
−0.422278 + 0.906467i \(0.638769\pi\)
\(948\) 1.61153e13 0.648038
\(949\) −1.83323e13 −0.733700
\(950\) −4.32773e11 −0.0172387
\(951\) −4.26510e12 −0.169090
\(952\) 1.83530e13 0.724171
\(953\) −2.97285e13 −1.16750 −0.583748 0.811935i \(-0.698414\pi\)
−0.583748 + 0.811935i \(0.698414\pi\)
\(954\) 8.15106e10 0.00318600
\(955\) −8.74462e12 −0.340193
\(956\) 3.95317e13 1.53068
\(957\) −2.38586e11 −0.00919476
\(958\) −7.96669e12 −0.305586
\(959\) −4.88198e13 −1.86386
\(960\) −1.69783e12 −0.0645169
\(961\) 5.96061e12 0.225442
\(962\) 1.23181e12 0.0463721
\(963\) 1.35916e13 0.509273
\(964\) −3.99013e13 −1.48813
\(965\) −1.51202e13 −0.561285
\(966\) −1.75130e12 −0.0647088
\(967\) 6.55213e12 0.240970 0.120485 0.992715i \(-0.461555\pi\)
0.120485 + 0.992715i \(0.461555\pi\)
\(968\) 1.90408e13 0.697021
\(969\) −2.78348e12 −0.101422
\(970\) −3.66873e12 −0.133059
\(971\) 4.42665e13 1.59804 0.799021 0.601302i \(-0.205351\pi\)
0.799021 + 0.601302i \(0.205351\pi\)
\(972\) −1.53324e12 −0.0550948
\(973\) 2.95924e13 1.05845
\(974\) 6.11554e12 0.217731
\(975\) 2.22461e12 0.0788376
\(976\) 6.15304e12 0.217053
\(977\) −2.13009e13 −0.747948 −0.373974 0.927439i \(-0.622005\pi\)
−0.373974 + 0.927439i \(0.622005\pi\)
\(978\) 7.66165e11 0.0267792
\(979\) −5.51942e11 −0.0192031
\(980\) −9.24746e12 −0.320262
\(981\) −9.76036e12 −0.336477
\(982\) −3.16940e12 −0.108762
\(983\) 1.38841e13 0.474272 0.237136 0.971476i \(-0.423791\pi\)
0.237136 + 0.971476i \(0.423791\pi\)
\(984\) −3.05096e12 −0.103743
\(985\) 3.90065e12 0.132030
\(986\) 3.07854e12 0.103729
\(987\) 2.94995e13 0.989436
\(988\) 4.02909e12 0.134524
\(989\) −8.84939e12 −0.294124
\(990\) −7.47695e10 −0.00247381
\(991\) −1.55882e13 −0.513409 −0.256705 0.966490i \(-0.582637\pi\)
−0.256705 + 0.966490i \(0.582637\pi\)
\(992\) 3.11461e13 1.02118
\(993\) −9.58958e12 −0.312988
\(994\) 1.97784e13 0.642619
\(995\) −2.22351e13 −0.719177
\(996\) −1.38997e13 −0.447547
\(997\) −2.00048e13 −0.641219 −0.320610 0.947211i \(-0.603888\pi\)
−0.320610 + 0.947211i \(0.603888\pi\)
\(998\) 9.07832e11 0.0289680
\(999\) 1.09523e12 0.0347904
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.d.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.d.1.8 12 1.1 even 1 trivial