Properties

Label 285.10.a.f.1.3
Level 285285
Weight 1010
Character 285.1
Self dual yes
Analytic conductor 146.785146.785
Analytic rank 00
Dimension 1414
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 285=3519 285 = 3 \cdot 5 \cdot 19
Weight: k k == 10 10
Character orbit: [χ][\chi] == 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 146.785213307146.785213307
Analytic rank: 00
Dimension: 1414
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x14x135365x12+7107x11+10970098x1019024208x910608934432x8+480881506516992 x^{14} - x^{13} - 5365 x^{12} + 7107 x^{11} + 10970098 x^{10} - 19024208 x^{9} - 10608934432 x^{8} + \cdots - 480881506516992 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2183852 2^{18}\cdot 3^{8}\cdot 5^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 33.931333.9313 of defining polynomial
Character χ\chi == 285.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q33.9313q281.0000q3+639.331q4625.000q5+2748.43q6+9880.04q74320.49q8+6561.00q9+21207.0q1069660.6q1151785.8q12176048.q13335242.q14+50625.0q15180738.q16491581.q17222623.q18+130321.q19399582.q20800283.q21+2.36367e6q22712914.q23+349960.q24+390625.q25+5.97353e6q26531441.q27+6.31661e6q28134373.q291.71777e6q302.59229e6q31+8.34475e6q32+5.64251e6q33+1.66800e7q346.17502e6q35+4.19465e6q363.66220e6q374.42196e6q38+1.42599e7q39+2.70031e6q409.74654e6q41+2.71546e7q42+4.21021e6q434.45362e7q444.10062e6q45+2.41901e7q466.41652e7q47+1.46397e7q48+5.72616e7q491.32544e7q50+3.98181e7q511.12553e8q522.38522e7q53+1.80325e7q54+4.35379e7q554.26866e7q561.05560e7q57+4.55945e6q581.02156e8q59+3.23661e7q601.25148e8q61+8.79596e7q62+6.48229e7q631.90610e8q64+1.10030e8q651.91457e8q669.38601e6q673.14283e8q68+5.77460e7q69+2.09526e8q70+1.74680e8q712.83468e7q72+3.17964e8q73+1.24263e8q743.16406e7q75+8.33182e7q766.88250e8q774.83856e8q78+4.82600e7q79+1.12961e8q80+4.30467e7q81+3.30712e8q82+3.83115e8q835.11646e8q84+3.07238e8q851.42858e8q86+1.08842e7q87+3.00968e8q881.01770e9q89+1.39139e8q901.73936e9q914.55788e8q92+2.09975e8q93+2.17721e9q948.14506e7q956.75924e8q961.08495e9q971.94296e9q984.57043e8q99+O(q100)q-33.9313 q^{2} -81.0000 q^{3} +639.331 q^{4} -625.000 q^{5} +2748.43 q^{6} +9880.04 q^{7} -4320.49 q^{8} +6561.00 q^{9} +21207.0 q^{10} -69660.6 q^{11} -51785.8 q^{12} -176048. q^{13} -335242. q^{14} +50625.0 q^{15} -180738. q^{16} -491581. q^{17} -222623. q^{18} +130321. q^{19} -399582. q^{20} -800283. q^{21} +2.36367e6 q^{22} -712914. q^{23} +349960. q^{24} +390625. q^{25} +5.97353e6 q^{26} -531441. q^{27} +6.31661e6 q^{28} -134373. q^{29} -1.71777e6 q^{30} -2.59229e6 q^{31} +8.34475e6 q^{32} +5.64251e6 q^{33} +1.66800e7 q^{34} -6.17502e6 q^{35} +4.19465e6 q^{36} -3.66220e6 q^{37} -4.42196e6 q^{38} +1.42599e7 q^{39} +2.70031e6 q^{40} -9.74654e6 q^{41} +2.71546e7 q^{42} +4.21021e6 q^{43} -4.45362e7 q^{44} -4.10062e6 q^{45} +2.41901e7 q^{46} -6.41652e7 q^{47} +1.46397e7 q^{48} +5.72616e7 q^{49} -1.32544e7 q^{50} +3.98181e7 q^{51} -1.12553e8 q^{52} -2.38522e7 q^{53} +1.80325e7 q^{54} +4.35379e7 q^{55} -4.26866e7 q^{56} -1.05560e7 q^{57} +4.55945e6 q^{58} -1.02156e8 q^{59} +3.23661e7 q^{60} -1.25148e8 q^{61} +8.79596e7 q^{62} +6.48229e7 q^{63} -1.90610e8 q^{64} +1.10030e8 q^{65} -1.91457e8 q^{66} -9.38601e6 q^{67} -3.14283e8 q^{68} +5.77460e7 q^{69} +2.09526e8 q^{70} +1.74680e8 q^{71} -2.83468e7 q^{72} +3.17964e8 q^{73} +1.24263e8 q^{74} -3.16406e7 q^{75} +8.33182e7 q^{76} -6.88250e8 q^{77} -4.83856e8 q^{78} +4.82600e7 q^{79} +1.12961e8 q^{80} +4.30467e7 q^{81} +3.30712e8 q^{82} +3.83115e8 q^{83} -5.11646e8 q^{84} +3.07238e8 q^{85} -1.42858e8 q^{86} +1.08842e7 q^{87} +3.00968e8 q^{88} -1.01770e9 q^{89} +1.39139e8 q^{90} -1.73936e9 q^{91} -4.55788e8 q^{92} +2.09975e8 q^{93} +2.17721e9 q^{94} -8.14506e7 q^{95} -6.75924e8 q^{96} -1.08495e9 q^{97} -1.94296e9 q^{98} -4.57043e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 14qq21134q3+3563q48750q5+81q6+13054q7+6249q8+91854q9+625q10+43520q11288603q12+256834q13+250610q14+708750q15+866291q16++285534720q99+O(q100) 14 q - q^{2} - 1134 q^{3} + 3563 q^{4} - 8750 q^{5} + 81 q^{6} + 13054 q^{7} + 6249 q^{8} + 91854 q^{9} + 625 q^{10} + 43520 q^{11} - 288603 q^{12} + 256834 q^{13} + 250610 q^{14} + 708750 q^{15} + 866291 q^{16}+ \cdots + 285534720 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −33.9313 −1.49956 −0.749782 0.661685i 0.769842π-0.769842\pi
−0.749782 + 0.661685i 0.769842π0.769842\pi
33 −81.0000 −0.577350
44 639.331 1.24869
55 −625.000 −0.447214
66 2748.43 0.865774
77 9880.04 1.55531 0.777656 0.628690i 0.216409π-0.216409\pi
0.777656 + 0.628690i 0.216409π0.216409\pi
88 −4320.49 −0.372931
99 6561.00 0.333333
1010 21207.0 0.670626
1111 −69660.6 −1.43456 −0.717282 0.696782i 0.754614π-0.754614\pi
−0.717282 + 0.696782i 0.754614π0.754614\pi
1212 −51785.8 −0.720933
1313 −176048. −1.70956 −0.854782 0.518987i 0.826309π-0.826309\pi
−0.854782 + 0.518987i 0.826309π0.826309\pi
1414 −335242. −2.33229
1515 50625.0 0.258199
1616 −180738. −0.689459
1717 −491581. −1.42750 −0.713748 0.700402i 0.753004π-0.753004\pi
−0.713748 + 0.700402i 0.753004π0.753004\pi
1818 −222623. −0.499855
1919 130321. 0.229416
2020 −399582. −0.558432
2121 −800283. −0.897960
2222 2.36367e6 2.15122
2323 −712914. −0.531205 −0.265602 0.964083i 0.585571π-0.585571\pi
−0.265602 + 0.964083i 0.585571π0.585571\pi
2424 349960. 0.215312
2525 390625. 0.200000
2626 5.97353e6 2.56360
2727 −531441. −0.192450
2828 6.31661e6 1.94211
2929 −134373. −0.0352794 −0.0176397 0.999844i 0.505615π-0.505615\pi
−0.0176397 + 0.999844i 0.505615π0.505615\pi
3030 −1.71777e6 −0.387186
3131 −2.59229e6 −0.504145 −0.252073 0.967708i 0.581112π-0.581112\pi
−0.252073 + 0.967708i 0.581112π0.581112\pi
3232 8.34475e6 1.40682
3333 5.64251e6 0.828246
3434 1.66800e7 2.14062
3535 −6.17502e6 −0.695557
3636 4.19465e6 0.416231
3737 −3.66220e6 −0.321243 −0.160622 0.987016i 0.551350π-0.551350\pi
−0.160622 + 0.987016i 0.551350π0.551350\pi
3838 −4.42196e6 −0.344024
3939 1.42599e7 0.987018
4040 2.70031e6 0.166780
4141 −9.74654e6 −0.538670 −0.269335 0.963047i 0.586804π-0.586804\pi
−0.269335 + 0.963047i 0.586804π0.586804\pi
4242 2.71546e7 1.34655
4343 4.21021e6 0.187800 0.0938999 0.995582i 0.470067π-0.470067\pi
0.0938999 + 0.995582i 0.470067π0.470067\pi
4444 −4.45362e7 −1.79133
4545 −4.10062e6 −0.149071
4646 2.41901e7 0.796575
4747 −6.41652e7 −1.91805 −0.959024 0.283325i 0.908562π-0.908562\pi
−0.959024 + 0.283325i 0.908562π0.908562\pi
4848 1.46397e7 0.398059
4949 5.72616e7 1.41900
5050 −1.32544e7 −0.299913
5151 3.98181e7 0.824166
5252 −1.12553e8 −2.13472
5353 −2.38522e7 −0.415228 −0.207614 0.978211i 0.566570π-0.566570\pi
−0.207614 + 0.978211i 0.566570π0.566570\pi
5454 1.80325e7 0.288591
5555 4.35379e7 0.641557
5656 −4.26866e7 −0.580024
5757 −1.05560e7 −0.132453
5858 4.55945e6 0.0529037
5959 −1.02156e8 −1.09757 −0.548783 0.835965i 0.684909π-0.684909\pi
−0.548783 + 0.835965i 0.684909π0.684909\pi
6060 3.23661e7 0.322411
6161 −1.25148e8 −1.15728 −0.578642 0.815582i 0.696417π-0.696417\pi
−0.578642 + 0.815582i 0.696417π0.696417\pi
6262 8.79596e7 0.755998
6363 6.48229e7 0.518437
6464 −1.90610e8 −1.42016
6565 1.10030e8 0.764541
6666 −1.91457e8 −1.24201
6767 −9.38601e6 −0.0569042 −0.0284521 0.999595i 0.509058π-0.509058\pi
−0.0284521 + 0.999595i 0.509058π0.509058\pi
6868 −3.14283e8 −1.78250
6969 5.77460e7 0.306691
7070 2.09526e8 1.04303
7171 1.74680e8 0.815792 0.407896 0.913028i 0.366263π-0.366263\pi
0.407896 + 0.913028i 0.366263π0.366263\pi
7272 −2.83468e7 −0.124310
7373 3.17964e8 1.31046 0.655232 0.755428i 0.272571π-0.272571\pi
0.655232 + 0.755428i 0.272571π0.272571\pi
7474 1.24263e8 0.481725
7575 −3.16406e7 −0.115470
7676 8.33182e7 0.286470
7777 −6.88250e8 −2.23120
7878 −4.83856e8 −1.48010
7979 4.82600e7 0.139401 0.0697004 0.997568i 0.477796π-0.477796\pi
0.0697004 + 0.997568i 0.477796π0.477796\pi
8080 1.12961e8 0.308335
8181 4.30467e7 0.111111
8282 3.30712e8 0.807771
8383 3.83115e8 0.886090 0.443045 0.896499i 0.353898π-0.353898\pi
0.443045 + 0.896499i 0.353898π0.353898\pi
8484 −5.11646e8 −1.12128
8585 3.07238e8 0.638396
8686 −1.42858e8 −0.281618
8787 1.08842e7 0.0203686
8888 3.00968e8 0.534994
8989 −1.01770e9 −1.71936 −0.859678 0.510836i 0.829336π-0.829336\pi
−0.859678 + 0.510836i 0.829336π0.829336\pi
9090 1.39139e8 0.223542
9191 −1.73936e9 −2.65891
9292 −4.55788e8 −0.663311
9393 2.09975e8 0.291068
9494 2.17721e9 2.87624
9595 −8.14506e7 −0.102598
9696 −6.75924e8 −0.812227
9797 −1.08495e9 −1.24434 −0.622168 0.782883i 0.713748π-0.713748\pi
−0.622168 + 0.782883i 0.713748π0.713748\pi
9898 −1.94296e9 −2.12787
9999 −4.57043e8 −0.478188
100100 2.49739e8 0.249739
101101 −2.54570e8 −0.243423 −0.121711 0.992566i 0.538838π-0.538838\pi
−0.121711 + 0.992566i 0.538838π0.538838\pi
102102 −1.35108e9 −1.23589
103103 1.61531e6 0.00141413 0.000707063 1.00000i 0.499775π-0.499775\pi
0.000707063 1.00000i 0.499775π0.499775\pi
104104 7.60613e8 0.637549
105105 5.00177e8 0.401580
106106 8.09335e8 0.622661
107107 1.89093e9 1.39460 0.697299 0.716780i 0.254385π-0.254385\pi
0.697299 + 0.716780i 0.254385π0.254385\pi
108108 −3.39767e8 −0.240311
109109 6.16231e8 0.418142 0.209071 0.977900i 0.432956π-0.432956\pi
0.209071 + 0.977900i 0.432956π0.432956\pi
110110 −1.47730e9 −0.962056
111111 2.96638e8 0.185470
112112 −1.78569e9 −1.07232
113113 −3.36282e9 −1.94022 −0.970110 0.242666i 0.921978π-0.921978\pi
−0.970110 + 0.242666i 0.921978π0.921978\pi
114114 3.58178e8 0.198622
115115 4.45571e8 0.237562
116116 −8.59088e7 −0.0440531
117117 −1.15505e9 −0.569855
118118 3.46629e9 1.64587
119119 −4.85684e9 −2.22020
120120 −2.18725e8 −0.0962903
121121 2.49465e9 1.05798
122122 4.24643e9 1.73542
123123 7.89470e8 0.311001
124124 −1.65733e9 −0.629522
125125 −2.44141e8 −0.0894427
126126 −2.19952e9 −0.777430
127127 −2.51900e9 −0.859232 −0.429616 0.903012i 0.641351π-0.641351\pi
−0.429616 + 0.903012i 0.641351π0.641351\pi
128128 2.19513e9 0.722797
129129 −3.41027e8 −0.108426
130130 −3.73345e9 −1.14648
131131 −5.00056e9 −1.48353 −0.741767 0.670657i 0.766012π-0.766012\pi
−0.741767 + 0.670657i 0.766012π0.766012\pi
132132 3.60743e9 1.03423
133133 1.28758e9 0.356813
134134 3.18479e8 0.0853315
135135 3.32151e8 0.0860663
136136 2.12387e9 0.532358
137137 −2.10286e9 −0.509998 −0.254999 0.966941i 0.582075π-0.582075\pi
−0.254999 + 0.966941i 0.582075π0.582075\pi
138138 −1.95940e9 −0.459903
139139 −1.92992e9 −0.438503 −0.219251 0.975668i 0.570362π-0.570362\pi
−0.219251 + 0.975668i 0.570362π0.570362\pi
140140 −3.94788e9 −0.868537
141141 5.19738e9 1.10739
142142 −5.92710e9 −1.22333
143143 1.22636e10 2.45248
144144 −1.18582e9 −0.229820
145145 8.39831e7 0.0157774
146146 −1.07889e10 −1.96512
147147 −4.63819e9 −0.819257
148148 −2.34136e9 −0.401134
149149 7.40405e9 1.23064 0.615320 0.788277i 0.289027π-0.289027\pi
0.615320 + 0.788277i 0.289027π0.289027\pi
150150 1.07361e9 0.173155
151151 1.15986e9 0.181555 0.0907776 0.995871i 0.471065π-0.471065\pi
0.0907776 + 0.995871i 0.471065π0.471065\pi
152152 −5.63051e8 −0.0855562
153153 −3.22526e9 −0.475832
154154 2.33532e10 3.34582
155155 1.62018e9 0.225461
156156 9.11678e9 1.23248
157157 −7.39247e9 −0.971049 −0.485525 0.874223i 0.661371π-0.661371\pi
−0.485525 + 0.874223i 0.661371π0.661371\pi
158158 −1.63752e9 −0.209041
159159 1.93203e9 0.239732
160160 −5.21547e9 −0.629149
161161 −7.04362e9 −0.826189
162162 −1.46063e9 −0.166618
163163 2.42581e9 0.269162 0.134581 0.990903i 0.457031π-0.457031\pi
0.134581 + 0.990903i 0.457031π0.457031\pi
164164 −6.23126e9 −0.672634
165165 −3.52657e9 −0.370403
166166 −1.29996e10 −1.32875
167167 −1.27031e10 −1.26382 −0.631911 0.775041i 0.717729π-0.717729\pi
−0.631911 + 0.775041i 0.717729π0.717729\pi
168168 3.45762e9 0.334877
169169 2.03883e10 1.92261
170170 −1.04250e10 −0.957316
171171 8.55036e8 0.0764719
172172 2.69171e9 0.234504
173173 1.98216e10 1.68240 0.841202 0.540721i 0.181849π-0.181849\pi
0.841202 + 0.540721i 0.181849π0.181849\pi
174174 −3.69315e8 −0.0305440
175175 3.85939e9 0.311062
176176 1.25903e10 0.989074
177177 8.27466e9 0.633680
178178 3.45319e10 2.57828
179179 1.27221e10 0.926230 0.463115 0.886298i 0.346732π-0.346732\pi
0.463115 + 0.886298i 0.346732π0.346732\pi
180180 −2.62166e9 −0.186144
181181 6.13497e9 0.424873 0.212436 0.977175i 0.431860π-0.431860\pi
0.212436 + 0.977175i 0.431860π0.431860\pi
182182 5.90187e10 3.98720
183183 1.01370e10 0.668158
184184 3.08014e9 0.198103
185185 2.28888e9 0.143664
186186 −7.12473e9 −0.436476
187187 3.42438e10 2.04784
188188 −4.10228e10 −2.39505
189189 −5.25066e9 −0.299320
190190 2.76372e9 0.153852
191191 −3.51221e10 −1.90955 −0.954774 0.297331i 0.903903π-0.903903\pi
−0.954774 + 0.297331i 0.903903π0.903903\pi
192192 1.54394e10 0.819928
193193 3.31686e10 1.72075 0.860377 0.509657i 0.170228π-0.170228\pi
0.860377 + 0.509657i 0.170228π0.170228\pi
194194 3.68138e10 1.86596
195195 −8.91242e9 −0.441408
196196 3.66091e10 1.77189
197197 1.17394e10 0.555324 0.277662 0.960679i 0.410441π-0.410441\pi
0.277662 + 0.960679i 0.410441π0.410441\pi
198198 1.55081e10 0.717074
199199 −3.84124e10 −1.73633 −0.868166 0.496273i 0.834701π-0.834701\pi
−0.868166 + 0.496273i 0.834701π0.834701\pi
200200 −1.68769e9 −0.0745862
201201 7.60267e8 0.0328536
202202 8.63789e9 0.365028
203203 −1.32761e9 −0.0548705
204204 2.54569e10 1.02913
205205 6.09159e9 0.240901
206206 −5.48095e7 −0.00212057
207207 −4.67743e9 −0.177068
208208 3.18185e10 1.17867
209209 −9.07824e9 −0.329112
210210 −1.69716e10 −0.602195
211211 9.53224e9 0.331073 0.165537 0.986204i 0.447064π-0.447064\pi
0.165537 + 0.986204i 0.447064π0.447064\pi
212212 −1.52494e10 −0.518492
213213 −1.41490e10 −0.470998
214214 −6.41618e10 −2.09129
215215 −2.63138e9 −0.0839867
216216 2.29609e9 0.0717706
217217 −2.56119e10 −0.784103
218218 −2.09095e10 −0.627031
219219 −2.57551e10 −0.756596
220220 2.78351e10 0.801108
221221 8.65418e10 2.44040
222222 −1.00653e10 −0.278124
223223 −3.45762e10 −0.936280 −0.468140 0.883654i 0.655076π-0.655076\pi
−0.468140 + 0.883654i 0.655076π0.655076\pi
224224 8.24464e10 2.18804
225225 2.56289e9 0.0666667
226226 1.14105e11 2.90948
227227 2.09866e10 0.524597 0.262299 0.964987i 0.415519π-0.415519\pi
0.262299 + 0.964987i 0.415519π0.415519\pi
228228 −6.74878e9 −0.165393
229229 −5.45785e10 −1.31148 −0.655741 0.754986i 0.727643π-0.727643\pi
−0.655741 + 0.754986i 0.727643π0.727643\pi
230230 −1.51188e10 −0.356239
231231 5.57482e10 1.28818
232232 5.80558e8 0.0131568
233233 2.43534e10 0.541324 0.270662 0.962674i 0.412757π-0.412757\pi
0.270662 + 0.962674i 0.412757π0.412757\pi
234234 3.91923e10 0.854534
235235 4.01033e10 0.857777
236236 −6.53116e10 −1.37052
237237 −3.90906e9 −0.0804831
238238 1.64799e11 3.32934
239239 −9.34512e10 −1.85265 −0.926327 0.376720i 0.877052π-0.877052\pi
−0.926327 + 0.376720i 0.877052π0.877052\pi
240240 −9.14984e9 −0.178018
241241 −7.79516e10 −1.48850 −0.744250 0.667902i 0.767193π-0.767193\pi
−0.744250 + 0.667902i 0.767193π0.767193\pi
242242 −8.46468e10 −1.58650
243243 −3.48678e9 −0.0641500
244244 −8.00109e10 −1.44509
245245 −3.57885e10 −0.634594
246246 −2.67877e10 −0.466367
247247 −2.29427e10 −0.392201
248248 1.12000e10 0.188011
249249 −3.10323e10 −0.511584
250250 8.28400e9 0.134125
251251 −8.60114e10 −1.36781 −0.683903 0.729573i 0.739719π-0.739719\pi
−0.683903 + 0.729573i 0.739719π0.739719\pi
252252 4.14433e10 0.647369
253253 4.96620e10 0.762048
254254 8.54727e10 1.28847
255255 −2.48863e10 −0.368578
256256 2.31087e10 0.336276
257257 3.35045e10 0.479076 0.239538 0.970887i 0.423004π-0.423004\pi
0.239538 + 0.970887i 0.423004π0.423004\pi
258258 1.15715e10 0.162592
259259 −3.61827e10 −0.499634
260260 7.03455e10 0.954676
261261 −8.81621e8 −0.0117598
262262 1.69675e11 2.22466
263263 −1.25298e11 −1.61490 −0.807449 0.589938i 0.799152π-0.799152\pi
−0.807449 + 0.589938i 0.799152π0.799152\pi
264264 −2.43784e10 −0.308879
265265 1.49076e10 0.185696
266266 −4.36891e10 −0.535064
267267 8.24339e10 0.992671
268268 −6.00076e9 −0.0710559
269269 −3.18538e10 −0.370917 −0.185458 0.982652i 0.559377π-0.559377\pi
−0.185458 + 0.982652i 0.559377π0.559377\pi
270270 −1.12703e10 −0.129062
271271 −3.80191e10 −0.428193 −0.214097 0.976812i 0.568681π-0.568681\pi
−0.214097 + 0.976812i 0.568681π0.568681\pi
272272 8.88472e10 0.984201
273273 1.40888e11 1.53512
274274 7.13529e10 0.764775
275275 −2.72112e10 −0.286913
276276 3.69188e10 0.382963
277277 1.05646e11 1.07819 0.539095 0.842245i 0.318766π-0.318766\pi
0.539095 + 0.842245i 0.318766π0.318766\pi
278278 6.54846e10 0.657563
279279 −1.70080e10 −0.168048
280280 2.66792e10 0.259395
281281 −4.31314e10 −0.412682 −0.206341 0.978480i 0.566156π-0.566156\pi
−0.206341 + 0.978480i 0.566156π0.566156\pi
282282 −1.76354e11 −1.66060
283283 1.39197e11 1.29000 0.645002 0.764181i 0.276857π-0.276857\pi
0.645002 + 0.764181i 0.276857π0.276857\pi
284284 1.11678e11 1.01867
285285 6.59750e9 0.0592349
286286 −4.16119e11 −3.67765
287287 −9.62962e10 −0.837800
288288 5.47499e10 0.468940
289289 1.23064e11 1.03775
290290 −2.84965e9 −0.0236593
291291 8.78812e10 0.718418
292292 2.03284e11 1.63637
293293 1.18645e11 0.940473 0.470236 0.882541i 0.344169π-0.344169\pi
0.470236 + 0.882541i 0.344169π0.344169\pi
294294 1.57380e11 1.22853
295295 6.38477e10 0.490847
296296 1.58225e10 0.119802
297297 3.70205e10 0.276082
298298 −2.51229e11 −1.84542
299299 1.25507e11 0.908129
300300 −2.02288e10 −0.144187
301301 4.15970e10 0.292087
302302 −3.93555e10 −0.272254
303303 2.06202e10 0.140540
304304 −2.35539e10 −0.158173
305305 7.82175e10 0.517553
306306 1.09437e11 0.713541
307307 1.54568e11 0.993109 0.496554 0.868006i 0.334598π-0.334598\pi
0.496554 + 0.868006i 0.334598π0.334598\pi
308308 −4.40019e11 −2.78608
309309 −1.30840e8 −0.000816446 0
310310 −5.49747e10 −0.338093
311311 −5.00657e10 −0.303472 −0.151736 0.988421i 0.548486π-0.548486\pi
−0.151736 + 0.988421i 0.548486π0.548486\pi
312312 −6.16097e10 −0.368089
313313 1.63498e11 0.962858 0.481429 0.876485i 0.340118π-0.340118\pi
0.481429 + 0.876485i 0.340118π0.340118\pi
314314 2.50836e11 1.45615
315315 −4.05143e10 −0.231852
316316 3.08541e10 0.174069
317317 1.23719e11 0.688129 0.344064 0.938946i 0.388196π-0.388196\pi
0.344064 + 0.938946i 0.388196π0.388196\pi
318318 −6.55561e10 −0.359494
319319 9.36051e9 0.0506106
320320 1.19131e11 0.635113
321321 −1.53166e11 −0.805172
322322 2.38999e11 1.23892
323323 −6.40634e10 −0.327490
324324 2.75211e10 0.138744
325325 −6.87687e10 −0.341913
326326 −8.23109e10 −0.403625
327327 −4.99147e10 −0.241415
328328 4.21098e10 0.200887
329329 −6.33955e11 −2.98316
330330 1.19661e11 0.555443
331331 −3.51714e11 −1.61051 −0.805255 0.592929i 0.797972π-0.797972\pi
−0.805255 + 0.592929i 0.797972π0.797972\pi
332332 2.44937e11 1.10645
333333 −2.40277e10 −0.107081
334334 4.31033e11 1.89518
335335 5.86625e9 0.0254483
336336 1.44641e11 0.619106
337337 4.10219e11 1.73253 0.866267 0.499582i 0.166513π-0.166513\pi
0.866267 + 0.499582i 0.166513π0.166513\pi
338338 −6.91802e11 −2.88308
339339 2.72389e11 1.12019
340340 1.96427e11 0.797160
341341 1.80580e11 0.723229
342342 −2.90125e10 −0.114675
343343 1.67051e11 0.651668
344344 −1.81902e10 −0.0700364
345345 −3.60913e10 −0.137156
346346 −6.72570e11 −2.52287
347347 4.08881e11 1.51396 0.756979 0.653439i 0.226674π-0.226674\pi
0.756979 + 0.653439i 0.226674π0.226674\pi
348348 6.95861e9 0.0254341
349349 −4.04337e11 −1.45891 −0.729457 0.684027i 0.760227π-0.760227\pi
−0.729457 + 0.684027i 0.760227π0.760227\pi
350350 −1.30954e11 −0.466458
351351 9.35590e10 0.329006
352352 −5.81300e11 −2.01817
353353 −1.14276e11 −0.391714 −0.195857 0.980633i 0.562749π-0.562749\pi
−0.195857 + 0.980633i 0.562749π0.562749\pi
354354 −2.80770e11 −0.950245
355355 −1.09175e11 −0.364833
356356 −6.50649e11 −2.14695
357357 3.93404e11 1.28183
358358 −4.31676e11 −1.38894
359359 2.73301e11 0.868393 0.434197 0.900818i 0.357032π-0.357032\pi
0.434197 + 0.900818i 0.357032π0.357032\pi
360360 1.77167e10 0.0555933
361361 1.69836e10 0.0526316
362362 −2.08167e11 −0.637124
363363 −2.02067e11 −0.610823
364364 −1.11203e12 −3.32016
365365 −1.98727e11 −0.586057
366366 −3.43961e11 −1.00195
367367 3.97112e11 1.14266 0.571328 0.820722i 0.306428π-0.306428\pi
0.571328 + 0.820722i 0.306428π0.306428\pi
368368 1.28850e11 0.366244
369369 −6.39470e10 −0.179557
370370 −7.76644e10 −0.215434
371371 −2.35661e11 −0.645809
372372 1.34244e11 0.363455
373373 −2.90603e11 −0.777338 −0.388669 0.921378i 0.627065π-0.627065\pi
−0.388669 + 0.921378i 0.627065π0.627065\pi
374374 −1.16194e12 −3.07086
375375 1.97754e10 0.0516398
376376 2.77225e11 0.715299
377377 2.36561e10 0.0603124
378378 1.78161e11 0.448849
379379 3.42610e11 0.852949 0.426474 0.904500i 0.359755π-0.359755\pi
0.426474 + 0.904500i 0.359755π0.359755\pi
380380 −5.20739e10 −0.128113
381381 2.04039e11 0.496078
382382 1.19174e12 2.86349
383383 −1.05333e11 −0.250133 −0.125066 0.992148i 0.539914π-0.539914\pi
−0.125066 + 0.992148i 0.539914π0.539914\pi
384384 −1.77806e11 −0.417307
385385 4.30156e11 0.997821
386386 −1.12545e12 −2.58038
387387 2.76232e10 0.0626000
388388 −6.93643e11 −1.55379
389389 −7.35118e11 −1.62774 −0.813868 0.581050i 0.802642π-0.802642\pi
−0.813868 + 0.581050i 0.802642π0.802642\pi
390390 3.02410e11 0.661919
391391 3.50455e11 0.758293
392392 −2.47398e11 −0.529187
393393 4.05045e11 0.856519
394394 −3.98331e11 −0.832743
395395 −3.01625e10 −0.0623420
396396 −2.92202e11 −0.597110
397397 −1.30600e11 −0.263868 −0.131934 0.991258i 0.542119π-0.542119\pi
−0.131934 + 0.991258i 0.542119π0.542119\pi
398398 1.30338e12 2.60374
399399 −1.04294e11 −0.206006
400400 −7.06006e10 −0.137892
401401 3.26468e11 0.630509 0.315254 0.949007i 0.397910π-0.397910\pi
0.315254 + 0.949007i 0.397910π0.397910\pi
402402 −2.57968e10 −0.0492662
403403 4.56366e11 0.861869
404404 −1.62755e11 −0.303960
405405 −2.69042e10 −0.0496904
406406 4.50475e10 0.0822818
407407 2.55111e11 0.460845
408408 −1.72034e11 −0.307357
409409 9.96939e11 1.76163 0.880813 0.473464i 0.156997π-0.156997\pi
0.880813 + 0.473464i 0.156997π0.156997\pi
410410 −2.06695e11 −0.361246
411411 1.70332e11 0.294448
412412 1.03272e9 0.00176581
413413 −1.00931e12 −1.70706
414414 1.58711e11 0.265525
415415 −2.39447e11 −0.396272
416416 −1.46907e12 −2.40505
417417 1.56323e11 0.253170
418418 3.08036e11 0.493524
419419 1.41597e11 0.224435 0.112217 0.993684i 0.464205π-0.464205\pi
0.112217 + 0.993684i 0.464205π0.464205\pi
420420 3.19779e11 0.501450
421421 7.96738e11 1.23608 0.618039 0.786147i 0.287927π-0.287927\pi
0.618039 + 0.786147i 0.287927π0.287927\pi
422422 −3.23441e11 −0.496465
423423 −4.20988e11 −0.639349
424424 1.03053e11 0.154851
425425 −1.92024e11 −0.285499
426426 4.80095e11 0.706291
427427 −1.23647e12 −1.79994
428428 1.20893e12 1.74143
429429 −9.93352e11 −1.41594
430430 8.92860e10 0.125943
431431 −4.11727e11 −0.574727 −0.287364 0.957822i 0.592779π-0.592779\pi
−0.287364 + 0.957822i 0.592779π0.592779\pi
432432 9.60513e10 0.132686
433433 −5.25038e11 −0.717787 −0.358893 0.933379i 0.616846π-0.616846\pi
−0.358893 + 0.933379i 0.616846π0.616846\pi
434434 8.69044e11 1.17581
435435 −6.80263e9 −0.00910910
436436 3.93975e11 0.522131
437437 −9.29077e10 −0.121867
438438 8.73902e11 1.13456
439439 5.92349e11 0.761180 0.380590 0.924744i 0.375721π-0.375721\pi
0.380590 + 0.924744i 0.375721π0.375721\pi
440440 −1.88105e11 −0.239256
441441 3.75693e11 0.472998
442442 −2.93647e12 −3.65953
443443 −3.46221e11 −0.427107 −0.213553 0.976931i 0.568504π-0.568504\pi
−0.213553 + 0.976931i 0.568504π0.568504\pi
444444 1.89650e11 0.231595
445445 6.36064e11 0.768919
446446 1.17322e12 1.40401
447447 −5.99728e11 −0.710511
448448 −1.88324e12 −2.20879
449449 −1.90995e11 −0.221775 −0.110888 0.993833i 0.535369π-0.535369\pi
−0.110888 + 0.993833i 0.535369π0.535369\pi
450450 −8.69621e10 −0.0999709
451451 6.78950e11 0.772758
452452 −2.14996e12 −2.42274
453453 −9.39485e10 −0.104821
454454 −7.12102e11 −0.786667
455455 1.08710e12 1.18910
456456 4.56071e10 0.0493959
457457 −8.99317e11 −0.964472 −0.482236 0.876041i 0.660175π-0.660175\pi
−0.482236 + 0.876041i 0.660175π0.660175\pi
458458 1.85192e12 1.96665
459459 2.61246e11 0.274722
460460 2.84867e11 0.296642
461461 −2.78718e11 −0.287416 −0.143708 0.989620i 0.545903π-0.545903\pi
−0.143708 + 0.989620i 0.545903π0.545903\pi
462462 −1.89161e12 −1.93171
463463 7.59495e11 0.768087 0.384044 0.923315i 0.374531π-0.374531\pi
0.384044 + 0.923315i 0.374531π0.374531\pi
464464 2.42863e10 0.0243237
465465 −1.31235e11 −0.130170
466466 −8.26341e11 −0.811751
467467 9.77081e11 0.950615 0.475307 0.879820i 0.342337π-0.342337\pi
0.475307 + 0.879820i 0.342337π0.342337\pi
468468 −7.38459e11 −0.711574
469469 −9.27341e10 −0.0885038
470470 −1.36075e12 −1.28629
471471 5.98790e11 0.560636
472472 4.41365e11 0.409317
473473 −2.93286e11 −0.269411
474474 1.32639e11 0.120690
475475 5.09066e10 0.0458831
476476 −3.10513e12 −2.77235
477477 −1.56494e11 −0.138409
478478 3.17092e12 2.77817
479479 −1.93121e12 −1.67617 −0.838086 0.545538i 0.816325π-0.816325\pi
−0.838086 + 0.545538i 0.816325π0.816325\pi
480480 4.22453e11 0.363239
481481 6.44722e11 0.549187
482482 2.64500e12 2.23210
483483 5.70533e11 0.477000
484484 1.59491e12 1.32109
485485 6.78095e11 0.556484
486486 1.18311e11 0.0961971
487487 1.99512e12 1.60727 0.803634 0.595124i 0.202897π-0.202897\pi
0.803634 + 0.595124i 0.202897π0.202897\pi
488488 5.40701e11 0.431587
489489 −1.96491e11 −0.155401
490490 1.21435e12 0.951614
491491 1.79495e12 1.39375 0.696876 0.717192i 0.254573π-0.254573\pi
0.696876 + 0.717192i 0.254573π0.254573\pi
492492 5.04732e11 0.388345
493493 6.60553e10 0.0503612
494494 7.78476e11 0.588131
495495 2.85652e11 0.213852
496496 4.68524e11 0.347587
497497 1.72584e12 1.26881
498498 1.05297e12 0.767154
499499 −5.00717e11 −0.361526 −0.180763 0.983527i 0.557857π-0.557857\pi
−0.180763 + 0.983527i 0.557857π0.557857\pi
500500 −1.56087e11 −0.111686
501501 1.02895e12 0.729669
502502 2.91848e12 2.05111
503503 −2.44897e12 −1.70580 −0.852900 0.522074i 0.825158π-0.825158\pi
−0.852900 + 0.522074i 0.825158π0.825158\pi
504504 −2.80067e11 −0.193341
505505 1.59106e11 0.108862
506506 −1.68510e12 −1.14274
507507 −1.65146e12 −1.11002
508508 −1.61047e12 −1.07292
509509 1.39357e12 0.920235 0.460117 0.887858i 0.347807π-0.347807\pi
0.460117 + 0.887858i 0.347807π0.347807\pi
510510 8.44424e11 0.552706
511511 3.14150e12 2.03818
512512 −1.90802e12 −1.22706
513513 −6.92579e10 −0.0441511
514514 −1.13685e12 −0.718405
515515 −1.00957e9 −0.000632417 0
516516 −2.18029e11 −0.135391
517517 4.46979e12 2.75156
518518 1.22772e12 0.749233
519519 −1.60555e12 −0.971336
520520 −4.75383e11 −0.285121
521521 1.18713e12 0.705875 0.352937 0.935647i 0.385183π-0.385183\pi
0.352937 + 0.935647i 0.385183π0.385183\pi
522522 2.99145e10 0.0176346
523523 7.35893e11 0.430088 0.215044 0.976604i 0.431011π-0.431011\pi
0.215044 + 0.976604i 0.431011π0.431011\pi
524524 −3.19701e12 −1.85248
525525 −3.12611e11 −0.179592
526526 4.25154e12 2.42164
527527 1.27432e12 0.719665
528528 −1.01981e12 −0.571042
529529 −1.29291e12 −0.717822
530530 −5.05834e11 −0.278463
531531 −6.70247e11 −0.365856
532532 8.23187e11 0.445550
533533 1.71586e12 0.920892
534534 −2.79709e12 −1.48857
535535 −1.18183e12 −0.623683
536536 4.05522e10 0.0212213
537537 −1.03049e12 −0.534759
538538 1.08084e12 0.556213
539539 −3.98888e12 −2.03564
540540 2.12354e11 0.107470
541541 3.42601e12 1.71950 0.859748 0.510719i 0.170621π-0.170621\pi
0.859748 + 0.510719i 0.170621π0.170621\pi
542542 1.29004e12 0.642103
543543 −4.96932e11 −0.245300
544544 −4.10212e12 −2.00823
545545 −3.85144e11 −0.186999
546546 −4.78051e12 −2.30201
547547 −2.19990e11 −0.105065 −0.0525327 0.998619i 0.516729π-0.516729\pi
−0.0525327 + 0.998619i 0.516729π0.516729\pi
548548 −1.34443e12 −0.636831
549549 −8.21096e11 −0.385761
550550 9.23310e11 0.430244
551551 −1.75116e10 −0.00809365
552552 −2.49491e11 −0.114375
553553 4.76811e11 0.216812
554554 −3.58471e12 −1.61681
555555 −1.85399e11 −0.0829447
556556 −1.23386e12 −0.547556
557557 −4.44924e11 −0.195856 −0.0979281 0.995193i 0.531222π-0.531222\pi
−0.0979281 + 0.995193i 0.531222π0.531222\pi
558558 5.77103e11 0.251999
559559 −7.41198e11 −0.321056
560560 1.11606e12 0.479558
561561 −2.77375e12 −1.18232
562562 1.46350e12 0.618843
563563 −2.85252e12 −1.19658 −0.598289 0.801281i 0.704152π-0.704152\pi
−0.598289 + 0.801281i 0.704152π0.704152\pi
564564 3.32285e12 1.38278
565565 2.10176e12 0.867693
566566 −4.72313e12 −1.93444
567567 4.25303e11 0.172812
568568 −7.54702e11 −0.304234
569569 3.03910e12 1.21546 0.607729 0.794144i 0.292081π-0.292081\pi
0.607729 + 0.794144i 0.292081π0.292081\pi
570570 −2.23862e11 −0.0888265
571571 8.39653e11 0.330550 0.165275 0.986248i 0.447149π-0.447149\pi
0.165275 + 0.986248i 0.447149π0.447149\pi
572572 7.84050e12 3.06240
573573 2.84489e12 1.10248
574574 3.26745e12 1.25634
575575 −2.78482e11 −0.106241
576576 −1.25059e12 −0.473385
577577 −2.51851e12 −0.945914 −0.472957 0.881085i 0.656813π-0.656813\pi
−0.472957 + 0.881085i 0.656813π0.656813\pi
578578 −4.17572e12 −1.55617
579579 −2.68666e12 −0.993478
580580 5.36930e10 0.0197012
581581 3.78519e12 1.37815
582582 −2.98192e12 −1.07731
583583 1.66156e12 0.595672
584584 −1.37376e12 −0.488712
585585 7.21906e11 0.254847
586586 −4.02578e12 −1.41030
587587 −7.40507e11 −0.257429 −0.128715 0.991682i 0.541085π-0.541085\pi
−0.128715 + 0.991682i 0.541085π0.541085\pi
588588 −2.96534e12 −1.02300
589589 −3.37829e11 −0.115659
590590 −2.16643e12 −0.736056
591591 −9.50887e11 −0.320616
592592 6.61897e11 0.221484
593593 1.87921e12 0.624066 0.312033 0.950071i 0.398990π-0.398990\pi
0.312033 + 0.950071i 0.398990π0.398990\pi
594594 −1.25615e12 −0.414003
595595 3.03553e12 0.992905
596596 4.73364e12 1.53669
597597 3.11141e12 1.00247
598598 −4.25861e12 −1.36180
599599 5.78020e11 0.183452 0.0917259 0.995784i 0.470762π-0.470762\pi
0.0917259 + 0.995784i 0.470762π0.470762\pi
600600 1.36703e11 0.0430623
601601 −3.96250e12 −1.23889 −0.619447 0.785038i 0.712643π-0.712643\pi
−0.619447 + 0.785038i 0.712643π0.712643\pi
602602 −1.41144e12 −0.438004
603603 −6.15816e10 −0.0189681
604604 7.41533e11 0.226707
605605 −1.55916e12 −0.473142
606606 −6.99669e11 −0.210749
607607 −3.06642e12 −0.916817 −0.458408 0.888742i 0.651580π-0.651580\pi
−0.458408 + 0.888742i 0.651580π0.651580\pi
608608 1.08750e12 0.322746
609609 1.07536e11 0.0316795
610610 −2.65402e12 −0.776104
611611 1.12961e13 3.27903
612612 −2.06201e12 −0.594168
613613 −4.26173e12 −1.21903 −0.609514 0.792775i 0.708636π-0.708636\pi
−0.609514 + 0.792775i 0.708636π0.708636\pi
614614 −5.24469e12 −1.48923
615615 −4.93419e11 −0.139084
616616 2.97358e12 0.832082
617617 6.21898e12 1.72757 0.863785 0.503860i 0.168087π-0.168087\pi
0.863785 + 0.503860i 0.168087π0.168087\pi
618618 4.43957e9 0.00122431
619619 1.11768e12 0.305992 0.152996 0.988227i 0.451108π-0.451108\pi
0.152996 + 0.988227i 0.451108π0.451108\pi
620620 1.03583e12 0.281531
621621 3.78872e11 0.102230
622622 1.69879e12 0.455076
623623 −1.00549e13 −2.67414
624624 −2.57729e12 −0.680508
625625 1.52588e11 0.0400000
626626 −5.54768e12 −1.44387
627627 7.35338e11 0.190013
628628 −4.72624e12 −1.21254
629629 1.80027e12 0.458574
630630 1.37470e12 0.347677
631631 −2.69935e12 −0.677839 −0.338920 0.940815i 0.610061π-0.610061\pi
−0.338920 + 0.940815i 0.610061π0.610061\pi
632632 −2.08507e11 −0.0519869
633633 −7.72111e11 −0.191145
634634 −4.19794e12 −1.03189
635635 1.57437e12 0.384260
636636 1.23520e12 0.299352
637637 −1.00808e13 −2.42586
638638 −3.17614e11 −0.0758938
639639 1.14607e12 0.271931
640640 −1.37196e12 −0.323244
641641 −1.19746e12 −0.280157 −0.140078 0.990140i 0.544735π-0.544735\pi
−0.140078 + 0.990140i 0.544735π0.544735\pi
642642 5.19710e12 1.20741
643643 −7.98005e11 −0.184101 −0.0920505 0.995754i 0.529342π-0.529342\pi
−0.0920505 + 0.995754i 0.529342π0.529342\pi
644644 −4.50320e12 −1.03166
645645 2.13142e11 0.0484897
646646 2.17375e12 0.491093
647647 2.32481e12 0.521577 0.260788 0.965396i 0.416017π-0.416017\pi
0.260788 + 0.965396i 0.416017π0.416017\pi
648648 −1.85983e11 −0.0414368
649649 7.11627e12 1.57453
650650 2.33341e12 0.512720
651651 2.07456e12 0.452702
652652 1.55090e12 0.336100
653653 −2.42366e12 −0.521630 −0.260815 0.965389i 0.583991π-0.583991\pi
−0.260815 + 0.965389i 0.583991π0.583991\pi
654654 1.69367e12 0.362017
655655 3.12535e12 0.663457
656656 1.76157e12 0.371391
657657 2.08616e12 0.436821
658658 2.15109e13 4.47344
659659 2.04543e12 0.422474 0.211237 0.977435i 0.432251π-0.432251\pi
0.211237 + 0.977435i 0.432251π0.432251\pi
660660 −2.25464e12 −0.462520
661661 −1.14535e12 −0.233363 −0.116682 0.993169i 0.537226π-0.537226\pi
−0.116682 + 0.993169i 0.537226π0.537226\pi
662662 1.19341e13 2.41506
663663 −7.00989e12 −1.40896
664664 −1.65525e12 −0.330450
665665 −8.04735e11 −0.159572
666666 8.15290e11 0.160575
667667 9.57964e10 0.0187406
668668 −8.12149e12 −1.57813
669669 2.80067e12 0.540561
670670 −1.99049e11 −0.0381614
671671 8.71789e12 1.66020
672672 −6.67816e12 −1.26327
673673 4.53266e12 0.851697 0.425848 0.904795i 0.359976π-0.359976\pi
0.425848 + 0.904795i 0.359976π0.359976\pi
674674 −1.39193e13 −2.59805
675675 −2.07594e11 −0.0384900
676676 1.30349e13 2.40075
677677 3.07988e12 0.563489 0.281744 0.959489i 0.409087π-0.409087\pi
0.281744 + 0.959489i 0.409087π0.409087\pi
678678 −9.24249e12 −1.67979
679679 −1.07194e13 −1.93533
680680 −1.32742e12 −0.238078
681681 −1.69992e12 −0.302876
682682 −6.12732e12 −1.08453
683683 8.81574e12 1.55012 0.775060 0.631887i 0.217719π-0.217719\pi
0.775060 + 0.631887i 0.217719π0.217719\pi
684684 5.46651e11 0.0954899
685685 1.31429e12 0.228078
686686 −5.66827e12 −0.977219
687687 4.42086e12 0.757184
688688 −7.60942e11 −0.129480
689689 4.19912e12 0.709859
690690 1.22462e12 0.205675
691691 −1.13198e12 −0.188880 −0.0944401 0.995531i 0.530106π-0.530106\pi
−0.0944401 + 0.995531i 0.530106π0.530106\pi
692692 1.26725e13 2.10081
693693 −4.51561e12 −0.743732
694694 −1.38738e13 −2.27028
695695 1.20620e12 0.196104
696696 −4.70252e10 −0.00759607
697697 4.79121e12 0.768950
698698 1.37197e13 2.18773
699699 −1.97262e12 −0.312534
700700 2.46743e12 0.388421
701701 9.40714e12 1.47138 0.735692 0.677316i 0.236857π-0.236857\pi
0.735692 + 0.677316i 0.236857π0.236857\pi
702702 −3.17458e12 −0.493365
703703 −4.77262e11 −0.0736983
704704 1.32780e13 2.03731
705705 −3.24836e12 −0.495238
706706 3.87753e12 0.587400
707707 −2.51516e12 −0.378598
708708 5.29024e12 0.791272
709709 −6.66779e12 −0.991001 −0.495500 0.868608i 0.665015π-0.665015\pi
−0.495500 + 0.868608i 0.665015π0.665015\pi
710710 3.70444e12 0.547091
711711 3.16634e11 0.0464670
712712 4.39698e12 0.641201
713713 1.84808e12 0.267804
714714 −1.33487e13 −1.92219
715715 −7.66475e12 −1.09678
716716 8.13361e12 1.15658
717717 7.56955e12 1.06963
718718 −9.27346e12 −1.30221
719719 2.41689e12 0.337269 0.168635 0.985679i 0.446064π-0.446064\pi
0.168635 + 0.985679i 0.446064π0.446064\pi
720720 7.41137e11 0.102778
721721 1.59593e10 0.00219941
722722 −5.76274e11 −0.0789244
723723 6.31408e12 0.859385
724724 3.92227e12 0.530535
725725 −5.24895e10 −0.00705588
726726 6.85639e12 0.915968
727727 −7.53146e12 −0.999941 −0.499970 0.866043i 0.666656π-0.666656\pi
−0.499970 + 0.866043i 0.666656π0.666656\pi
728728 7.51489e12 0.991588
729729 2.82430e11 0.0370370
730730 6.74307e12 0.878830
731731 −2.06966e12 −0.268084
732732 6.48089e12 0.834324
733733 −2.65885e11 −0.0340194 −0.0170097 0.999855i 0.505415π-0.505415\pi
−0.0170097 + 0.999855i 0.505415π0.505415\pi
734734 −1.34745e13 −1.71349
735735 2.89887e12 0.366383
736736 −5.94909e12 −0.747309
737737 6.53835e11 0.0816328
738738 2.16980e12 0.269257
739739 −7.54408e12 −0.930478 −0.465239 0.885185i 0.654032π-0.654032\pi
−0.465239 + 0.885185i 0.654032π0.654032\pi
740740 1.46335e12 0.179393
741741 1.85836e12 0.226437
742742 7.99626e12 0.968432
743743 −9.27540e12 −1.11656 −0.558281 0.829652i 0.688539π-0.688539\pi
−0.558281 + 0.829652i 0.688539π0.688539\pi
744744 −9.07197e11 −0.108548
745745 −4.62753e12 −0.550359
746746 9.86051e12 1.16567
747747 2.51362e12 0.295363
748748 2.18931e13 2.55712
749749 1.86825e13 2.16904
750750 −6.71004e11 −0.0774372
751751 −3.97286e12 −0.455747 −0.227874 0.973691i 0.573177π-0.573177\pi
−0.227874 + 0.973691i 0.573177π0.573177\pi
752752 1.15971e13 1.32242
753753 6.96693e12 0.789703
754754 −8.02681e11 −0.0904423
755755 −7.24912e11 −0.0811940
756756 −3.35691e12 −0.373759
757757 −3.95644e12 −0.437899 −0.218949 0.975736i 0.570263π-0.570263\pi
−0.218949 + 0.975736i 0.570263π0.570263\pi
758758 −1.16252e13 −1.27905
759759 −4.02262e12 −0.439968
760760 3.51907e11 0.0382619
761761 4.02381e12 0.434917 0.217458 0.976070i 0.430223π-0.430223\pi
0.217458 + 0.976070i 0.430223π0.430223\pi
762762 −6.92329e12 −0.743901
763763 6.08838e12 0.650342
764764 −2.24547e13 −2.38444
765765 2.01579e12 0.212799
766766 3.57409e12 0.375090
767767 1.79844e13 1.87636
768768 −1.87181e12 −0.194149
769769 1.47012e13 1.51595 0.757976 0.652283i 0.226188π-0.226188\pi
0.757976 + 0.652283i 0.226188π0.226188\pi
770770 −1.45957e13 −1.49630
771771 −2.71387e12 −0.276595
772772 2.12057e13 2.14869
773773 5.27223e12 0.531113 0.265556 0.964095i 0.414444π-0.414444\pi
0.265556 + 0.964095i 0.414444π0.414444\pi
774774 −9.37289e11 −0.0938727
775775 −1.01261e12 −0.100829
776776 4.68753e12 0.464052
777777 2.93080e12 0.288464
778778 2.49435e13 2.44090
779779 −1.27018e12 −0.123579
780780 −5.69798e12 −0.551183
781781 −1.21683e13 −1.17031
782782 −1.18914e13 −1.13711
783783 7.14113e10 0.00678952
784784 −1.03493e13 −0.978339
785785 4.62030e12 0.434267
786786 −1.37437e13 −1.28441
787787 1.14758e13 1.06634 0.533169 0.846009i 0.321001π-0.321001\pi
0.533169 + 0.846009i 0.321001π0.321001\pi
788788 7.50533e12 0.693428
789789 1.01492e13 0.932362
790790 1.02345e12 0.0934858
791791 −3.32248e13 −3.01765
792792 1.97465e12 0.178331
793793 2.20320e13 1.97845
794794 4.43144e12 0.395688
795795 −1.20752e12 −0.107211
796796 −2.45582e13 −2.16815
797797 −8.04453e12 −0.706217 −0.353108 0.935582i 0.614875π-0.614875\pi
−0.353108 + 0.935582i 0.614875π0.614875\pi
798798 3.53882e12 0.308919
799799 3.15424e13 2.73801
800800 3.25967e12 0.281364
801801 −6.67715e12 −0.573119
802802 −1.10775e13 −0.945489
803803 −2.21496e13 −1.87995
804804 4.86062e11 0.0410241
805805 4.40226e12 0.369483
806806 −1.54851e13 −1.29243
807807 2.58016e12 0.214149
808808 1.09987e12 0.0907799
809809 −1.46887e13 −1.20563 −0.602814 0.797882i 0.705954π-0.705954\pi
−0.602814 + 0.797882i 0.705954π0.705954\pi
810810 9.12894e11 0.0745139
811811 5.18047e12 0.420509 0.210255 0.977647i 0.432571π-0.432571\pi
0.210255 + 0.977647i 0.432571π0.432571\pi
812812 −8.48782e11 −0.0685164
813813 3.07955e12 0.247218
814814 −8.65624e12 −0.691066
815815 −1.51613e12 −0.120373
816816 −7.19662e12 −0.568228
817817 5.48678e11 0.0430842
818818 −3.38274e13 −2.64167
819819 −1.14119e13 −0.886302
820820 3.89454e12 0.300811
821821 2.10676e13 1.61834 0.809172 0.587572i 0.199916π-0.199916\pi
0.809172 + 0.587572i 0.199916π0.199916\pi
822822 −5.77958e12 −0.441543
823823 −1.23011e12 −0.0934644 −0.0467322 0.998907i 0.514881π-0.514881\pi
−0.0467322 + 0.998907i 0.514881π0.514881\pi
824824 −6.97893e9 −0.000527371 0
825825 2.20411e12 0.165649
826826 3.42471e13 2.55984
827827 −1.85555e12 −0.137942 −0.0689712 0.997619i 0.521972π-0.521972\pi
−0.0689712 + 0.997619i 0.521972π0.521972\pi
828828 −2.99042e12 −0.221104
829829 9.09884e12 0.669099 0.334550 0.942378i 0.391416π-0.391416\pi
0.334550 + 0.942378i 0.391416π0.391416\pi
830830 8.12474e12 0.594235
831831 −8.55734e12 −0.622493
832832 3.35565e13 2.42785
833833 −2.81487e13 −2.02561
834834 −5.30425e12 −0.379644
835835 7.93945e12 0.565199
836836 −5.80400e12 −0.410960
837837 1.37765e12 0.0970228
838838 −4.80455e12 −0.336554
839839 1.12716e13 0.785341 0.392670 0.919679i 0.371551π-0.371551\pi
0.392670 + 0.919679i 0.371551π0.371551\pi
840840 −2.16101e12 −0.149762
841841 −1.44891e13 −0.998755
842842 −2.70343e13 −1.85358
843843 3.49364e12 0.238262
844844 6.09425e12 0.413409
845845 −1.27427e13 −0.859818
846846 1.42847e13 0.958745
847847 2.46473e13 1.64548
848848 4.31098e12 0.286283
849849 −1.12750e13 −0.744784
850850 6.51561e12 0.428125
851851 2.61083e12 0.170646
852852 −9.04592e12 −0.588131
853853 9.70339e12 0.627556 0.313778 0.949496i 0.398405π-0.398405\pi
0.313778 + 0.949496i 0.398405π0.398405\pi
854854 4.19549e13 2.69912
855855 −5.34398e11 −0.0341993
856856 −8.16976e12 −0.520089
857857 2.75330e13 1.74357 0.871787 0.489885i 0.162961π-0.162961\pi
0.871787 + 0.489885i 0.162961π0.162961\pi
858858 3.37057e13 2.12329
859859 −1.21276e13 −0.759989 −0.379994 0.924989i 0.624074π-0.624074\pi
−0.379994 + 0.924989i 0.624074π0.624074\pi
860860 −1.68232e12 −0.104874
861861 7.79999e12 0.483704
862862 1.39704e13 0.861841
863863 1.58553e13 0.973032 0.486516 0.873672i 0.338268π-0.338268\pi
0.486516 + 0.873672i 0.338268π0.338268\pi
864864 −4.43474e12 −0.270742
865865 −1.23885e13 −0.752394
866866 1.78152e13 1.07637
867867 −9.96820e12 −0.599143
868868 −1.63745e13 −0.979104
869869 −3.36182e12 −0.199980
870870 2.30822e11 0.0136597
871871 1.65239e12 0.0972814
872872 −2.66242e12 −0.155938
873873 −7.11837e12 −0.414779
874874 3.15247e12 0.182747
875875 −2.41212e12 −0.139111
876876 −1.64660e13 −0.944757
877877 −2.86146e13 −1.63339 −0.816695 0.577069i 0.804196π-0.804196\pi
−0.816695 + 0.577069i 0.804196π0.804196\pi
878878 −2.00992e13 −1.14144
879879 −9.61027e12 −0.542982
880880 −7.86893e12 −0.442327
881881 −1.23867e13 −0.692729 −0.346365 0.938100i 0.612584π-0.612584\pi
−0.346365 + 0.938100i 0.612584π0.612584\pi
882882 −1.27477e13 −0.709292
883883 −3.23596e12 −0.179135 −0.0895673 0.995981i 0.528548π-0.528548\pi
−0.0895673 + 0.995981i 0.528548π0.528548\pi
884884 5.53288e13 3.04731
885885 −5.17166e12 −0.283391
886886 1.17477e13 0.640474
887887 −2.35148e11 −0.0127551 −0.00637757 0.999980i 0.502030π-0.502030\pi
−0.00637757 + 0.999980i 0.502030π0.502030\pi
888888 −1.28162e12 −0.0691675
889889 −2.48878e13 −1.33637
890890 −2.15825e13 −1.15304
891891 −2.99866e12 −0.159396
892892 −2.21056e13 −1.16913
893893 −8.36208e12 −0.440030
894894 2.03495e13 1.06546
895895 −7.95129e12 −0.414223
896896 2.16880e13 1.12417
897897 −1.01661e13 −0.524308
898898 6.48070e12 0.332566
899899 3.48333e11 0.0177859
900900 1.63853e12 0.0832462
901901 1.17253e13 0.592737
902902 −2.30376e13 −1.15880
903903 −3.36936e12 −0.168637
904904 1.45291e13 0.723568
905905 −3.83435e12 −0.190009
906906 3.18779e12 0.157186
907907 3.22682e13 1.58322 0.791611 0.611026i 0.209243π-0.209243\pi
0.791611 + 0.611026i 0.209243π0.209243\pi
908908 1.34174e13 0.655061
909909 −1.67023e12 −0.0811409
910910 −3.68867e13 −1.78313
911911 2.50945e13 1.20711 0.603553 0.797323i 0.293751π-0.293751\pi
0.603553 + 0.797323i 0.293751π0.293751\pi
912912 1.90787e12 0.0913211
913913 −2.66880e13 −1.27115
914914 3.05149e13 1.44629
915915 −6.33562e12 −0.298809
916916 −3.48937e13 −1.63764
917917 −4.94057e13 −2.30736
918918 −8.86442e12 −0.411963
919919 1.22135e13 0.564835 0.282418 0.959292i 0.408864π-0.408864\pi
0.282418 + 0.959292i 0.408864π0.408864\pi
920920 −1.92509e12 −0.0885942
921921 −1.25200e13 −0.573372
922922 9.45727e12 0.430999
923923 −3.07519e13 −1.39465
924924 3.56416e13 1.60854
925925 −1.43055e12 −0.0642487
926926 −2.57706e13 −1.15180
927927 1.05980e10 0.000471376 0
928928 −1.12131e12 −0.0496317
929929 −2.81613e13 −1.24046 −0.620228 0.784422i 0.712960π-0.712960\pi
−0.620228 + 0.784422i 0.712960π0.712960\pi
930930 4.45295e12 0.195198
931931 7.46239e12 0.325540
932932 1.55699e13 0.675948
933933 4.05532e12 0.175210
934934 −3.31536e13 −1.42551
935935 −2.14024e13 −0.915820
936936 4.99038e12 0.212516
937937 4.52888e12 0.191939 0.0959695 0.995384i 0.469405π-0.469405\pi
0.0959695 + 0.995384i 0.469405π0.469405\pi
938938 3.14659e12 0.132717
939939 −1.32433e13 −0.555906
940940 2.56393e13 1.07110
941941 3.51517e13 1.46148 0.730741 0.682655i 0.239175π-0.239175\pi
0.730741 + 0.682655i 0.239175π0.239175\pi
942942 −2.03177e13 −0.840709
943943 6.94844e12 0.286144
944944 1.84635e13 0.756727
945945 3.28166e12 0.133860
946946 9.95155e12 0.403999
947947 −1.47283e13 −0.595083 −0.297541 0.954709i 0.596167π-0.596167\pi
−0.297541 + 0.954709i 0.596167π0.596167\pi
948948 −2.49918e12 −0.100499
949949 −5.59768e13 −2.24032
950950 −1.72733e12 −0.0688047
951951 −1.00212e13 −0.397291
952952 2.09839e13 0.827982
953953 7.97246e12 0.313094 0.156547 0.987671i 0.449964π-0.449964\pi
0.156547 + 0.987671i 0.449964π0.449964\pi
954954 5.31004e12 0.207554
955955 2.19513e13 0.853976
956956 −5.97462e13 −2.31340
957957 −7.58201e11 −0.0292200
958958 6.55282e13 2.51353
959959 −2.07764e13 −0.793207
960960 −9.64964e12 −0.366683
961961 −1.97197e13 −0.745838
962962 −2.18762e13 −0.823541
963963 1.24064e13 0.464866
964964 −4.98369e13 −1.85868
965965 −2.07304e13 −0.769545
966966 −1.93589e13 −0.715293
967967 −4.87770e13 −1.79389 −0.896945 0.442143i 0.854218π-0.854218\pi
−0.896945 + 0.442143i 0.854218π0.854218\pi
968968 −1.07781e13 −0.394552
969969 5.18913e12 0.189077
970970 −2.30086e13 −0.834484
971971 −4.14096e13 −1.49491 −0.747454 0.664314i 0.768724π-0.768724\pi
−0.747454 + 0.664314i 0.768724π0.768724\pi
972972 −2.22921e12 −0.0801037
973973 −1.90677e13 −0.682009
974974 −6.76969e13 −2.41020
975975 5.57026e12 0.197404
976976 2.26189e13 0.797899
977977 −4.15877e13 −1.46029 −0.730145 0.683292i 0.760547π-0.760547\pi
−0.730145 + 0.683292i 0.760547π0.760547\pi
978978 6.66718e12 0.233033
979979 7.08938e13 2.46653
980980 −2.28807e13 −0.792413
981981 4.04309e12 0.139381
982982 −6.09049e13 −2.09002
983983 3.82096e13 1.30522 0.652608 0.757696i 0.273675π-0.273675\pi
0.652608 + 0.757696i 0.273675π0.273675\pi
984984 −3.41090e12 −0.115982
985985 −7.33709e12 −0.248348
986986 −2.24134e12 −0.0755199
987987 5.13504e13 1.72233
988988 −1.46680e13 −0.489739
989989 −3.00151e12 −0.0997602
990990 −9.69254e12 −0.320685
991991 3.49657e13 1.15163 0.575813 0.817582i 0.304686π-0.304686\pi
0.575813 + 0.817582i 0.304686π0.304686\pi
992992 −2.16320e13 −0.709241
993993 2.84888e13 0.929828
994994 −5.85600e13 −1.90266
995995 2.40078e13 0.776512
996996 −1.98399e13 −0.638812
997997 −2.24998e13 −0.721193 −0.360596 0.932722i 0.617427π-0.617427\pi
−0.360596 + 0.932722i 0.617427π0.617427\pi
998998 1.69900e13 0.542132
999999 1.94624e12 0.0618233
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.f.1.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.f.1.3 14 1.1 even 1 trivial