Properties

Label 2850.2.a.p.1.1
Level $2850$
Weight $2$
Character 2850.1
Self dual yes
Analytic conductor $22.757$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2850,2,Mod(1,2850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.7573645761\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2850.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{12} -2.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} +2.00000 q^{17} +1.00000 q^{18} -1.00000 q^{19} +4.00000 q^{21} -1.00000 q^{24} -2.00000 q^{26} -1.00000 q^{27} -4.00000 q^{28} +10.0000 q^{29} +1.00000 q^{32} +2.00000 q^{34} +1.00000 q^{36} -2.00000 q^{37} -1.00000 q^{38} +2.00000 q^{39} +2.00000 q^{41} +4.00000 q^{42} +4.00000 q^{43} -1.00000 q^{48} +9.00000 q^{49} -2.00000 q^{51} -2.00000 q^{52} +6.00000 q^{53} -1.00000 q^{54} -4.00000 q^{56} +1.00000 q^{57} +10.0000 q^{58} +8.00000 q^{59} +6.00000 q^{61} -4.00000 q^{63} +1.00000 q^{64} -12.0000 q^{67} +2.00000 q^{68} +1.00000 q^{72} +14.0000 q^{73} -2.00000 q^{74} -1.00000 q^{76} +2.00000 q^{78} +1.00000 q^{81} +2.00000 q^{82} +12.0000 q^{83} +4.00000 q^{84} +4.00000 q^{86} -10.0000 q^{87} +10.0000 q^{89} +8.00000 q^{91} -1.00000 q^{96} -2.00000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) −4.00000 −0.755929
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −1.00000 −0.162221
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 4.00000 0.617213
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) −2.00000 −0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 1.00000 0.132453
\(58\) 10.0000 1.31306
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 0.117851
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.00000 0.220863
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) −2.00000 −0.198030
\(103\) 20.0000 1.97066 0.985329 0.170664i \(-0.0545913\pi\)
0.985329 + 0.170664i \(0.0545913\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) −4.00000 −0.377964
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 1.00000 0.0936586
\(115\) 0 0
\(116\) 10.0000 0.928477
\(117\) −2.00000 −0.184900
\(118\) 8.00000 0.736460
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 6.00000 0.543214
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 0 0
\(126\) −4.00000 −0.356348
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) −12.0000 −1.03664
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 14.0000 1.15865
\(147\) −9.00000 −0.742307
\(148\) −2.00000 −0.164399
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 4.00000 0.308607
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 4.00000 0.304997
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) −10.0000 −0.758098
\(175\) 0 0
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 10.0000 0.749532
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 8.00000 0.592999
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) −14.0000 −0.985037
\(203\) −40.0000 −2.80745
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 20.0000 1.39347
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −2.00000 −0.135457
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 2.00000 0.134231
\(223\) 12.0000 0.803579 0.401790 0.915732i \(-0.368388\pi\)
0.401790 + 0.915732i \(0.368388\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 1.00000 0.0662266
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) −8.00000 −0.518563
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) −11.0000 −0.707107
\(243\) −1.00000 −0.0641500
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) −2.00000 −0.127515
\(247\) 2.00000 0.127257
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) −4.00000 −0.251976
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) −4.00000 −0.249029
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 10.0000 0.618984
\(262\) 0 0
\(263\) −32.0000 −1.97320 −0.986602 0.163144i \(-0.947836\pi\)
−0.986602 + 0.163144i \(0.947836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.00000 0.245256
\(267\) −10.0000 −0.611990
\(268\) −12.0000 −0.733017
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 2.00000 0.121268
\(273\) −8.00000 −0.484182
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 12.0000 0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 1.00000 0.0589256
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 14.0000 0.819288
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) −9.00000 −0.524891
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) −16.0000 −0.920697
\(303\) 14.0000 0.804279
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) −20.0000 −1.13776
\(310\) 0 0
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 2.00000 0.113228
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) −6.00000 −0.336463
\(319\) 0 0
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 2.00000 0.110600
\(328\) 2.00000 0.110432
\(329\) 0 0
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 12.0000 0.658586
\(333\) −2.00000 −0.109599
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) −26.0000 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(338\) −9.00000 −0.489535
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 0 0
\(342\) −1.00000 −0.0540738
\(343\) −8.00000 −0.431959
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) −10.0000 −0.536056
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) −8.00000 −0.425195
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 8.00000 0.423405
\(358\) −16.0000 −0.845626
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −10.0000 −0.525588
\(363\) 11.0000 0.577350
\(364\) 8.00000 0.419314
\(365\) 0 0
\(366\) −6.00000 −0.313625
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.0000 −1.03005
\(378\) 4.00000 0.205738
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 8.00000 0.409316
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 22.0000 1.11977
\(387\) 4.00000 0.203331
\(388\) −2.00000 −0.101535
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 0 0
\(396\) 0 0
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) −8.00000 −0.401004
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 12.0000 0.598506
\(403\) 0 0
\(404\) −14.0000 −0.696526
\(405\) 0 0
\(406\) −40.0000 −1.98517
\(407\) 0 0
\(408\) −2.00000 −0.0990148
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 20.0000 0.985329
\(413\) −32.0000 −1.57462
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −24.0000 −1.16144
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 38.0000 1.82616 0.913082 0.407777i \(-0.133696\pi\)
0.913082 + 0.407777i \(0.133696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) −14.0000 −0.668946
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) −4.00000 −0.190261
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 2.00000 0.0949158
\(445\) 0 0
\(446\) 12.0000 0.568216
\(447\) 6.00000 0.283790
\(448\) −4.00000 −0.188982
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 2.00000 0.0940721
\(453\) 16.0000 0.751746
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 1.00000 0.0468293
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 22.0000 1.02799
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 10.0000 0.464238
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 48.0000 2.21643
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) 8.00000 0.368230
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) 6.00000 0.274721
\(478\) 8.00000 0.365911
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 6.00000 0.271607
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 20.0000 0.900755
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 24.0000 1.07117
\(503\) −8.00000 −0.356702 −0.178351 0.983967i \(-0.557076\pi\)
−0.178351 + 0.983967i \(0.557076\pi\)
\(504\) −4.00000 −0.178174
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) −4.00000 −0.177471
\(509\) −22.0000 −0.975133 −0.487566 0.873086i \(-0.662115\pi\)
−0.487566 + 0.873086i \(0.662115\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) 1.00000 0.0441942
\(513\) 1.00000 0.0441511
\(514\) −14.0000 −0.617514
\(515\) 0 0
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 8.00000 0.351500
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 10.0000 0.437688
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −32.0000 −1.39527
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 4.00000 0.173422
\(533\) −4.00000 −0.173259
\(534\) −10.0000 −0.432742
\(535\) 0 0
\(536\) −12.0000 −0.518321
\(537\) 16.0000 0.690451
\(538\) 10.0000 0.431131
\(539\) 0 0
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 18.0000 0.768922
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −10.0000 −0.426014
\(552\) 0 0
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 12.0000 0.508913
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) −8.00000 −0.333914
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) −13.0000 −0.540729
\(579\) −22.0000 −0.914289
\(580\) 0 0
\(581\) −48.0000 −1.99138
\(582\) 2.00000 0.0829027
\(583\) 0 0
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) −26.0000 −1.07405
\(587\) 20.0000 0.825488 0.412744 0.910847i \(-0.364570\pi\)
0.412744 + 0.910847i \(0.364570\pi\)
\(588\) −9.00000 −0.371154
\(589\) 0 0
\(590\) 0 0
\(591\) 10.0000 0.411345
\(592\) −2.00000 −0.0821995
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) −16.0000 −0.652111
\(603\) −12.0000 −0.488678
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) 14.0000 0.568711
\(607\) −12.0000 −0.487065 −0.243532 0.969893i \(-0.578306\pi\)
−0.243532 + 0.969893i \(0.578306\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 40.0000 1.62088
\(610\) 0 0
\(611\) 0 0
\(612\) 2.00000 0.0808452
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) −20.0000 −0.804518
\(619\) 12.0000 0.482321 0.241160 0.970485i \(-0.422472\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −32.0000 −1.28308
\(623\) −40.0000 −1.60257
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) 14.0000 0.559553
\(627\) 0 0
\(628\) 22.0000 0.877896
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −20.0000 −0.794929
\(634\) −18.0000 −0.714871
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.0000 −0.868948 −0.434474 0.900684i \(-0.643066\pi\)
−0.434474 + 0.900684i \(0.643066\pi\)
\(642\) 4.00000 0.157867
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.00000 −0.0786889
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 2.00000 0.0782062
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −12.0000 −0.466393
\(663\) 4.00000 0.155347
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) 16.0000 0.619059
\(669\) −12.0000 −0.463947
\(670\) 0 0
\(671\) 0 0
\(672\) 4.00000 0.154303
\(673\) 38.0000 1.46479 0.732396 0.680879i \(-0.238402\pi\)
0.732396 + 0.680879i \(0.238402\pi\)
\(674\) −26.0000 −1.00148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −2.00000 −0.0768095
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) −1.00000 −0.0382360
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) −22.0000 −0.839352
\(688\) 4.00000 0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 0 0
\(696\) −10.0000 −0.379049
\(697\) 4.00000 0.151511
\(698\) −10.0000 −0.378506
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 2.00000 0.0754851
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) 56.0000 2.10610
\(708\) −8.00000 −0.300658
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 10.0000 0.374766
\(713\) 0 0
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) −16.0000 −0.597948
\(717\) −8.00000 −0.298765
\(718\) −8.00000 −0.298557
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) −80.0000 −2.97936
\(722\) 1.00000 0.0372161
\(723\) −2.00000 −0.0743808
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) 11.0000 0.408248
\(727\) 4.00000 0.148352 0.0741759 0.997245i \(-0.476367\pi\)
0.0741759 + 0.997245i \(0.476367\pi\)
\(728\) 8.00000 0.296500
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) −6.00000 −0.221766
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) −28.0000 −1.03350
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 2.00000 0.0736210
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) −24.0000 −0.881068
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.0000 0.805477
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) −20.0000 −0.728357
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 28.0000 1.01701
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 4.00000 0.144905
\(763\) 8.00000 0.289619
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) −1.00000 −0.0360844
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) 22.0000 0.791797
\(773\) −10.0000 −0.359675 −0.179838 0.983696i \(-0.557557\pi\)
−0.179838 + 0.983696i \(0.557557\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) −8.00000 −0.286998
\(778\) −6.00000 −0.215110
\(779\) −2.00000 −0.0716574
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −10.0000 −0.357371
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) −10.0000 −0.356235
\(789\) 32.0000 1.13923
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 30.0000 1.06466
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) −4.00000 −0.141598
\(799\) 0 0
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 18.0000 0.635602
\(803\) 0 0
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) 0 0
\(807\) −10.0000 −0.352017
\(808\) −14.0000 −0.492518
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) −40.0000 −1.40372
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) −4.00000 −0.139942
\(818\) 26.0000 0.909069
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) −46.0000 −1.60541 −0.802706 0.596376i \(-0.796607\pi\)
−0.802706 + 0.596376i \(0.796607\pi\)
\(822\) −18.0000 −0.627822
\(823\) 36.0000 1.25488 0.627441 0.778664i \(-0.284103\pi\)
0.627441 + 0.778664i \(0.284103\pi\)
\(824\) 20.0000 0.696733
\(825\) 0 0
\(826\) −32.0000 −1.11342
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) −2.00000 −0.0693375
\(833\) 18.0000 0.623663
\(834\) −12.0000 −0.415526
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −16.0000 −0.552711
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −34.0000 −1.17172
\(843\) 6.00000 0.206651
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) 0 0
\(847\) 44.0000 1.51186
\(848\) 6.00000 0.206041
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 6.00000 0.205436 0.102718 0.994711i \(-0.467246\pi\)
0.102718 + 0.994711i \(0.467246\pi\)
\(854\) −24.0000 −0.821263
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) −14.0000 −0.478231 −0.239115 0.970991i \(-0.576857\pi\)
−0.239115 + 0.970991i \(0.576857\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) 32.0000 1.08992
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 38.0000 1.29129
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) −2.00000 −0.0677285
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 0 0
\(876\) −14.0000 −0.473016
\(877\) −50.0000 −1.68838 −0.844190 0.536044i \(-0.819918\pi\)
−0.844190 + 0.536044i \(0.819918\pi\)
\(878\) 0 0
\(879\) 26.0000 0.876958
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 9.00000 0.303046
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 2.00000 0.0671156
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) 12.0000 0.401790
\(893\) 0 0
\(894\) 6.00000 0.200670
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) 34.0000 1.13459
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 16.0000 0.532447
\(904\) 2.00000 0.0665190
\(905\) 0 0
\(906\) 16.0000 0.531564
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) −20.0000 −0.663723
\(909\) −14.0000 −0.464351
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 1.00000 0.0331133
\(913\) 0 0
\(914\) 6.00000 0.198462
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) 0 0
\(918\) −2.00000 −0.0660098
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −36.0000 −1.18303
\(927\) 20.0000 0.656886
\(928\) 10.0000 0.328266
\(929\) 26.0000 0.853032 0.426516 0.904480i \(-0.359741\pi\)
0.426516 + 0.904480i \(0.359741\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) −6.00000 −0.196537
\(933\) 32.0000 1.04763
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 48.0000 1.56726
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) −22.0000 −0.716799
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) −8.00000 −0.259281
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −72.0000 −2.32500
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 4.00000 0.128965
\(963\) −4.00000 −0.128898
\(964\) 2.00000 0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) 28.0000 0.900419 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(968\) −11.0000 −0.353553
\(969\) 2.00000 0.0642493
\(970\) 0 0
\(971\) 16.0000 0.513464 0.256732 0.966483i \(-0.417354\pi\)
0.256732 + 0.966483i \(0.417354\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −48.0000 −1.53881
\(974\) 12.0000 0.384505
\(975\) 0 0
\(976\) 6.00000 0.192055
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 12.0000 0.383718
\(979\) 0 0
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 24.0000 0.765871
\(983\) 8.00000 0.255160 0.127580 0.991828i \(-0.459279\pi\)
0.127580 + 0.991828i \(0.459279\pi\)
\(984\) −2.00000 −0.0637577
\(985\) 0 0
\(986\) 20.0000 0.636930
\(987\) 0 0
\(988\) 2.00000 0.0636285
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) 12.0000 0.380808
\(994\) 0 0
\(995\) 0 0
\(996\) −12.0000 −0.380235
\(997\) −34.0000 −1.07679 −0.538395 0.842692i \(-0.680969\pi\)
−0.538395 + 0.842692i \(0.680969\pi\)
\(998\) 12.0000 0.379853
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2850.2.a.p.1.1 1
3.2 odd 2 8550.2.a.b.1.1 1
5.2 odd 4 2850.2.d.f.799.2 2
5.3 odd 4 2850.2.d.f.799.1 2
5.4 even 2 570.2.a.d.1.1 1
15.14 odd 2 1710.2.a.t.1.1 1
20.19 odd 2 4560.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.2.a.d.1.1 1 5.4 even 2
1710.2.a.t.1.1 1 15.14 odd 2
2850.2.a.p.1.1 1 1.1 even 1 trivial
2850.2.d.f.799.1 2 5.3 odd 4
2850.2.d.f.799.2 2 5.2 odd 4
4560.2.a.a.1.1 1 20.19 odd 2
8550.2.a.b.1.1 1 3.2 odd 2