Properties

Label 285.10.a.f.1.8
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 5365 x^{12} + 7107 x^{11} + 10970098 x^{10} - 19024208 x^{9} - 10608934432 x^{8} + \cdots - 480881506516992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.198399\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.198399 q^{2} -81.0000 q^{3} -511.961 q^{4} -625.000 q^{5} -16.0704 q^{6} +11709.0 q^{7} -203.153 q^{8} +6561.00 q^{9} -124.000 q^{10} -4212.70 q^{11} +41468.8 q^{12} +187919. q^{13} +2323.06 q^{14} +50625.0 q^{15} +262084. q^{16} +520915. q^{17} +1301.70 q^{18} +130321. q^{19} +319975. q^{20} -948429. q^{21} -835.796 q^{22} +1.17006e6 q^{23} +16455.4 q^{24} +390625. q^{25} +37283.1 q^{26} -531441. q^{27} -5.99455e6 q^{28} +6.20440e6 q^{29} +10044.0 q^{30} -1.27901e6 q^{31} +156012. q^{32} +341228. q^{33} +103349. q^{34} -7.31812e6 q^{35} -3.35897e6 q^{36} +9.41695e6 q^{37} +25855.6 q^{38} -1.52215e7 q^{39} +126971. q^{40} -1.56146e6 q^{41} -188168. q^{42} +3.79485e7 q^{43} +2.15673e6 q^{44} -4.10062e6 q^{45} +232140. q^{46} -4.44554e7 q^{47} -2.12288e7 q^{48} +9.67470e7 q^{49} +77499.8 q^{50} -4.21941e7 q^{51} -9.62073e7 q^{52} -8.77655e7 q^{53} -105438. q^{54} +2.63294e6 q^{55} -2.37872e6 q^{56} -1.05560e7 q^{57} +1.23095e6 q^{58} -1.22719e8 q^{59} -2.59180e7 q^{60} -9.80852e6 q^{61} -253755. q^{62} +7.68227e7 q^{63} -1.34156e8 q^{64} -1.17450e8 q^{65} +67699.5 q^{66} +8.30870e7 q^{67} -2.66688e8 q^{68} -9.47752e7 q^{69} -1.45191e6 q^{70} +1.35563e8 q^{71} -1.33289e6 q^{72} -3.80047e8 q^{73} +1.86832e6 q^{74} -3.16406e7 q^{75} -6.67192e7 q^{76} -4.93265e7 q^{77} -3.01993e6 q^{78} +5.48624e8 q^{79} -1.63802e8 q^{80} +4.30467e7 q^{81} -309793. q^{82} +3.55951e8 q^{83} +4.85558e8 q^{84} -3.25572e8 q^{85} +7.52896e6 q^{86} -5.02556e8 q^{87} +855823. q^{88} +2.07178e8 q^{89} -813562. q^{90} +2.20035e9 q^{91} -5.99027e8 q^{92} +1.03600e8 q^{93} -8.81993e6 q^{94} -8.14506e7 q^{95} -1.26369e7 q^{96} -9.64409e8 q^{97} +1.91945e7 q^{98} -2.76395e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{2} - 1134 q^{3} + 3563 q^{4} - 8750 q^{5} + 81 q^{6} + 13054 q^{7} + 6249 q^{8} + 91854 q^{9} + 625 q^{10} + 43520 q^{11} - 288603 q^{12} + 256834 q^{13} + 250610 q^{14} + 708750 q^{15} + 866291 q^{16}+ \cdots + 285534720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.198399 0.00876810 0.00438405 0.999990i \(-0.498605\pi\)
0.00438405 + 0.999990i \(0.498605\pi\)
\(3\) −81.0000 −0.577350
\(4\) −511.961 −0.999923
\(5\) −625.000 −0.447214
\(6\) −16.0704 −0.00506226
\(7\) 11709.0 1.84323 0.921613 0.388110i \(-0.126872\pi\)
0.921613 + 0.388110i \(0.126872\pi\)
\(8\) −203.153 −0.0175355
\(9\) 6561.00 0.333333
\(10\) −124.000 −0.00392121
\(11\) −4212.70 −0.0867547 −0.0433774 0.999059i \(-0.513812\pi\)
−0.0433774 + 0.999059i \(0.513812\pi\)
\(12\) 41468.8 0.577306
\(13\) 187919. 1.82485 0.912423 0.409248i \(-0.134209\pi\)
0.912423 + 0.409248i \(0.134209\pi\)
\(14\) 2323.06 0.0161616
\(15\) 50625.0 0.258199
\(16\) 262084. 0.999769
\(17\) 520915. 1.51268 0.756339 0.654180i \(-0.226986\pi\)
0.756339 + 0.654180i \(0.226986\pi\)
\(18\) 1301.70 0.00292270
\(19\) 130321. 0.229416
\(20\) 319975. 0.447179
\(21\) −948429. −1.06419
\(22\) −835.796 −0.000760674 0
\(23\) 1.17006e6 0.871835 0.435918 0.899987i \(-0.356424\pi\)
0.435918 + 0.899987i \(0.356424\pi\)
\(24\) 16455.4 0.0101241
\(25\) 390625. 0.200000
\(26\) 37283.1 0.0160004
\(27\) −531441. −0.192450
\(28\) −5.99455e6 −1.84308
\(29\) 6.20440e6 1.62895 0.814477 0.580197i \(-0.197024\pi\)
0.814477 + 0.580197i \(0.197024\pi\)
\(30\) 10044.0 0.00226391
\(31\) −1.27901e6 −0.248740 −0.124370 0.992236i \(-0.539691\pi\)
−0.124370 + 0.992236i \(0.539691\pi\)
\(32\) 156012. 0.0263016
\(33\) 341228. 0.0500879
\(34\) 103349. 0.0132633
\(35\) −7.31812e6 −0.824316
\(36\) −3.35897e6 −0.333308
\(37\) 9.41695e6 0.826043 0.413022 0.910721i \(-0.364473\pi\)
0.413022 + 0.910721i \(0.364473\pi\)
\(38\) 25855.6 0.00201154
\(39\) −1.52215e7 −1.05358
\(40\) 126971. 0.00784212
\(41\) −1.56146e6 −0.0862987 −0.0431493 0.999069i \(-0.513739\pi\)
−0.0431493 + 0.999069i \(0.513739\pi\)
\(42\) −188168. −0.00933089
\(43\) 3.79485e7 1.69273 0.846363 0.532606i \(-0.178787\pi\)
0.846363 + 0.532606i \(0.178787\pi\)
\(44\) 2.15673e6 0.0867480
\(45\) −4.10062e6 −0.149071
\(46\) 232140. 0.00764434
\(47\) −4.44554e7 −1.32888 −0.664438 0.747343i \(-0.731329\pi\)
−0.664438 + 0.747343i \(0.731329\pi\)
\(48\) −2.12288e7 −0.577217
\(49\) 9.67470e7 2.39748
\(50\) 77499.8 0.00175362
\(51\) −4.21941e7 −0.873345
\(52\) −9.62073e7 −1.82471
\(53\) −8.77655e7 −1.52786 −0.763928 0.645302i \(-0.776732\pi\)
−0.763928 + 0.645302i \(0.776732\pi\)
\(54\) −105438. −0.00168742
\(55\) 2.63294e6 0.0387979
\(56\) −2.37872e6 −0.0323219
\(57\) −1.05560e7 −0.132453
\(58\) 1.23095e6 0.0142828
\(59\) −1.22719e8 −1.31850 −0.659249 0.751925i \(-0.729125\pi\)
−0.659249 + 0.751925i \(0.729125\pi\)
\(60\) −2.59180e7 −0.258179
\(61\) −9.80852e6 −0.0907025 −0.0453512 0.998971i \(-0.514441\pi\)
−0.0453512 + 0.998971i \(0.514441\pi\)
\(62\) −253755. −0.00218098
\(63\) 7.68227e7 0.614409
\(64\) −1.34156e8 −0.999539
\(65\) −1.17450e8 −0.816096
\(66\) 67699.5 0.000439175 0
\(67\) 8.30870e7 0.503729 0.251864 0.967763i \(-0.418956\pi\)
0.251864 + 0.967763i \(0.418956\pi\)
\(68\) −2.66688e8 −1.51256
\(69\) −9.47752e7 −0.503354
\(70\) −1.45191e6 −0.00722768
\(71\) 1.35563e8 0.633110 0.316555 0.948574i \(-0.397474\pi\)
0.316555 + 0.948574i \(0.397474\pi\)
\(72\) −1.33289e6 −0.00584517
\(73\) −3.80047e8 −1.56633 −0.783167 0.621811i \(-0.786397\pi\)
−0.783167 + 0.621811i \(0.786397\pi\)
\(74\) 1.86832e6 0.00724283
\(75\) −3.16406e7 −0.115470
\(76\) −6.67192e7 −0.229398
\(77\) −4.93265e7 −0.159909
\(78\) −3.01993e6 −0.00923785
\(79\) 5.48624e8 1.58472 0.792360 0.610053i \(-0.208852\pi\)
0.792360 + 0.610053i \(0.208852\pi\)
\(80\) −1.63802e8 −0.447110
\(81\) 4.30467e7 0.111111
\(82\) −309793. −0.000756675 0
\(83\) 3.55951e8 0.823264 0.411632 0.911350i \(-0.364959\pi\)
0.411632 + 0.911350i \(0.364959\pi\)
\(84\) 4.85558e8 1.06411
\(85\) −3.25572e8 −0.676490
\(86\) 7.52896e6 0.0148420
\(87\) −5.02556e8 −0.940476
\(88\) 855823. 0.00152129
\(89\) 2.07178e8 0.350016 0.175008 0.984567i \(-0.444005\pi\)
0.175008 + 0.984567i \(0.444005\pi\)
\(90\) −813562. −0.00130707
\(91\) 2.20035e9 3.36360
\(92\) −5.99027e8 −0.871768
\(93\) 1.03600e8 0.143610
\(94\) −8.81993e6 −0.0116517
\(95\) −8.14506e7 −0.102598
\(96\) −1.26369e7 −0.0151852
\(97\) −9.64409e8 −1.10608 −0.553042 0.833153i \(-0.686533\pi\)
−0.553042 + 0.833153i \(0.686533\pi\)
\(98\) 1.91945e7 0.0210213
\(99\) −2.76395e7 −0.0289182
\(100\) −1.99985e8 −0.199985
\(101\) 1.57479e9 1.50583 0.752917 0.658116i \(-0.228646\pi\)
0.752917 + 0.658116i \(0.228646\pi\)
\(102\) −8.37128e6 −0.00765758
\(103\) 1.33405e9 1.16789 0.583947 0.811792i \(-0.301508\pi\)
0.583947 + 0.811792i \(0.301508\pi\)
\(104\) −3.81764e7 −0.0319996
\(105\) 5.92768e8 0.475919
\(106\) −1.74126e7 −0.0133964
\(107\) 8.58739e7 0.0633336 0.0316668 0.999498i \(-0.489918\pi\)
0.0316668 + 0.999498i \(0.489918\pi\)
\(108\) 2.72077e8 0.192435
\(109\) −3.97713e8 −0.269868 −0.134934 0.990855i \(-0.543082\pi\)
−0.134934 + 0.990855i \(0.543082\pi\)
\(110\) 522373. 0.000340184 0
\(111\) −7.62773e8 −0.476916
\(112\) 3.06874e9 1.84280
\(113\) 6.62533e8 0.382256 0.191128 0.981565i \(-0.438785\pi\)
0.191128 + 0.981565i \(0.438785\pi\)
\(114\) −2.09430e6 −0.00116136
\(115\) −7.31290e8 −0.389897
\(116\) −3.17641e9 −1.62883
\(117\) 1.23294e9 0.608282
\(118\) −2.43475e7 −0.0115607
\(119\) 6.09939e9 2.78821
\(120\) −1.02846e7 −0.00452765
\(121\) −2.34020e9 −0.992474
\(122\) −1.94600e6 −0.000795288 0
\(123\) 1.26478e8 0.0498246
\(124\) 6.54803e8 0.248721
\(125\) −2.44141e8 −0.0894427
\(126\) 1.52416e7 0.00538719
\(127\) 1.40056e8 0.0477733 0.0238867 0.999715i \(-0.492396\pi\)
0.0238867 + 0.999715i \(0.492396\pi\)
\(128\) −1.06494e8 −0.0350656
\(129\) −3.07383e9 −0.977296
\(130\) −2.33019e7 −0.00715561
\(131\) −4.79459e9 −1.42243 −0.711214 0.702976i \(-0.751854\pi\)
−0.711214 + 0.702976i \(0.751854\pi\)
\(132\) −1.74696e8 −0.0500840
\(133\) 1.52593e9 0.422865
\(134\) 1.64844e7 0.00441674
\(135\) 3.32151e8 0.0860663
\(136\) −1.05826e8 −0.0265256
\(137\) −2.78534e9 −0.675515 −0.337758 0.941233i \(-0.609668\pi\)
−0.337758 + 0.941233i \(0.609668\pi\)
\(138\) −1.88033e7 −0.00441346
\(139\) −2.29267e9 −0.520924 −0.260462 0.965484i \(-0.583875\pi\)
−0.260462 + 0.965484i \(0.583875\pi\)
\(140\) 3.74659e9 0.824252
\(141\) 3.60089e9 0.767227
\(142\) 2.68957e7 0.00555117
\(143\) −7.91647e8 −0.158314
\(144\) 1.71953e9 0.333256
\(145\) −3.87775e9 −0.728490
\(146\) −7.54011e7 −0.0137338
\(147\) −7.83651e9 −1.38419
\(148\) −4.82111e9 −0.825980
\(149\) 4.32293e9 0.718522 0.359261 0.933237i \(-0.383029\pi\)
0.359261 + 0.933237i \(0.383029\pi\)
\(150\) −6.27748e6 −0.00101245
\(151\) 9.18962e9 1.43847 0.719236 0.694766i \(-0.244492\pi\)
0.719236 + 0.694766i \(0.244492\pi\)
\(152\) −2.64751e7 −0.00402292
\(153\) 3.41772e9 0.504226
\(154\) −9.78634e6 −0.00140209
\(155\) 7.99381e8 0.111240
\(156\) 7.79279e9 1.05349
\(157\) 3.16561e9 0.415823 0.207912 0.978148i \(-0.433333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(158\) 1.08847e8 0.0138950
\(159\) 7.10900e9 0.882108
\(160\) −9.75073e7 −0.0117624
\(161\) 1.37003e10 1.60699
\(162\) 8.54044e6 0.000974233 0
\(163\) 8.59899e9 0.954121 0.477060 0.878870i \(-0.341702\pi\)
0.477060 + 0.878870i \(0.341702\pi\)
\(164\) 7.99407e8 0.0862920
\(165\) −2.13268e8 −0.0224000
\(166\) 7.06205e7 0.00721846
\(167\) −1.88465e10 −1.87502 −0.937510 0.347959i \(-0.886875\pi\)
−0.937510 + 0.347959i \(0.886875\pi\)
\(168\) 1.92676e8 0.0186611
\(169\) 2.47092e10 2.33006
\(170\) −6.45932e7 −0.00593153
\(171\) 8.55036e8 0.0764719
\(172\) −1.94281e10 −1.69260
\(173\) 4.31818e9 0.366516 0.183258 0.983065i \(-0.441336\pi\)
0.183258 + 0.983065i \(0.441336\pi\)
\(174\) −9.97068e7 −0.00824619
\(175\) 4.57383e9 0.368645
\(176\) −1.10408e9 −0.0867347
\(177\) 9.94027e9 0.761235
\(178\) 4.11039e7 0.00306897
\(179\) 7.72961e9 0.562754 0.281377 0.959597i \(-0.409209\pi\)
0.281377 + 0.959597i \(0.409209\pi\)
\(180\) 2.09936e9 0.149060
\(181\) −2.13864e10 −1.48110 −0.740549 0.672002i \(-0.765435\pi\)
−0.740549 + 0.672002i \(0.765435\pi\)
\(182\) 4.36547e8 0.0294924
\(183\) 7.94490e8 0.0523671
\(184\) −2.37702e8 −0.0152881
\(185\) −5.88560e9 −0.369418
\(186\) 2.05541e7 0.00125919
\(187\) −2.19446e9 −0.131232
\(188\) 2.27594e10 1.32877
\(189\) −6.22264e9 −0.354729
\(190\) −1.61598e7 −0.000899588 0
\(191\) 3.22208e10 1.75181 0.875904 0.482485i \(-0.160266\pi\)
0.875904 + 0.482485i \(0.160266\pi\)
\(192\) 1.08666e10 0.577084
\(193\) 4.80908e8 0.0249490 0.0124745 0.999922i \(-0.496029\pi\)
0.0124745 + 0.999922i \(0.496029\pi\)
\(194\) −1.91338e8 −0.00969826
\(195\) 9.51341e9 0.471173
\(196\) −4.95307e10 −2.39730
\(197\) −3.24478e10 −1.53493 −0.767463 0.641093i \(-0.778481\pi\)
−0.767463 + 0.641093i \(0.778481\pi\)
\(198\) −5.48366e6 −0.000253558 0
\(199\) −2.30836e10 −1.04344 −0.521718 0.853118i \(-0.674709\pi\)
−0.521718 + 0.853118i \(0.674709\pi\)
\(200\) −7.93567e7 −0.00350710
\(201\) −6.73005e9 −0.290828
\(202\) 3.12438e8 0.0132033
\(203\) 7.26473e10 3.00253
\(204\) 2.16017e10 0.873278
\(205\) 9.75914e8 0.0385939
\(206\) 2.64674e8 0.0102402
\(207\) 7.67679e9 0.290612
\(208\) 4.92506e10 1.82443
\(209\) −5.49003e8 −0.0199029
\(210\) 1.17605e8 0.00417290
\(211\) −1.11400e10 −0.386913 −0.193456 0.981109i \(-0.561970\pi\)
−0.193456 + 0.981109i \(0.561970\pi\)
\(212\) 4.49325e10 1.52774
\(213\) −1.09806e10 −0.365526
\(214\) 1.70373e7 0.000555315 0
\(215\) −2.37178e10 −0.757010
\(216\) 1.07964e8 0.00337471
\(217\) −1.49759e10 −0.458485
\(218\) −7.89061e7 −0.00236623
\(219\) 3.07838e10 0.904324
\(220\) −1.34796e9 −0.0387949
\(221\) 9.78899e10 2.76041
\(222\) −1.51334e8 −0.00418165
\(223\) −4.67023e10 −1.26464 −0.632320 0.774707i \(-0.717897\pi\)
−0.632320 + 0.774707i \(0.717897\pi\)
\(224\) 1.82674e9 0.0484798
\(225\) 2.56289e9 0.0666667
\(226\) 1.31446e8 0.00335166
\(227\) −3.90534e10 −0.976209 −0.488105 0.872785i \(-0.662312\pi\)
−0.488105 + 0.872785i \(0.662312\pi\)
\(228\) 5.40426e9 0.132443
\(229\) −1.46881e10 −0.352943 −0.176472 0.984306i \(-0.556468\pi\)
−0.176472 + 0.984306i \(0.556468\pi\)
\(230\) −1.45088e8 −0.00341865
\(231\) 3.99544e9 0.0923232
\(232\) −1.26044e9 −0.0285645
\(233\) −2.16981e10 −0.482304 −0.241152 0.970487i \(-0.577525\pi\)
−0.241152 + 0.970487i \(0.577525\pi\)
\(234\) 2.44614e8 0.00533348
\(235\) 2.77847e10 0.594292
\(236\) 6.28275e10 1.31840
\(237\) −4.44385e10 −0.914939
\(238\) 1.21012e9 0.0244473
\(239\) −6.95602e10 −1.37902 −0.689510 0.724277i \(-0.742174\pi\)
−0.689510 + 0.724277i \(0.742174\pi\)
\(240\) 1.32680e10 0.258139
\(241\) 1.03001e11 1.96682 0.983412 0.181387i \(-0.0580586\pi\)
0.983412 + 0.181387i \(0.0580586\pi\)
\(242\) −4.64294e8 −0.00870211
\(243\) −3.48678e9 −0.0641500
\(244\) 5.02158e9 0.0906955
\(245\) −6.04669e10 −1.07219
\(246\) 2.50932e7 0.000436867 0
\(247\) 2.44898e10 0.418648
\(248\) 2.59835e8 0.00436179
\(249\) −2.88321e10 −0.475312
\(250\) −4.84374e7 −0.000784242 0
\(251\) −6.24095e10 −0.992474 −0.496237 0.868187i \(-0.665285\pi\)
−0.496237 + 0.868187i \(0.665285\pi\)
\(252\) −3.93302e10 −0.614361
\(253\) −4.92912e9 −0.0756358
\(254\) 2.77871e7 0.000418881 0
\(255\) 2.63713e10 0.390572
\(256\) 6.86667e10 0.999231
\(257\) 2.96210e10 0.423545 0.211773 0.977319i \(-0.432076\pi\)
0.211773 + 0.977319i \(0.432076\pi\)
\(258\) −6.09846e8 −0.00856903
\(259\) 1.10263e11 1.52258
\(260\) 6.01295e10 0.816033
\(261\) 4.07070e10 0.542984
\(262\) −9.51243e8 −0.0124720
\(263\) 1.18888e11 1.53228 0.766138 0.642676i \(-0.222176\pi\)
0.766138 + 0.642676i \(0.222176\pi\)
\(264\) −6.93216e7 −0.000878317 0
\(265\) 5.48534e10 0.683278
\(266\) 3.02743e8 0.00370772
\(267\) −1.67814e10 −0.202082
\(268\) −4.25373e10 −0.503690
\(269\) −1.41085e11 −1.64284 −0.821418 0.570326i \(-0.806817\pi\)
−0.821418 + 0.570326i \(0.806817\pi\)
\(270\) 6.58985e7 0.000754638 0
\(271\) −1.42296e10 −0.160263 −0.0801313 0.996784i \(-0.525534\pi\)
−0.0801313 + 0.996784i \(0.525534\pi\)
\(272\) 1.36523e11 1.51233
\(273\) −1.78228e11 −1.94198
\(274\) −5.52609e8 −0.00592298
\(275\) −1.64558e9 −0.0173509
\(276\) 4.85212e10 0.503316
\(277\) −3.22456e10 −0.329088 −0.164544 0.986370i \(-0.552615\pi\)
−0.164544 + 0.986370i \(0.552615\pi\)
\(278\) −4.54864e8 −0.00456751
\(279\) −8.39158e9 −0.0829134
\(280\) 1.48670e9 0.0144548
\(281\) 8.86186e9 0.0847904 0.0423952 0.999101i \(-0.486501\pi\)
0.0423952 + 0.999101i \(0.486501\pi\)
\(282\) 7.14415e8 0.00672712
\(283\) 9.33181e9 0.0864822 0.0432411 0.999065i \(-0.486232\pi\)
0.0432411 + 0.999065i \(0.486232\pi\)
\(284\) −6.94031e10 −0.633062
\(285\) 6.59750e9 0.0592349
\(286\) −1.57062e8 −0.00138811
\(287\) −1.82832e10 −0.159068
\(288\) 1.02359e9 0.00876720
\(289\) 1.52764e11 1.28820
\(290\) −7.69343e8 −0.00638747
\(291\) 7.81171e10 0.638598
\(292\) 1.94569e11 1.56621
\(293\) 2.58184e10 0.204656 0.102328 0.994751i \(-0.467371\pi\)
0.102328 + 0.994751i \(0.467371\pi\)
\(294\) −1.55476e9 −0.0121367
\(295\) 7.66996e10 0.589650
\(296\) −1.91308e9 −0.0144851
\(297\) 2.23880e9 0.0166960
\(298\) 8.57667e8 0.00630007
\(299\) 2.19878e11 1.59097
\(300\) 1.61988e10 0.115461
\(301\) 4.44339e11 3.12008
\(302\) 1.82321e9 0.0126127
\(303\) −1.27558e11 −0.869393
\(304\) 3.41550e10 0.229363
\(305\) 6.13032e9 0.0405634
\(306\) 6.78074e8 0.00442110
\(307\) 2.19877e11 1.41273 0.706363 0.707850i \(-0.250335\pi\)
0.706363 + 0.707850i \(0.250335\pi\)
\(308\) 2.52532e10 0.159896
\(309\) −1.08058e11 −0.674283
\(310\) 1.58597e8 0.000975364 0
\(311\) −2.84889e11 −1.72685 −0.863423 0.504481i \(-0.831684\pi\)
−0.863423 + 0.504481i \(0.831684\pi\)
\(312\) 3.09229e9 0.0184750
\(313\) −2.56198e11 −1.50878 −0.754391 0.656425i \(-0.772068\pi\)
−0.754391 + 0.656425i \(0.772068\pi\)
\(314\) 6.28055e8 0.00364598
\(315\) −4.80142e10 −0.274772
\(316\) −2.80874e11 −1.58460
\(317\) 6.04838e10 0.336413 0.168206 0.985752i \(-0.446203\pi\)
0.168206 + 0.985752i \(0.446203\pi\)
\(318\) 1.41042e9 0.00773441
\(319\) −2.61372e10 −0.141319
\(320\) 8.38474e10 0.447007
\(321\) −6.95579e9 −0.0365657
\(322\) 2.71813e9 0.0140902
\(323\) 6.78861e10 0.347032
\(324\) −2.20382e10 −0.111103
\(325\) 7.34060e10 0.364969
\(326\) 1.70604e9 0.00836582
\(327\) 3.22148e10 0.155808
\(328\) 3.17216e8 0.00151329
\(329\) −5.20529e11 −2.44942
\(330\) −4.23122e7 −0.000196405 0
\(331\) 4.07305e10 0.186506 0.0932531 0.995642i \(-0.470273\pi\)
0.0932531 + 0.995642i \(0.470273\pi\)
\(332\) −1.82233e11 −0.823201
\(333\) 6.17846e10 0.275348
\(334\) −3.73913e9 −0.0164404
\(335\) −5.19294e10 −0.225274
\(336\) −2.48568e11 −1.06394
\(337\) −3.54053e11 −1.49532 −0.747659 0.664083i \(-0.768822\pi\)
−0.747659 + 0.664083i \(0.768822\pi\)
\(338\) 4.90228e9 0.0204302
\(339\) −5.36652e10 −0.220696
\(340\) 1.66680e11 0.676438
\(341\) 5.38808e9 0.0215794
\(342\) 1.69639e8 0.000670513 0
\(343\) 6.60310e11 2.57587
\(344\) −7.70936e9 −0.0296828
\(345\) 5.92345e10 0.225107
\(346\) 8.56725e8 0.00321365
\(347\) −2.95295e11 −1.09338 −0.546692 0.837334i \(-0.684113\pi\)
−0.546692 + 0.837334i \(0.684113\pi\)
\(348\) 2.57289e11 0.940404
\(349\) −8.30547e10 −0.299675 −0.149837 0.988711i \(-0.547875\pi\)
−0.149837 + 0.988711i \(0.547875\pi\)
\(350\) 9.07445e8 0.00323232
\(351\) −9.98680e10 −0.351192
\(352\) −6.57230e8 −0.00228179
\(353\) −1.34581e11 −0.461316 −0.230658 0.973035i \(-0.574088\pi\)
−0.230658 + 0.973035i \(0.574088\pi\)
\(354\) 1.97214e9 0.00667458
\(355\) −8.47270e10 −0.283136
\(356\) −1.06067e11 −0.349989
\(357\) −4.94051e11 −1.60977
\(358\) 1.53355e9 0.00493428
\(359\) 2.46014e11 0.781690 0.390845 0.920457i \(-0.372183\pi\)
0.390845 + 0.920457i \(0.372183\pi\)
\(360\) 8.33055e8 0.00261404
\(361\) 1.69836e10 0.0526316
\(362\) −4.24305e9 −0.0129864
\(363\) 1.89556e11 0.573005
\(364\) −1.12649e12 −3.36335
\(365\) 2.37529e11 0.700486
\(366\) 1.57626e8 0.000459160 0
\(367\) −5.51687e10 −0.158743 −0.0793717 0.996845i \(-0.525291\pi\)
−0.0793717 + 0.996845i \(0.525291\pi\)
\(368\) 3.06655e11 0.871634
\(369\) −1.02448e10 −0.0287662
\(370\) −1.16770e9 −0.00323909
\(371\) −1.02765e12 −2.81618
\(372\) −5.30390e10 −0.143599
\(373\) −1.31990e11 −0.353061 −0.176531 0.984295i \(-0.556487\pi\)
−0.176531 + 0.984295i \(0.556487\pi\)
\(374\) −4.35379e8 −0.00115065
\(375\) 1.97754e10 0.0516398
\(376\) 9.03126e9 0.0233025
\(377\) 1.16593e12 2.97259
\(378\) −1.23457e9 −0.00311030
\(379\) 5.27113e11 1.31228 0.656141 0.754638i \(-0.272188\pi\)
0.656141 + 0.754638i \(0.272188\pi\)
\(380\) 4.16995e10 0.102590
\(381\) −1.13446e10 −0.0275819
\(382\) 6.39260e9 0.0153600
\(383\) 4.41475e11 1.04836 0.524182 0.851606i \(-0.324371\pi\)
0.524182 + 0.851606i \(0.324371\pi\)
\(384\) 8.62605e9 0.0202452
\(385\) 3.08290e10 0.0715133
\(386\) 9.54118e7 0.000218756 0
\(387\) 2.48980e11 0.564242
\(388\) 4.93739e11 1.10600
\(389\) 6.32902e11 1.40140 0.700702 0.713454i \(-0.252870\pi\)
0.700702 + 0.713454i \(0.252870\pi\)
\(390\) 1.88746e9 0.00413129
\(391\) 6.09504e11 1.31881
\(392\) −1.96545e10 −0.0420411
\(393\) 3.88361e11 0.821239
\(394\) −6.43763e9 −0.0134584
\(395\) −3.42890e11 −0.708709
\(396\) 1.41503e10 0.0289160
\(397\) −8.85133e11 −1.78834 −0.894172 0.447723i \(-0.852235\pi\)
−0.894172 + 0.447723i \(0.852235\pi\)
\(398\) −4.57978e9 −0.00914894
\(399\) −1.23600e11 −0.244141
\(400\) 1.02376e11 0.199954
\(401\) 1.92148e11 0.371096 0.185548 0.982635i \(-0.440594\pi\)
0.185548 + 0.982635i \(0.440594\pi\)
\(402\) −1.33524e9 −0.00255001
\(403\) −2.40351e11 −0.453913
\(404\) −8.06231e11 −1.50572
\(405\) −2.69042e10 −0.0496904
\(406\) 1.44132e10 0.0263265
\(407\) −3.96708e10 −0.0716631
\(408\) 8.57187e9 0.0153146
\(409\) 1.12406e11 0.198626 0.0993128 0.995056i \(-0.468336\pi\)
0.0993128 + 0.995056i \(0.468336\pi\)
\(410\) 1.93621e8 0.000338395 0
\(411\) 2.25612e11 0.390009
\(412\) −6.82979e11 −1.16780
\(413\) −1.43692e12 −2.43029
\(414\) 1.52307e9 0.00254811
\(415\) −2.22470e11 −0.368175
\(416\) 2.93176e10 0.0479964
\(417\) 1.85706e11 0.300756
\(418\) −1.08922e8 −0.000174511 0
\(419\) −6.23205e11 −0.987797 −0.493898 0.869520i \(-0.664429\pi\)
−0.493898 + 0.869520i \(0.664429\pi\)
\(420\) −3.03474e11 −0.475882
\(421\) 5.66694e11 0.879183 0.439592 0.898198i \(-0.355123\pi\)
0.439592 + 0.898198i \(0.355123\pi\)
\(422\) −2.21016e9 −0.00339249
\(423\) −2.91672e11 −0.442959
\(424\) 1.78298e10 0.0267917
\(425\) 2.03482e11 0.302536
\(426\) −2.17855e9 −0.00320497
\(427\) −1.14848e11 −0.167185
\(428\) −4.39641e10 −0.0633288
\(429\) 6.41234e10 0.0914026
\(430\) −4.70560e9 −0.00663754
\(431\) −1.03318e12 −1.44220 −0.721102 0.692829i \(-0.756364\pi\)
−0.721102 + 0.692829i \(0.756364\pi\)
\(432\) −1.39282e11 −0.192406
\(433\) 7.21062e11 0.985773 0.492887 0.870094i \(-0.335942\pi\)
0.492887 + 0.870094i \(0.335942\pi\)
\(434\) −2.97121e9 −0.00402004
\(435\) 3.14098e11 0.420594
\(436\) 2.03614e11 0.269847
\(437\) 1.52484e11 0.200013
\(438\) 6.10749e9 0.00792920
\(439\) −1.46512e12 −1.88270 −0.941352 0.337427i \(-0.890444\pi\)
−0.941352 + 0.337427i \(0.890444\pi\)
\(440\) −5.34889e8 −0.000680341 0
\(441\) 6.34757e11 0.799160
\(442\) 1.94213e10 0.0242035
\(443\) 7.55273e11 0.931724 0.465862 0.884857i \(-0.345744\pi\)
0.465862 + 0.884857i \(0.345744\pi\)
\(444\) 3.90510e11 0.476880
\(445\) −1.29486e11 −0.156532
\(446\) −9.26572e9 −0.0110885
\(447\) −3.50157e11 −0.414839
\(448\) −1.57083e12 −1.84238
\(449\) −3.45981e10 −0.0401739 −0.0200869 0.999798i \(-0.506394\pi\)
−0.0200869 + 0.999798i \(0.506394\pi\)
\(450\) 5.08476e8 0.000584540 0
\(451\) 6.57796e9 0.00748681
\(452\) −3.39191e11 −0.382227
\(453\) −7.44359e11 −0.830502
\(454\) −7.74818e9 −0.00855950
\(455\) −1.37522e12 −1.50425
\(456\) 2.14449e9 0.00232264
\(457\) 1.17296e11 0.125794 0.0628968 0.998020i \(-0.479966\pi\)
0.0628968 + 0.998020i \(0.479966\pi\)
\(458\) −2.91410e9 −0.00309464
\(459\) −2.76836e11 −0.291115
\(460\) 3.74392e11 0.389867
\(461\) −1.51534e12 −1.56263 −0.781317 0.624135i \(-0.785452\pi\)
−0.781317 + 0.624135i \(0.785452\pi\)
\(462\) 7.92693e8 0.000809499 0
\(463\) −8.39331e11 −0.848826 −0.424413 0.905469i \(-0.639520\pi\)
−0.424413 + 0.905469i \(0.639520\pi\)
\(464\) 1.62607e12 1.62858
\(465\) −6.47499e10 −0.0642245
\(466\) −4.30489e9 −0.00422889
\(467\) −5.02642e11 −0.489027 −0.244513 0.969646i \(-0.578628\pi\)
−0.244513 + 0.969646i \(0.578628\pi\)
\(468\) −6.31216e11 −0.608235
\(469\) 9.72866e11 0.928485
\(470\) 5.51246e9 0.00521081
\(471\) −2.56414e11 −0.240076
\(472\) 2.49308e10 0.0231205
\(473\) −1.59866e11 −0.146852
\(474\) −8.81658e9 −0.00802227
\(475\) 5.09066e10 0.0458831
\(476\) −3.12265e12 −2.78799
\(477\) −5.75829e11 −0.509285
\(478\) −1.38007e10 −0.0120914
\(479\) 7.33267e11 0.636432 0.318216 0.948018i \(-0.396916\pi\)
0.318216 + 0.948018i \(0.396916\pi\)
\(480\) 7.89809e9 0.00679104
\(481\) 1.76963e12 1.50740
\(482\) 2.04354e10 0.0172453
\(483\) −1.10972e12 −0.927796
\(484\) 1.19809e12 0.992397
\(485\) 6.02755e11 0.494656
\(486\) −6.91776e8 −0.000562474 0
\(487\) −7.07522e11 −0.569980 −0.284990 0.958530i \(-0.591990\pi\)
−0.284990 + 0.958530i \(0.591990\pi\)
\(488\) 1.99263e9 0.00159052
\(489\) −6.96518e11 −0.550862
\(490\) −1.19966e10 −0.00940103
\(491\) −1.53203e12 −1.18960 −0.594798 0.803875i \(-0.702768\pi\)
−0.594798 + 0.803875i \(0.702768\pi\)
\(492\) −6.47520e10 −0.0498207
\(493\) 3.23196e12 2.46408
\(494\) 4.85877e9 0.00367075
\(495\) 1.72747e10 0.0129326
\(496\) −3.35207e11 −0.248683
\(497\) 1.58731e12 1.16697
\(498\) −5.72026e9 −0.00416758
\(499\) −1.83326e12 −1.32364 −0.661822 0.749661i \(-0.730216\pi\)
−0.661822 + 0.749661i \(0.730216\pi\)
\(500\) 1.24990e11 0.0894358
\(501\) 1.52656e12 1.08254
\(502\) −1.23820e10 −0.00870211
\(503\) 8.92347e11 0.621552 0.310776 0.950483i \(-0.399411\pi\)
0.310776 + 0.950483i \(0.399411\pi\)
\(504\) −1.56068e10 −0.0107740
\(505\) −9.84245e11 −0.673429
\(506\) −9.77935e8 −0.000663182 0
\(507\) −2.00144e12 −1.34526
\(508\) −7.17033e10 −0.0477697
\(509\) 6.00406e11 0.396475 0.198237 0.980154i \(-0.436478\pi\)
0.198237 + 0.980154i \(0.436478\pi\)
\(510\) 5.23205e9 0.00342457
\(511\) −4.44997e12 −2.88711
\(512\) 6.81486e10 0.0438270
\(513\) −6.92579e10 −0.0441511
\(514\) 5.87678e9 0.00371369
\(515\) −8.33778e11 −0.522298
\(516\) 1.57368e12 0.977221
\(517\) 1.87277e11 0.115286
\(518\) 2.18761e10 0.0133502
\(519\) −3.49773e11 −0.211608
\(520\) 2.38602e10 0.0143107
\(521\) 1.44615e11 0.0859891 0.0429946 0.999075i \(-0.486310\pi\)
0.0429946 + 0.999075i \(0.486310\pi\)
\(522\) 8.07625e9 0.00476094
\(523\) −1.60979e11 −0.0940833 −0.0470416 0.998893i \(-0.514979\pi\)
−0.0470416 + 0.998893i \(0.514979\pi\)
\(524\) 2.45464e12 1.42232
\(525\) −3.70480e11 −0.212837
\(526\) 2.35873e10 0.0134351
\(527\) −6.66255e11 −0.376264
\(528\) 8.94303e10 0.0500763
\(529\) −4.32103e11 −0.239903
\(530\) 1.08829e10 0.00599105
\(531\) −8.05162e11 −0.439499
\(532\) −7.81215e11 −0.422832
\(533\) −2.93429e11 −0.157482
\(534\) −3.32942e9 −0.00177187
\(535\) −5.36712e10 −0.0283237
\(536\) −1.68794e10 −0.00883314
\(537\) −6.26098e11 −0.324906
\(538\) −2.79911e10 −0.0144046
\(539\) −4.07566e11 −0.207993
\(540\) −1.70048e11 −0.0860597
\(541\) 1.72068e12 0.863601 0.431800 0.901969i \(-0.357878\pi\)
0.431800 + 0.901969i \(0.357878\pi\)
\(542\) −2.82315e9 −0.00140520
\(543\) 1.73230e12 0.855113
\(544\) 8.12688e10 0.0397859
\(545\) 2.48571e11 0.120689
\(546\) −3.53603e10 −0.0170274
\(547\) 8.30514e11 0.396647 0.198323 0.980137i \(-0.436450\pi\)
0.198323 + 0.980137i \(0.436450\pi\)
\(548\) 1.42598e12 0.675463
\(549\) −6.43537e10 −0.0302342
\(550\) −3.26483e8 −0.000152135 0
\(551\) 8.08563e11 0.373707
\(552\) 1.92539e10 0.00882658
\(553\) 6.42384e12 2.92100
\(554\) −6.39751e9 −0.00288547
\(555\) 4.76733e11 0.213283
\(556\) 1.17376e12 0.520884
\(557\) −4.54143e10 −0.0199914 −0.00999572 0.999950i \(-0.503182\pi\)
−0.00999572 + 0.999950i \(0.503182\pi\)
\(558\) −1.66489e9 −0.000726993 0
\(559\) 7.13126e12 3.08897
\(560\) −1.91796e12 −0.824126
\(561\) 1.77751e11 0.0757668
\(562\) 1.75819e9 0.000743450 0
\(563\) −3.59000e12 −1.50594 −0.752968 0.658057i \(-0.771379\pi\)
−0.752968 + 0.658057i \(0.771379\pi\)
\(564\) −1.84351e12 −0.767168
\(565\) −4.14083e11 −0.170950
\(566\) 1.85143e9 0.000758285 0
\(567\) 5.04034e11 0.204803
\(568\) −2.75401e10 −0.0111019
\(569\) −2.40627e12 −0.962364 −0.481182 0.876621i \(-0.659792\pi\)
−0.481182 + 0.876621i \(0.659792\pi\)
\(570\) 1.30894e9 0.000519377 0
\(571\) 2.46069e12 0.968711 0.484355 0.874871i \(-0.339054\pi\)
0.484355 + 0.874871i \(0.339054\pi\)
\(572\) 4.05292e11 0.158302
\(573\) −2.60989e12 −1.01141
\(574\) −3.62737e9 −0.00139472
\(575\) 4.57056e11 0.174367
\(576\) −8.80196e11 −0.333180
\(577\) 3.71890e11 0.139676 0.0698382 0.997558i \(-0.477752\pi\)
0.0698382 + 0.997558i \(0.477752\pi\)
\(578\) 3.03084e10 0.0112950
\(579\) −3.89535e10 −0.0144043
\(580\) 1.98525e12 0.728434
\(581\) 4.16783e12 1.51746
\(582\) 1.54984e10 0.00559929
\(583\) 3.69729e11 0.132549
\(584\) 7.72078e10 0.0274665
\(585\) −7.70587e11 −0.272032
\(586\) 5.12235e9 0.00179445
\(587\) −1.61101e11 −0.0560050 −0.0280025 0.999608i \(-0.508915\pi\)
−0.0280025 + 0.999608i \(0.508915\pi\)
\(588\) 4.01198e12 1.38408
\(589\) −1.66682e11 −0.0570649
\(590\) 1.52172e10 0.00517011
\(591\) 2.62827e12 0.886190
\(592\) 2.46803e12 0.825853
\(593\) 2.16316e12 0.718360 0.359180 0.933268i \(-0.383056\pi\)
0.359180 + 0.933268i \(0.383056\pi\)
\(594\) 4.44176e8 0.000146392 0
\(595\) −3.81212e12 −1.24692
\(596\) −2.21317e12 −0.718467
\(597\) 1.86978e12 0.602428
\(598\) 4.36236e10 0.0139497
\(599\) 9.32906e11 0.296085 0.148043 0.988981i \(-0.452703\pi\)
0.148043 + 0.988981i \(0.452703\pi\)
\(600\) 6.42789e9 0.00202483
\(601\) 7.04332e11 0.220213 0.110106 0.993920i \(-0.464881\pi\)
0.110106 + 0.993920i \(0.464881\pi\)
\(602\) 8.81566e10 0.0273571
\(603\) 5.45134e11 0.167910
\(604\) −4.70472e12 −1.43836
\(605\) 1.46263e12 0.443848
\(606\) −2.53075e10 −0.00762293
\(607\) 2.31940e11 0.0693469 0.0346735 0.999399i \(-0.488961\pi\)
0.0346735 + 0.999399i \(0.488961\pi\)
\(608\) 2.03316e10 0.00603400
\(609\) −5.88443e12 −1.73351
\(610\) 1.21625e9 0.000355664 0
\(611\) −8.35404e12 −2.42500
\(612\) −1.74974e12 −0.504187
\(613\) −6.30752e12 −1.80421 −0.902103 0.431520i \(-0.857977\pi\)
−0.902103 + 0.431520i \(0.857977\pi\)
\(614\) 4.36235e10 0.0123869
\(615\) −7.90490e10 −0.0222822
\(616\) 1.00208e10 0.00280408
\(617\) −2.00719e11 −0.0557578 −0.0278789 0.999611i \(-0.508875\pi\)
−0.0278789 + 0.999611i \(0.508875\pi\)
\(618\) −2.14386e10 −0.00591218
\(619\) 1.51444e12 0.414613 0.207307 0.978276i \(-0.433530\pi\)
0.207307 + 0.978276i \(0.433530\pi\)
\(620\) −4.09252e11 −0.111232
\(621\) −6.21820e11 −0.167785
\(622\) −5.65218e10 −0.0151412
\(623\) 2.42584e12 0.645158
\(624\) −3.98929e12 −1.05333
\(625\) 1.52588e11 0.0400000
\(626\) −5.08296e10 −0.0132291
\(627\) 4.44692e10 0.0114909
\(628\) −1.62067e12 −0.415791
\(629\) 4.90543e12 1.24954
\(630\) −9.52599e9 −0.00240923
\(631\) 3.85957e12 0.969185 0.484593 0.874740i \(-0.338968\pi\)
0.484593 + 0.874740i \(0.338968\pi\)
\(632\) −1.11455e11 −0.0277889
\(633\) 9.02337e11 0.223384
\(634\) 1.19999e10 0.00294970
\(635\) −8.75351e10 −0.0213649
\(636\) −3.63953e12 −0.882040
\(637\) 1.81806e13 4.37503
\(638\) −5.18561e9 −0.00123910
\(639\) 8.89431e11 0.211037
\(640\) 6.65590e10 0.0156818
\(641\) −4.97143e12 −1.16311 −0.581555 0.813507i \(-0.697555\pi\)
−0.581555 + 0.813507i \(0.697555\pi\)
\(642\) −1.38002e9 −0.000320612 0
\(643\) 2.94228e12 0.678788 0.339394 0.940644i \(-0.389778\pi\)
0.339394 + 0.940644i \(0.389778\pi\)
\(644\) −7.01400e12 −1.60687
\(645\) 1.92114e12 0.437060
\(646\) 1.34686e10 0.00304281
\(647\) 3.64144e11 0.0816966 0.0408483 0.999165i \(-0.486994\pi\)
0.0408483 + 0.999165i \(0.486994\pi\)
\(648\) −8.74508e9 −0.00194839
\(649\) 5.16980e11 0.114386
\(650\) 1.45637e10 0.00320009
\(651\) 1.21305e12 0.264706
\(652\) −4.40235e12 −0.954048
\(653\) 7.65121e12 1.64672 0.823362 0.567516i \(-0.192096\pi\)
0.823362 + 0.567516i \(0.192096\pi\)
\(654\) 6.39139e9 0.00136614
\(655\) 2.99662e12 0.636129
\(656\) −4.09233e11 −0.0862788
\(657\) −2.49349e12 −0.522112
\(658\) −1.03273e11 −0.0214767
\(659\) 7.78898e12 1.60878 0.804389 0.594103i \(-0.202493\pi\)
0.804389 + 0.594103i \(0.202493\pi\)
\(660\) 1.09185e11 0.0223982
\(661\) 6.26276e12 1.27603 0.638013 0.770026i \(-0.279757\pi\)
0.638013 + 0.770026i \(0.279757\pi\)
\(662\) 8.08090e9 0.00163530
\(663\) −7.92909e12 −1.59372
\(664\) −7.23127e10 −0.0144364
\(665\) −9.53705e11 −0.189111
\(666\) 1.22580e10 0.00241428
\(667\) 7.25954e12 1.42018
\(668\) 9.64865e12 1.87488
\(669\) 3.78289e12 0.730140
\(670\) −1.03028e10 −0.00197523
\(671\) 4.13203e10 0.00786887
\(672\) −1.47966e11 −0.0279898
\(673\) −5.07344e12 −0.953310 −0.476655 0.879090i \(-0.658151\pi\)
−0.476655 + 0.879090i \(0.658151\pi\)
\(674\) −7.02439e10 −0.0131111
\(675\) −2.07594e11 −0.0384900
\(676\) −1.26501e13 −2.32988
\(677\) 4.66052e12 0.852678 0.426339 0.904563i \(-0.359803\pi\)
0.426339 + 0.904563i \(0.359803\pi\)
\(678\) −1.06471e10 −0.00193508
\(679\) −1.12923e13 −2.03876
\(680\) 6.61409e10 0.0118626
\(681\) 3.16333e12 0.563615
\(682\) 1.06899e9 0.000189210 0
\(683\) −5.67652e12 −0.998134 −0.499067 0.866563i \(-0.666324\pi\)
−0.499067 + 0.866563i \(0.666324\pi\)
\(684\) −4.37745e11 −0.0764660
\(685\) 1.74084e12 0.302100
\(686\) 1.31005e11 0.0225855
\(687\) 1.18973e12 0.203772
\(688\) 9.94568e12 1.69234
\(689\) −1.64928e13 −2.78810
\(690\) 1.17521e10 0.00197376
\(691\) 9.53629e12 1.59121 0.795606 0.605814i \(-0.207152\pi\)
0.795606 + 0.605814i \(0.207152\pi\)
\(692\) −2.21074e12 −0.366488
\(693\) −3.23631e11 −0.0533028
\(694\) −5.85863e10 −0.00958690
\(695\) 1.43292e12 0.232964
\(696\) 1.02096e11 0.0164917
\(697\) −8.13389e11 −0.130542
\(698\) −1.64780e10 −0.00262758
\(699\) 1.75755e12 0.278458
\(700\) −2.34162e12 −0.368617
\(701\) −9.20594e12 −1.43992 −0.719958 0.694018i \(-0.755839\pi\)
−0.719958 + 0.694018i \(0.755839\pi\)
\(702\) −1.98138e10 −0.00307928
\(703\) 1.22723e12 0.189507
\(704\) 5.65158e11 0.0867147
\(705\) −2.25056e12 −0.343114
\(706\) −2.67009e10 −0.00404487
\(707\) 1.84392e13 2.77559
\(708\) −5.08903e12 −0.761176
\(709\) 5.21615e12 0.775251 0.387625 0.921817i \(-0.373295\pi\)
0.387625 + 0.921817i \(0.373295\pi\)
\(710\) −1.68098e10 −0.00248256
\(711\) 3.59952e12 0.528240
\(712\) −4.20888e10 −0.00613771
\(713\) −1.49652e12 −0.216861
\(714\) −9.80194e10 −0.0141146
\(715\) 4.94779e11 0.0708002
\(716\) −3.95726e12 −0.562711
\(717\) 5.63438e12 0.796177
\(718\) 4.88090e10 0.00685393
\(719\) −1.01367e13 −1.41454 −0.707270 0.706943i \(-0.750074\pi\)
−0.707270 + 0.706943i \(0.750074\pi\)
\(720\) −1.07471e12 −0.149037
\(721\) 1.56203e13 2.15269
\(722\) 3.36953e9 0.000461479 0
\(723\) −8.34309e12 −1.13555
\(724\) 1.09490e13 1.48099
\(725\) 2.42359e12 0.325791
\(726\) 3.76079e10 0.00502416
\(727\) 1.19606e13 1.58799 0.793993 0.607927i \(-0.207999\pi\)
0.793993 + 0.607927i \(0.207999\pi\)
\(728\) −4.47007e11 −0.0589825
\(729\) 2.82430e11 0.0370370
\(730\) 4.71257e10 0.00614193
\(731\) 1.97679e13 2.56055
\(732\) −4.06748e11 −0.0523631
\(733\) −4.21815e12 −0.539703 −0.269851 0.962902i \(-0.586975\pi\)
−0.269851 + 0.962902i \(0.586975\pi\)
\(734\) −1.09454e10 −0.00139188
\(735\) 4.89782e12 0.619027
\(736\) 1.82544e11 0.0229307
\(737\) −3.50020e11 −0.0437008
\(738\) −2.03255e9 −0.000252225 0
\(739\) 6.57570e11 0.0811040 0.0405520 0.999177i \(-0.487088\pi\)
0.0405520 + 0.999177i \(0.487088\pi\)
\(740\) 3.01319e12 0.369389
\(741\) −1.98368e12 −0.241707
\(742\) −2.03884e11 −0.0246926
\(743\) −2.89571e12 −0.348582 −0.174291 0.984694i \(-0.555763\pi\)
−0.174291 + 0.984694i \(0.555763\pi\)
\(744\) −2.10466e10 −0.00251828
\(745\) −2.70183e12 −0.321333
\(746\) −2.61866e10 −0.00309567
\(747\) 2.33540e12 0.274421
\(748\) 1.12348e12 0.131222
\(749\) 1.00550e12 0.116738
\(750\) 3.92343e9 0.000452783 0
\(751\) 7.73714e12 0.887566 0.443783 0.896134i \(-0.353636\pi\)
0.443783 + 0.896134i \(0.353636\pi\)
\(752\) −1.16510e13 −1.32857
\(753\) 5.05517e12 0.573005
\(754\) 2.31319e11 0.0260639
\(755\) −5.74351e12 −0.643304
\(756\) 3.18575e12 0.354702
\(757\) 8.85032e12 0.979552 0.489776 0.871848i \(-0.337079\pi\)
0.489776 + 0.871848i \(0.337079\pi\)
\(758\) 1.04579e11 0.0115062
\(759\) 3.99259e11 0.0436684
\(760\) 1.65470e10 0.00179911
\(761\) 6.94957e12 0.751150 0.375575 0.926792i \(-0.377445\pi\)
0.375575 + 0.926792i \(0.377445\pi\)
\(762\) −2.25075e9 −0.000241841 0
\(763\) −4.65682e12 −0.497427
\(764\) −1.64958e13 −1.75167
\(765\) −2.13608e12 −0.225497
\(766\) 8.75885e10 0.00919216
\(767\) −2.30613e13 −2.40605
\(768\) −5.56200e12 −0.576906
\(769\) −9.18717e12 −0.947356 −0.473678 0.880698i \(-0.657074\pi\)
−0.473678 + 0.880698i \(0.657074\pi\)
\(770\) 6.11646e9 0.000627035 0
\(771\) −2.39930e12 −0.244534
\(772\) −2.46206e11 −0.0249471
\(773\) −1.15670e13 −1.16523 −0.582615 0.812748i \(-0.697970\pi\)
−0.582615 + 0.812748i \(0.697970\pi\)
\(774\) 4.93975e10 0.00494733
\(775\) −4.99613e11 −0.0497481
\(776\) 1.95923e11 0.0193958
\(777\) −8.93131e12 −0.879064
\(778\) 1.25567e11 0.0122877
\(779\) −2.03491e11 −0.0197983
\(780\) −4.87049e12 −0.471137
\(781\) −5.71087e11 −0.0549253
\(782\) 1.20925e11 0.0115634
\(783\) −3.29727e12 −0.313492
\(784\) 2.53558e13 2.39693
\(785\) −1.97850e12 −0.185962
\(786\) 7.70507e10 0.00720071
\(787\) −3.62687e11 −0.0337012 −0.0168506 0.999858i \(-0.505364\pi\)
−0.0168506 + 0.999858i \(0.505364\pi\)
\(788\) 1.66120e13 1.53481
\(789\) −9.62993e12 −0.884660
\(790\) −6.80292e10 −0.00621403
\(791\) 7.75760e12 0.704585
\(792\) 5.61505e9 0.000507096 0
\(793\) −1.84321e12 −0.165518
\(794\) −1.75610e11 −0.0156804
\(795\) −4.44313e12 −0.394491
\(796\) 1.18179e13 1.04336
\(797\) 1.80915e13 1.58823 0.794114 0.607769i \(-0.207935\pi\)
0.794114 + 0.607769i \(0.207935\pi\)
\(798\) −2.45222e10 −0.00214065
\(799\) −2.31575e13 −2.01016
\(800\) 6.09420e10 0.00526032
\(801\) 1.35929e12 0.116672
\(802\) 3.81221e10 0.00325381
\(803\) 1.60102e12 0.135887
\(804\) 3.44552e12 0.290805
\(805\) −8.56267e12 −0.718667
\(806\) −4.76854e10 −0.00397995
\(807\) 1.14279e13 0.948492
\(808\) −3.19924e11 −0.0264056
\(809\) −2.43786e12 −0.200097 −0.100049 0.994983i \(-0.531900\pi\)
−0.100049 + 0.994983i \(0.531900\pi\)
\(810\) −5.33778e9 −0.000435690 0
\(811\) 1.21471e13 0.986002 0.493001 0.870029i \(-0.335900\pi\)
0.493001 + 0.870029i \(0.335900\pi\)
\(812\) −3.71925e13 −3.00230
\(813\) 1.15260e12 0.0925277
\(814\) −7.87066e9 −0.000628349 0
\(815\) −5.37437e12 −0.426696
\(816\) −1.10584e13 −0.873144
\(817\) 4.94549e12 0.388338
\(818\) 2.23013e10 0.00174157
\(819\) 1.44365e13 1.12120
\(820\) −4.99629e11 −0.0385910
\(821\) 5.24507e12 0.402909 0.201455 0.979498i \(-0.435433\pi\)
0.201455 + 0.979498i \(0.435433\pi\)
\(822\) 4.47613e10 0.00341964
\(823\) 1.17862e13 0.895515 0.447758 0.894155i \(-0.352223\pi\)
0.447758 + 0.894155i \(0.352223\pi\)
\(824\) −2.71016e11 −0.0204796
\(825\) 1.33292e11 0.0100176
\(826\) −2.85084e11 −0.0213090
\(827\) 2.88395e12 0.214394 0.107197 0.994238i \(-0.465812\pi\)
0.107197 + 0.994238i \(0.465812\pi\)
\(828\) −3.93021e12 −0.290589
\(829\) 3.09584e12 0.227658 0.113829 0.993500i \(-0.463688\pi\)
0.113829 + 0.993500i \(0.463688\pi\)
\(830\) −4.41378e10 −0.00322819
\(831\) 2.61189e12 0.189999
\(832\) −2.52105e13 −1.82400
\(833\) 5.03970e13 3.62662
\(834\) 3.68440e10 0.00263706
\(835\) 1.17790e13 0.838534
\(836\) 2.81068e11 0.0199014
\(837\) 6.79718e11 0.0478701
\(838\) −1.23643e11 −0.00866110
\(839\) −1.83575e11 −0.0127904 −0.00639519 0.999980i \(-0.502036\pi\)
−0.00639519 + 0.999980i \(0.502036\pi\)
\(840\) −1.20423e11 −0.00834548
\(841\) 2.39874e13 1.65349
\(842\) 1.12432e11 0.00770876
\(843\) −7.17811e11 −0.0489537
\(844\) 5.70323e12 0.386883
\(845\) −1.54432e13 −1.04204
\(846\) −5.78676e10 −0.00388391
\(847\) −2.74014e13 −1.82935
\(848\) −2.30019e13 −1.52750
\(849\) −7.55876e11 −0.0499305
\(850\) 4.03708e10 0.00265266
\(851\) 1.10184e13 0.720173
\(852\) 5.62165e12 0.365498
\(853\) 1.47458e13 0.953672 0.476836 0.878992i \(-0.341784\pi\)
0.476836 + 0.878992i \(0.341784\pi\)
\(854\) −2.27858e10 −0.00146590
\(855\) −5.34398e11 −0.0341993
\(856\) −1.74456e10 −0.00111059
\(857\) −1.52592e13 −0.966315 −0.483157 0.875534i \(-0.660510\pi\)
−0.483157 + 0.875534i \(0.660510\pi\)
\(858\) 1.27220e10 0.000801427 0
\(859\) 2.05951e13 1.29061 0.645305 0.763925i \(-0.276730\pi\)
0.645305 + 0.763925i \(0.276730\pi\)
\(860\) 1.21426e13 0.756952
\(861\) 1.48094e12 0.0918379
\(862\) −2.04981e11 −0.0126454
\(863\) 1.60640e13 0.985840 0.492920 0.870075i \(-0.335930\pi\)
0.492920 + 0.870075i \(0.335930\pi\)
\(864\) −8.29110e10 −0.00506174
\(865\) −2.69886e12 −0.163911
\(866\) 1.43058e11 0.00864336
\(867\) −1.23739e13 −0.743740
\(868\) 7.66708e12 0.458449
\(869\) −2.31119e12 −0.137482
\(870\) 6.23168e10 0.00368781
\(871\) 1.56137e13 0.919227
\(872\) 8.07967e10 0.00473227
\(873\) −6.32748e12 −0.368695
\(874\) 3.02527e10 0.00175373
\(875\) −2.85864e12 −0.164863
\(876\) −1.57601e13 −0.904254
\(877\) 4.60084e12 0.262627 0.131313 0.991341i \(-0.458081\pi\)
0.131313 + 0.991341i \(0.458081\pi\)
\(878\) −2.90678e11 −0.0165077
\(879\) −2.09129e12 −0.118158
\(880\) 6.90049e11 0.0387889
\(881\) 3.34648e12 0.187153 0.0935766 0.995612i \(-0.470170\pi\)
0.0935766 + 0.995612i \(0.470170\pi\)
\(882\) 1.25935e11 0.00700712
\(883\) 2.94374e13 1.62958 0.814792 0.579753i \(-0.196851\pi\)
0.814792 + 0.579753i \(0.196851\pi\)
\(884\) −5.01158e13 −2.76019
\(885\) −6.21267e12 −0.340434
\(886\) 1.49846e11 0.00816944
\(887\) 1.42855e13 0.774886 0.387443 0.921894i \(-0.373358\pi\)
0.387443 + 0.921894i \(0.373358\pi\)
\(888\) 1.54960e11 0.00836297
\(889\) 1.63992e12 0.0880570
\(890\) −2.56899e10 −0.00137249
\(891\) −1.81343e11 −0.00963941
\(892\) 2.39098e13 1.26454
\(893\) −5.79348e12 −0.304865
\(894\) −6.94710e10 −0.00363735
\(895\) −4.83101e12 −0.251671
\(896\) −1.24694e12 −0.0646339
\(897\) −1.78101e13 −0.918544
\(898\) −6.86424e9 −0.000352249 0
\(899\) −7.93548e12 −0.405186
\(900\) −1.31210e12 −0.0666615
\(901\) −4.57183e13 −2.31115
\(902\) 1.30506e9 6.56451e−5 0
\(903\) −3.59915e13 −1.80138
\(904\) −1.34596e11 −0.00670306
\(905\) 1.33665e13 0.662368
\(906\) −1.47680e11 −0.00728192
\(907\) −2.35557e13 −1.15575 −0.577875 0.816125i \(-0.696118\pi\)
−0.577875 + 0.816125i \(0.696118\pi\)
\(908\) 1.99938e13 0.976134
\(909\) 1.03322e13 0.501944
\(910\) −2.72842e11 −0.0131894
\(911\) −1.41444e13 −0.680381 −0.340191 0.940357i \(-0.610492\pi\)
−0.340191 + 0.940357i \(0.610492\pi\)
\(912\) −2.76655e12 −0.132423
\(913\) −1.49952e12 −0.0714221
\(914\) 2.32714e10 0.00110297
\(915\) −4.96556e11 −0.0234193
\(916\) 7.51971e12 0.352916
\(917\) −5.61398e13 −2.62186
\(918\) −5.49240e10 −0.00255253
\(919\) −2.13484e12 −0.0987290 −0.0493645 0.998781i \(-0.515720\pi\)
−0.0493645 + 0.998781i \(0.515720\pi\)
\(920\) 1.48564e11 0.00683704
\(921\) −1.78101e13 −0.815638
\(922\) −3.00643e11 −0.0137013
\(923\) 2.54750e13 1.15533
\(924\) −2.04551e12 −0.0923161
\(925\) 3.67850e12 0.165209
\(926\) −1.66523e11 −0.00744259
\(927\) 8.75267e12 0.389298
\(928\) 9.67958e11 0.0428441
\(929\) −1.73687e13 −0.765064 −0.382532 0.923942i \(-0.624948\pi\)
−0.382532 + 0.923942i \(0.624948\pi\)
\(930\) −1.28463e10 −0.000563127 0
\(931\) 1.26082e13 0.550020
\(932\) 1.11086e13 0.482267
\(933\) 2.30760e13 0.996995
\(934\) −9.97239e10 −0.00428784
\(935\) 1.37154e12 0.0586887
\(936\) −2.50475e11 −0.0106665
\(937\) −1.06545e13 −0.451548 −0.225774 0.974180i \(-0.572491\pi\)
−0.225774 + 0.974180i \(0.572491\pi\)
\(938\) 1.93016e11 0.00814105
\(939\) 2.07520e13 0.871096
\(940\) −1.42246e13 −0.594246
\(941\) 1.57584e13 0.655178 0.327589 0.944820i \(-0.393764\pi\)
0.327589 + 0.944820i \(0.393764\pi\)
\(942\) −5.08724e10 −0.00210501
\(943\) −1.82701e12 −0.0752382
\(944\) −3.21627e13 −1.31819
\(945\) 3.88915e12 0.158640
\(946\) −3.17172e10 −0.00128761
\(947\) −2.86027e13 −1.15566 −0.577832 0.816156i \(-0.696101\pi\)
−0.577832 + 0.816156i \(0.696101\pi\)
\(948\) 2.27508e13 0.914869
\(949\) −7.14182e13 −2.85832
\(950\) 1.00998e10 0.000402308 0
\(951\) −4.89919e12 −0.194228
\(952\) −1.23911e12 −0.0488927
\(953\) −3.75406e13 −1.47429 −0.737145 0.675734i \(-0.763827\pi\)
−0.737145 + 0.675734i \(0.763827\pi\)
\(954\) −1.14244e11 −0.00446546
\(955\) −2.01380e13 −0.783433
\(956\) 3.56121e13 1.37891
\(957\) 2.11712e12 0.0815908
\(958\) 1.45480e11 0.00558030
\(959\) −3.26135e13 −1.24513
\(960\) −6.79164e12 −0.258080
\(961\) −2.48038e13 −0.938128
\(962\) 3.51093e11 0.0132170
\(963\) 5.63419e11 0.0211112
\(964\) −5.27325e13 −1.96667
\(965\) −3.00567e11 −0.0111575
\(966\) −2.20168e11 −0.00813500
\(967\) −3.29746e13 −1.21272 −0.606359 0.795191i \(-0.707371\pi\)
−0.606359 + 0.795191i \(0.707371\pi\)
\(968\) 4.75419e11 0.0174035
\(969\) −5.49878e12 −0.200359
\(970\) 1.19586e11 0.00433719
\(971\) −3.79455e13 −1.36985 −0.684925 0.728613i \(-0.740165\pi\)
−0.684925 + 0.728613i \(0.740165\pi\)
\(972\) 1.78510e12 0.0641451
\(973\) −2.68448e13 −0.960181
\(974\) −1.40372e11 −0.00499764
\(975\) −5.94588e12 −0.210715
\(976\) −2.57065e12 −0.0906816
\(977\) 1.08658e13 0.381536 0.190768 0.981635i \(-0.438902\pi\)
0.190768 + 0.981635i \(0.438902\pi\)
\(978\) −1.38189e11 −0.00483001
\(979\) −8.72776e11 −0.0303655
\(980\) 3.09567e13 1.07210
\(981\) −2.60940e12 −0.0899559
\(982\) −3.03953e11 −0.0104305
\(983\) 3.71055e13 1.26750 0.633749 0.773539i \(-0.281515\pi\)
0.633749 + 0.773539i \(0.281515\pi\)
\(984\) −2.56945e10 −0.000873699 0
\(985\) 2.02799e13 0.686440
\(986\) 6.41219e11 0.0216053
\(987\) 4.21628e13 1.41417
\(988\) −1.25378e13 −0.418616
\(989\) 4.44022e13 1.47578
\(990\) 3.42729e9 0.000113395 0
\(991\) −2.68561e13 −0.884527 −0.442264 0.896885i \(-0.645824\pi\)
−0.442264 + 0.896885i \(0.645824\pi\)
\(992\) −1.99540e11 −0.00654227
\(993\) −3.29917e12 −0.107679
\(994\) 3.14921e11 0.0102321
\(995\) 1.44273e13 0.466639
\(996\) 1.47609e13 0.475275
\(997\) −4.67453e13 −1.49834 −0.749168 0.662380i \(-0.769547\pi\)
−0.749168 + 0.662380i \(0.769547\pi\)
\(998\) −3.63717e11 −0.0116058
\(999\) −5.00456e12 −0.158972
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.f.1.8 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.f.1.8 14 1.1 even 1 trivial