Properties

Label 288.2.v.b.37.1
Level $288$
Weight $2$
Character 288.37
Analytic conductor $2.300$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,2,Mod(37,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.v (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 - 0.691860i\) of defining polynomial
Character \(\chi\) \(=\) 288.37
Dual form 288.2.v.b.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.443806 - 1.34277i) q^{2} +(-1.60607 - 1.19186i) q^{4} +(-0.707107 - 0.292893i) q^{5} +(-2.27133 - 2.27133i) q^{7} +(-2.31318 + 1.62764i) q^{8} +(-0.707107 + 0.819496i) q^{10} +(1.49368 - 3.60607i) q^{11} +(-4.50504 + 1.86605i) q^{13} +(-4.05791 + 2.04185i) q^{14} +(1.15894 + 3.82843i) q^{16} -3.05320i q^{17} +(3.87740 - 1.60607i) q^{19} +(0.786578 + 1.31318i) q^{20} +(-4.17923 - 3.60607i) q^{22} +(-0.271330 + 0.271330i) q^{23} +(-3.12132 - 3.12132i) q^{25} +(0.506316 + 6.87740i) q^{26} +(0.940816 + 6.35503i) q^{28} +(0.931884 + 2.24977i) q^{29} +6.82843 q^{31} +(5.65505 + 0.142883i) q^{32} +(-4.09976 - 1.35503i) q^{34} +(0.940816 + 2.27133i) q^{35} +(3.63349 + 1.50504i) q^{37} +(-0.435776 - 5.91925i) q^{38} +(2.11239 - 0.473398i) q^{40} +(1.54266 - 1.54266i) q^{41} +(0.748956 - 1.80814i) q^{43} +(-6.69690 + 4.01136i) q^{44} +(0.243917 + 0.484753i) q^{46} -7.37109i q^{47} +3.31788i q^{49} +(-5.57648 + 2.80596i) q^{50} +(9.45949 + 2.37236i) q^{52} +(-1.67661 + 4.04770i) q^{53} +(-2.11239 + 2.11239i) q^{55} +(8.95089 + 1.55710i) q^{56} +(3.43450 - 0.252848i) q^{58} +(10.1200 + 4.19186i) q^{59} +(1.35873 + 3.28026i) q^{61} +(3.03049 - 9.16902i) q^{62} +(2.70160 - 7.53003i) q^{64} +3.73210 q^{65} +(-1.99577 - 4.81822i) q^{67} +(-3.63899 + 4.90367i) q^{68} +(3.46742 - 0.255272i) q^{70} +(-6.47085 - 6.47085i) q^{71} +(-2.84106 + 2.84106i) q^{73} +(3.63349 - 4.21100i) q^{74} +(-8.14161 - 2.04185i) q^{76} +(-11.5832 + 4.79793i) q^{77} -9.74996i q^{79} +(0.301825 - 3.04655i) q^{80} +(-1.38680 - 2.75608i) q^{82} +(9.04642 - 3.74715i) q^{83} +(-0.894263 + 2.15894i) q^{85} +(-2.09553 - 1.80814i) q^{86} +(2.41421 + 10.7727i) q^{88} +(-7.58323 - 7.58323i) q^{89} +(14.4708 + 5.99402i) q^{91} +(0.759164 - 0.112389i) q^{92} +(-9.89769 - 3.27133i) q^{94} -3.21215 q^{95} +3.71423 q^{97} +(4.45516 + 1.47250i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{4} - 8 q^{7} + 4 q^{8} - 4 q^{11} - 8 q^{13} - 12 q^{14} + 4 q^{19} - 4 q^{20} + 4 q^{22} + 8 q^{23} - 8 q^{25} + 20 q^{26} - 16 q^{28} + 32 q^{31} + 24 q^{32} - 16 q^{35} - 8 q^{37}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.443806 1.34277i 0.313818 0.949483i
\(3\) 0 0
\(4\) −1.60607 1.19186i −0.803037 0.595930i
\(5\) −0.707107 0.292893i −0.316228 0.130986i 0.218924 0.975742i \(-0.429745\pi\)
−0.535151 + 0.844756i \(0.679745\pi\)
\(6\) 0 0
\(7\) −2.27133 2.27133i −0.858482 0.858482i 0.132677 0.991159i \(-0.457643\pi\)
−0.991159 + 0.132677i \(0.957643\pi\)
\(8\) −2.31318 + 1.62764i −0.817833 + 0.575456i
\(9\) 0 0
\(10\) −0.707107 + 0.819496i −0.223607 + 0.259147i
\(11\) 1.49368 3.60607i 0.450363 1.08727i −0.521821 0.853055i \(-0.674747\pi\)
0.972184 0.234217i \(-0.0752527\pi\)
\(12\) 0 0
\(13\) −4.50504 + 1.86605i −1.24947 + 0.517549i −0.906663 0.421856i \(-0.861379\pi\)
−0.342810 + 0.939405i \(0.611379\pi\)
\(14\) −4.05791 + 2.04185i −1.08452 + 0.545707i
\(15\) 0 0
\(16\) 1.15894 + 3.82843i 0.289735 + 0.957107i
\(17\) 3.05320i 0.740511i −0.928930 0.370255i \(-0.879270\pi\)
0.928930 0.370255i \(-0.120730\pi\)
\(18\) 0 0
\(19\) 3.87740 1.60607i 0.889537 0.368458i 0.109349 0.994003i \(-0.465123\pi\)
0.780188 + 0.625545i \(0.215123\pi\)
\(20\) 0.786578 + 1.31318i 0.175884 + 0.293636i
\(21\) 0 0
\(22\) −4.17923 3.60607i −0.891014 0.768817i
\(23\) −0.271330 + 0.271330i −0.0565763 + 0.0565763i −0.734829 0.678253i \(-0.762738\pi\)
0.678253 + 0.734829i \(0.262738\pi\)
\(24\) 0 0
\(25\) −3.12132 3.12132i −0.624264 0.624264i
\(26\) 0.506316 + 6.87740i 0.0992967 + 1.34877i
\(27\) 0 0
\(28\) 0.940816 + 6.35503i 0.177797 + 1.20099i
\(29\) 0.931884 + 2.24977i 0.173047 + 0.417771i 0.986479 0.163888i \(-0.0524036\pi\)
−0.813432 + 0.581660i \(0.802404\pi\)
\(30\) 0 0
\(31\) 6.82843 1.22642 0.613211 0.789919i \(-0.289878\pi\)
0.613211 + 0.789919i \(0.289878\pi\)
\(32\) 5.65505 + 0.142883i 0.999681 + 0.0252584i
\(33\) 0 0
\(34\) −4.09976 1.35503i −0.703103 0.232386i
\(35\) 0.940816 + 2.27133i 0.159027 + 0.383925i
\(36\) 0 0
\(37\) 3.63349 + 1.50504i 0.597342 + 0.247427i 0.660806 0.750557i \(-0.270215\pi\)
−0.0634640 + 0.997984i \(0.520215\pi\)
\(38\) −0.435776 5.91925i −0.0706923 0.960230i
\(39\) 0 0
\(40\) 2.11239 0.473398i 0.333998 0.0748508i
\(41\) 1.54266 1.54266i 0.240923 0.240923i −0.576309 0.817232i \(-0.695507\pi\)
0.817232 + 0.576309i \(0.195507\pi\)
\(42\) 0 0
\(43\) 0.748956 1.80814i 0.114215 0.275739i −0.856427 0.516268i \(-0.827321\pi\)
0.970642 + 0.240529i \(0.0773209\pi\)
\(44\) −6.69690 + 4.01136i −1.00960 + 0.604735i
\(45\) 0 0
\(46\) 0.243917 + 0.484753i 0.0359636 + 0.0714729i
\(47\) 7.37109i 1.07518i −0.843205 0.537592i \(-0.819334\pi\)
0.843205 0.537592i \(-0.180666\pi\)
\(48\) 0 0
\(49\) 3.31788i 0.473983i
\(50\) −5.57648 + 2.80596i −0.788634 + 0.396823i
\(51\) 0 0
\(52\) 9.45949 + 2.37236i 1.31180 + 0.328988i
\(53\) −1.67661 + 4.04770i −0.230300 + 0.555994i −0.996213 0.0869508i \(-0.972288\pi\)
0.765912 + 0.642945i \(0.222288\pi\)
\(54\) 0 0
\(55\) −2.11239 + 2.11239i −0.284834 + 0.284834i
\(56\) 8.95089 + 1.55710i 1.19611 + 0.208076i
\(57\) 0 0
\(58\) 3.43450 0.252848i 0.450972 0.0332006i
\(59\) 10.1200 + 4.19186i 1.31752 + 0.545734i 0.927069 0.374891i \(-0.122320\pi\)
0.390449 + 0.920625i \(0.372320\pi\)
\(60\) 0 0
\(61\) 1.35873 + 3.28026i 0.173967 + 0.419995i 0.986681 0.162669i \(-0.0520104\pi\)
−0.812713 + 0.582664i \(0.802010\pi\)
\(62\) 3.03049 9.16902i 0.384873 1.16447i
\(63\) 0 0
\(64\) 2.70160 7.53003i 0.337700 0.941254i
\(65\) 3.73210 0.462910
\(66\) 0 0
\(67\) −1.99577 4.81822i −0.243822 0.588639i 0.753834 0.657065i \(-0.228202\pi\)
−0.997656 + 0.0684259i \(0.978202\pi\)
\(68\) −3.63899 + 4.90367i −0.441292 + 0.594657i
\(69\) 0 0
\(70\) 3.46742 0.255272i 0.414436 0.0305108i
\(71\) −6.47085 6.47085i −0.767948 0.767948i 0.209797 0.977745i \(-0.432720\pi\)
−0.977745 + 0.209797i \(0.932720\pi\)
\(72\) 0 0
\(73\) −2.84106 + 2.84106i −0.332521 + 0.332521i −0.853543 0.521022i \(-0.825551\pi\)
0.521022 + 0.853543i \(0.325551\pi\)
\(74\) 3.63349 4.21100i 0.422384 0.489519i
\(75\) 0 0
\(76\) −8.14161 2.04185i −0.933906 0.234216i
\(77\) −11.5832 + 4.79793i −1.32003 + 0.546775i
\(78\) 0 0
\(79\) 9.74996i 1.09696i −0.836165 0.548478i \(-0.815207\pi\)
0.836165 0.548478i \(-0.184793\pi\)
\(80\) 0.301825 3.04655i 0.0337450 0.340615i
\(81\) 0 0
\(82\) −1.38680 2.75608i −0.153146 0.304358i
\(83\) 9.04642 3.74715i 0.992974 0.411303i 0.173758 0.984788i \(-0.444409\pi\)
0.819216 + 0.573485i \(0.194409\pi\)
\(84\) 0 0
\(85\) −0.894263 + 2.15894i −0.0969964 + 0.234170i
\(86\) −2.09553 1.80814i −0.225967 0.194977i
\(87\) 0 0
\(88\) 2.41421 + 10.7727i 0.257356 + 1.14837i
\(89\) −7.58323 7.58323i −0.803821 0.803821i 0.179869 0.983691i \(-0.442433\pi\)
−0.983691 + 0.179869i \(0.942433\pi\)
\(90\) 0 0
\(91\) 14.4708 + 5.99402i 1.51696 + 0.628344i
\(92\) 0.759164 0.112389i 0.0791483 0.0117173i
\(93\) 0 0
\(94\) −9.89769 3.27133i −1.02087 0.337412i
\(95\) −3.21215 −0.329559
\(96\) 0 0
\(97\) 3.71423 0.377123 0.188562 0.982061i \(-0.439617\pi\)
0.188562 + 0.982061i \(0.439617\pi\)
\(98\) 4.45516 + 1.47250i 0.450039 + 0.148744i
\(99\) 0 0
\(100\) 1.29289 + 8.73324i 0.129289 + 0.873324i
\(101\) 9.04770 + 3.74768i 0.900280 + 0.372908i 0.784328 0.620347i \(-0.213008\pi\)
0.115952 + 0.993255i \(0.463008\pi\)
\(102\) 0 0
\(103\) 0.450688 + 0.450688i 0.0444076 + 0.0444076i 0.728962 0.684554i \(-0.240003\pi\)
−0.684554 + 0.728962i \(0.740003\pi\)
\(104\) 7.38372 11.6491i 0.724033 1.14229i
\(105\) 0 0
\(106\) 4.69105 + 4.04770i 0.455635 + 0.393147i
\(107\) −6.82420 + 16.4751i −0.659720 + 1.59271i 0.138515 + 0.990360i \(0.455767\pi\)
−0.798236 + 0.602345i \(0.794233\pi\)
\(108\) 0 0
\(109\) −7.20664 + 2.98509i −0.690271 + 0.285920i −0.700113 0.714032i \(-0.746867\pi\)
0.00984205 + 0.999952i \(0.496867\pi\)
\(110\) 1.89897 + 3.77395i 0.181059 + 0.359832i
\(111\) 0 0
\(112\) 6.06328 11.3280i 0.572926 1.07039i
\(113\) 8.76744i 0.824771i 0.911009 + 0.412386i \(0.135304\pi\)
−0.911009 + 0.412386i \(0.864696\pi\)
\(114\) 0 0
\(115\) 0.271330 0.112389i 0.0253017 0.0104803i
\(116\) 1.18473 4.72397i 0.110000 0.438609i
\(117\) 0 0
\(118\) 10.1200 11.7285i 0.931626 1.07970i
\(119\) −6.93484 + 6.93484i −0.635715 + 0.635715i
\(120\) 0 0
\(121\) −2.99450 2.99450i −0.272227 0.272227i
\(122\) 5.00766 0.368664i 0.453372 0.0333773i
\(123\) 0 0
\(124\) −10.9670 8.13853i −0.984861 0.730861i
\(125\) 2.75736 + 6.65685i 0.246626 + 0.595407i
\(126\) 0 0
\(127\) −11.4642 −1.01728 −0.508641 0.860979i \(-0.669852\pi\)
−0.508641 + 0.860979i \(0.669852\pi\)
\(128\) −8.91213 6.96951i −0.787728 0.616023i
\(129\) 0 0
\(130\) 1.65633 5.01136i 0.145269 0.439525i
\(131\) −4.32211 10.4345i −0.377625 0.911667i −0.992410 0.122972i \(-0.960757\pi\)
0.614785 0.788694i \(-0.289243\pi\)
\(132\) 0 0
\(133\) −12.4548 5.15894i −1.07997 0.447337i
\(134\) −7.35550 + 0.541513i −0.635419 + 0.0467796i
\(135\) 0 0
\(136\) 4.96951 + 7.06261i 0.426132 + 0.605614i
\(137\) 3.42429 3.42429i 0.292557 0.292557i −0.545533 0.838090i \(-0.683673\pi\)
0.838090 + 0.545533i \(0.183673\pi\)
\(138\) 0 0
\(139\) −7.35745 + 17.7625i −0.624051 + 1.50659i 0.222856 + 0.974851i \(0.428462\pi\)
−0.846907 + 0.531741i \(0.821538\pi\)
\(140\) 1.19609 4.76924i 0.101088 0.403075i
\(141\) 0 0
\(142\) −11.5607 + 5.81707i −0.970150 + 0.488158i
\(143\) 19.0328i 1.59160i
\(144\) 0 0
\(145\) 1.86377i 0.154778i
\(146\) 2.55402 + 5.07577i 0.211372 + 0.420074i
\(147\) 0 0
\(148\) −4.04185 6.74781i −0.332238 0.554666i
\(149\) 0.931884 2.24977i 0.0763429 0.184308i −0.881101 0.472929i \(-0.843197\pi\)
0.957443 + 0.288621i \(0.0931967\pi\)
\(150\) 0 0
\(151\) −4.21395 + 4.21395i −0.342926 + 0.342926i −0.857466 0.514540i \(-0.827963\pi\)
0.514540 + 0.857466i \(0.327963\pi\)
\(152\) −6.35503 + 10.0261i −0.515461 + 0.813227i
\(153\) 0 0
\(154\) 1.30182 + 17.6830i 0.104904 + 1.42494i
\(155\) −4.82843 2.00000i −0.387829 0.160644i
\(156\) 0 0
\(157\) 5.84401 + 14.1087i 0.466403 + 1.12600i 0.965722 + 0.259578i \(0.0835835\pi\)
−0.499319 + 0.866418i \(0.666417\pi\)
\(158\) −13.0920 4.32709i −1.04154 0.344245i
\(159\) 0 0
\(160\) −3.95687 1.75736i −0.312818 0.138931i
\(161\) 1.23256 0.0971395
\(162\) 0 0
\(163\) −2.72369 6.57558i −0.213336 0.515039i 0.780596 0.625036i \(-0.214916\pi\)
−0.993932 + 0.109997i \(0.964916\pi\)
\(164\) −4.31626 + 0.638991i −0.337043 + 0.0498968i
\(165\) 0 0
\(166\) −1.01672 13.8103i −0.0789125 1.07189i
\(167\) −3.26355 3.26355i −0.252541 0.252541i 0.569471 0.822012i \(-0.307148\pi\)
−0.822012 + 0.569471i \(0.807148\pi\)
\(168\) 0 0
\(169\) 7.62086 7.62086i 0.586220 0.586220i
\(170\) 2.50209 + 2.15894i 0.191901 + 0.165583i
\(171\) 0 0
\(172\) −3.35793 + 2.01136i −0.256040 + 0.153364i
\(173\) −6.86605 + 2.84401i −0.522016 + 0.216226i −0.628102 0.778131i \(-0.716168\pi\)
0.106086 + 0.994357i \(0.466168\pi\)
\(174\) 0 0
\(175\) 14.1791i 1.07184i
\(176\) 15.5367 + 1.53923i 1.17112 + 0.116024i
\(177\) 0 0
\(178\) −13.5480 + 6.81707i −1.01547 + 0.510961i
\(179\) 1.79370 0.742977i 0.134068 0.0555327i −0.314641 0.949211i \(-0.601884\pi\)
0.448709 + 0.893678i \(0.351884\pi\)
\(180\) 0 0
\(181\) 6.12132 14.7782i 0.454994 1.09845i −0.515405 0.856947i \(-0.672359\pi\)
0.970399 0.241506i \(-0.0776415\pi\)
\(182\) 14.4708 16.7709i 1.07265 1.24314i
\(183\) 0 0
\(184\) 0.186009 1.06926i 0.0137128 0.0788271i
\(185\) −2.12845 2.12845i −0.156487 0.156487i
\(186\) 0 0
\(187\) −11.0101 4.56052i −0.805137 0.333499i
\(188\) −8.78530 + 11.8385i −0.640734 + 0.863412i
\(189\) 0 0
\(190\) −1.42557 + 4.31318i −0.103422 + 0.312911i
\(191\) 6.19266 0.448085 0.224043 0.974579i \(-0.428075\pi\)
0.224043 + 0.974579i \(0.428075\pi\)
\(192\) 0 0
\(193\) 14.5784 1.04938 0.524688 0.851295i \(-0.324182\pi\)
0.524688 + 0.851295i \(0.324182\pi\)
\(194\) 1.64840 4.98737i 0.118348 0.358072i
\(195\) 0 0
\(196\) 3.95445 5.32876i 0.282461 0.380626i
\(197\) −18.5025 7.66398i −1.31825 0.546036i −0.390968 0.920404i \(-0.627860\pi\)
−0.927280 + 0.374368i \(0.877860\pi\)
\(198\) 0 0
\(199\) −12.3777 12.3777i −0.877435 0.877435i 0.115834 0.993269i \(-0.463046\pi\)
−0.993269 + 0.115834i \(0.963046\pi\)
\(200\) 12.3005 + 2.13980i 0.869780 + 0.151307i
\(201\) 0 0
\(202\) 9.04770 10.4858i 0.636594 0.737775i
\(203\) 2.99335 7.22658i 0.210092 0.507207i
\(204\) 0 0
\(205\) −1.54266 + 0.638991i −0.107744 + 0.0446291i
\(206\) 0.805188 0.405153i 0.0561001 0.0282283i
\(207\) 0 0
\(208\) −12.3651 15.0846i −0.857366 1.04593i
\(209\) 16.3812i 1.13311i
\(210\) 0 0
\(211\) 3.54851 1.46984i 0.244290 0.101188i −0.257179 0.966364i \(-0.582793\pi\)
0.501469 + 0.865176i \(0.332793\pi\)
\(212\) 7.51705 4.50262i 0.516273 0.309241i
\(213\) 0 0
\(214\) 19.0936 + 16.4751i 1.30521 + 1.12621i
\(215\) −1.05918 + 1.05918i −0.0722358 + 0.0722358i
\(216\) 0 0
\(217\) −15.5096 15.5096i −1.05286 1.05286i
\(218\) 0.809945 + 11.0017i 0.0548564 + 0.745128i
\(219\) 0 0
\(220\) 5.91032 0.874980i 0.398474 0.0589911i
\(221\) 5.69743 + 13.7548i 0.383250 + 0.925248i
\(222\) 0 0
\(223\) 27.5550 1.84522 0.922611 0.385732i \(-0.126051\pi\)
0.922611 + 0.385732i \(0.126051\pi\)
\(224\) −12.5200 13.1690i −0.836524 0.879892i
\(225\) 0 0
\(226\) 11.7727 + 3.89104i 0.783106 + 0.258828i
\(227\) 6.02694 + 14.5503i 0.400022 + 0.965738i 0.987660 + 0.156614i \(0.0500580\pi\)
−0.587638 + 0.809124i \(0.699942\pi\)
\(228\) 0 0
\(229\) 18.2777 + 7.57088i 1.20783 + 0.500298i 0.893520 0.449024i \(-0.148228\pi\)
0.314306 + 0.949322i \(0.398228\pi\)
\(230\) −0.0304945 0.414214i −0.00201075 0.0273124i
\(231\) 0 0
\(232\) −5.81742 3.68735i −0.381932 0.242086i
\(233\) 6.70939 6.70939i 0.439547 0.439547i −0.452313 0.891859i \(-0.649401\pi\)
0.891859 + 0.452313i \(0.149401\pi\)
\(234\) 0 0
\(235\) −2.15894 + 5.21215i −0.140834 + 0.340003i
\(236\) −11.2574 18.7941i −0.732796 1.22339i
\(237\) 0 0
\(238\) 6.23418 + 12.3896i 0.404102 + 0.803100i
\(239\) 26.1995i 1.69471i −0.531030 0.847353i \(-0.678195\pi\)
0.531030 0.847353i \(-0.321805\pi\)
\(240\) 0 0
\(241\) 13.6734i 0.880781i 0.897806 + 0.440391i \(0.145160\pi\)
−0.897806 + 0.440391i \(0.854840\pi\)
\(242\) −5.34990 + 2.69195i −0.343905 + 0.173045i
\(243\) 0 0
\(244\) 1.72739 6.88775i 0.110585 0.440943i
\(245\) 0.971786 2.34610i 0.0620851 0.149887i
\(246\) 0 0
\(247\) −14.4708 + 14.4708i −0.920758 + 0.920758i
\(248\) −15.7954 + 11.1142i −1.00301 + 0.705752i
\(249\) 0 0
\(250\) 10.1624 0.748155i 0.642725 0.0473175i
\(251\) 13.2054 + 5.46984i 0.833515 + 0.345253i 0.758293 0.651913i \(-0.226033\pi\)
0.0752219 + 0.997167i \(0.476033\pi\)
\(252\) 0 0
\(253\) 0.573155 + 1.38372i 0.0360340 + 0.0869937i
\(254\) −5.08787 + 15.3938i −0.319242 + 0.965893i
\(255\) 0 0
\(256\) −13.3137 + 8.87385i −0.832107 + 0.554615i
\(257\) 20.0656 1.25166 0.625828 0.779961i \(-0.284761\pi\)
0.625828 + 0.779961i \(0.284761\pi\)
\(258\) 0 0
\(259\) −4.83441 11.6713i −0.300395 0.725219i
\(260\) −5.99402 4.44814i −0.371733 0.275862i
\(261\) 0 0
\(262\) −15.9293 + 1.17272i −0.984117 + 0.0724509i
\(263\) −4.74976 4.74976i −0.292883 0.292883i 0.545335 0.838218i \(-0.316402\pi\)
−0.838218 + 0.545335i \(0.816402\pi\)
\(264\) 0 0
\(265\) 2.37109 2.37109i 0.145655 0.145655i
\(266\) −12.4548 + 14.4344i −0.763652 + 0.885028i
\(267\) 0 0
\(268\) −2.53729 + 10.1171i −0.154989 + 0.618000i
\(269\) 22.3818 9.27086i 1.36464 0.565254i 0.424313 0.905516i \(-0.360516\pi\)
0.940331 + 0.340262i \(0.110516\pi\)
\(270\) 0 0
\(271\) 0.693146i 0.0421056i 0.999778 + 0.0210528i \(0.00670181\pi\)
−0.999778 + 0.0210528i \(0.993298\pi\)
\(272\) 11.6890 3.53849i 0.708748 0.214552i
\(273\) 0 0
\(274\) −3.07832 6.11776i −0.185968 0.369588i
\(275\) −15.9180 + 6.59344i −0.959890 + 0.397600i
\(276\) 0 0
\(277\) 11.1898 27.0147i 0.672332 1.62315i −0.105305 0.994440i \(-0.533582\pi\)
0.777637 0.628713i \(-0.216418\pi\)
\(278\) 20.5857 + 17.7625i 1.23465 + 1.06532i
\(279\) 0 0
\(280\) −5.87318 3.72269i −0.350989 0.222473i
\(281\) 6.97958 + 6.97958i 0.416367 + 0.416367i 0.883949 0.467582i \(-0.154875\pi\)
−0.467582 + 0.883949i \(0.654875\pi\)
\(282\) 0 0
\(283\) 14.6079 + 6.05078i 0.868348 + 0.359682i 0.771967 0.635663i \(-0.219273\pi\)
0.0963814 + 0.995344i \(0.469273\pi\)
\(284\) 2.68031 + 18.1050i 0.159047 + 1.07433i
\(285\) 0 0
\(286\) 25.5567 + 8.44686i 1.51120 + 0.499473i
\(287\) −7.00778 −0.413656
\(288\) 0 0
\(289\) 7.67794 0.451644
\(290\) −2.50262 0.827151i −0.146959 0.0485720i
\(291\) 0 0
\(292\) 7.94909 1.17680i 0.465185 0.0688673i
\(293\) 9.85571 + 4.08237i 0.575777 + 0.238495i 0.651518 0.758633i \(-0.274132\pi\)
−0.0757415 + 0.997127i \(0.524132\pi\)
\(294\) 0 0
\(295\) −5.92818 5.92818i −0.345152 0.345152i
\(296\) −10.8546 + 2.43257i −0.630909 + 0.141390i
\(297\) 0 0
\(298\) −2.60735 2.24977i −0.151040 0.130326i
\(299\) 0.716038 1.72867i 0.0414096 0.0999715i
\(300\) 0 0
\(301\) −5.80801 + 2.40576i −0.334768 + 0.138666i
\(302\) 3.78820 + 7.52855i 0.217986 + 0.433219i
\(303\) 0 0
\(304\) 10.6424 + 12.9830i 0.610385 + 0.744627i
\(305\) 2.71746i 0.155601i
\(306\) 0 0
\(307\) 6.96272 2.88406i 0.397384 0.164602i −0.175037 0.984562i \(-0.556004\pi\)
0.572421 + 0.819960i \(0.306004\pi\)
\(308\) 24.3220 + 6.09976i 1.38587 + 0.347566i
\(309\) 0 0
\(310\) −4.82843 + 5.59587i −0.274236 + 0.317824i
\(311\) −4.65020 + 4.65020i −0.263689 + 0.263689i −0.826551 0.562862i \(-0.809700\pi\)
0.562862 + 0.826551i \(0.309700\pi\)
\(312\) 0 0
\(313\) −0.325668 0.325668i −0.0184078 0.0184078i 0.697843 0.716251i \(-0.254143\pi\)
−0.716251 + 0.697843i \(0.754143\pi\)
\(314\) 21.5384 1.58566i 1.21548 0.0894838i
\(315\) 0 0
\(316\) −11.6206 + 15.6591i −0.653709 + 0.880896i
\(317\) −7.92866 19.1415i −0.445318 1.07509i −0.974056 0.226307i \(-0.927335\pi\)
0.528738 0.848785i \(-0.322665\pi\)
\(318\) 0 0
\(319\) 9.50477 0.532165
\(320\) −4.11582 + 4.53325i −0.230081 + 0.253417i
\(321\) 0 0
\(322\) 0.547018 1.65505i 0.0304841 0.0922323i
\(323\) −4.90367 11.8385i −0.272847 0.658712i
\(324\) 0 0
\(325\) 19.8862 + 8.23714i 1.10309 + 0.456914i
\(326\) −10.0383 + 0.739021i −0.555970 + 0.0409306i
\(327\) 0 0
\(328\) −1.05756 + 6.07934i −0.0583941 + 0.335676i
\(329\) −16.7422 + 16.7422i −0.923026 + 0.923026i
\(330\) 0 0
\(331\) −5.91798 + 14.2873i −0.325281 + 0.785299i 0.673649 + 0.739052i \(0.264726\pi\)
−0.998930 + 0.0462470i \(0.985274\pi\)
\(332\) −18.9953 4.76387i −1.04250 0.261451i
\(333\) 0 0
\(334\) −5.83058 + 2.93382i −0.319035 + 0.160531i
\(335\) 3.99154i 0.218081i
\(336\) 0 0
\(337\) 4.44955i 0.242383i −0.992629 0.121191i \(-0.961329\pi\)
0.992629 0.121191i \(-0.0386715\pi\)
\(338\) −6.85089 13.6152i −0.372639 0.740572i
\(339\) 0 0
\(340\) 4.00941 2.40158i 0.217441 0.130244i
\(341\) 10.1995 24.6238i 0.552335 1.33345i
\(342\) 0 0
\(343\) −8.36330 + 8.36330i −0.451576 + 0.451576i
\(344\) 1.21052 + 5.40158i 0.0652671 + 0.291234i
\(345\) 0 0
\(346\) 0.771666 + 10.4817i 0.0414850 + 0.563501i
\(347\) −7.87485 3.26187i −0.422744 0.175106i 0.161161 0.986928i \(-0.448476\pi\)
−0.583905 + 0.811822i \(0.698476\pi\)
\(348\) 0 0
\(349\) −12.9387 31.2369i −0.692595 1.67207i −0.739486 0.673172i \(-0.764931\pi\)
0.0468913 0.998900i \(-0.485069\pi\)
\(350\) 19.0393 + 6.29276i 1.01769 + 0.336362i
\(351\) 0 0
\(352\) 8.96211 20.1791i 0.477682 1.07555i
\(353\) −20.7013 −1.10182 −0.550911 0.834564i \(-0.685720\pi\)
−0.550911 + 0.834564i \(0.685720\pi\)
\(354\) 0 0
\(355\) 2.68031 + 6.47085i 0.142256 + 0.343437i
\(356\) 3.14108 + 21.2174i 0.166477 + 1.12452i
\(357\) 0 0
\(358\) −0.201592 2.73827i −0.0106545 0.144722i
\(359\) 19.9483 + 19.9483i 1.05283 + 1.05283i 0.998524 + 0.0543091i \(0.0172956\pi\)
0.0543091 + 0.998524i \(0.482704\pi\)
\(360\) 0 0
\(361\) −0.980242 + 0.980242i −0.0515917 + 0.0515917i
\(362\) −17.1270 14.7782i −0.900177 0.776724i
\(363\) 0 0
\(364\) −16.0972 26.8741i −0.843723 1.40858i
\(365\) 2.84106 1.17680i 0.148708 0.0615968i
\(366\) 0 0
\(367\) 9.14270i 0.477245i −0.971112 0.238623i \(-0.923304\pi\)
0.971112 0.238623i \(-0.0766959\pi\)
\(368\) −1.35322 0.724312i −0.0705417 0.0377574i
\(369\) 0 0
\(370\) −3.80264 + 1.91340i −0.197690 + 0.0994731i
\(371\) 13.0018 5.38552i 0.675020 0.279602i
\(372\) 0 0
\(373\) −3.71974 + 8.98024i −0.192601 + 0.464979i −0.990449 0.137879i \(-0.955972\pi\)
0.797848 + 0.602858i \(0.205972\pi\)
\(374\) −11.0101 + 12.7600i −0.569318 + 0.659806i
\(375\) 0 0
\(376\) 11.9974 + 17.0507i 0.618721 + 0.879320i
\(377\) −8.39635 8.39635i −0.432434 0.432434i
\(378\) 0 0
\(379\) −7.80216 3.23176i −0.400770 0.166004i 0.173189 0.984889i \(-0.444593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(380\) 5.15894 + 3.82843i 0.264648 + 0.196394i
\(381\) 0 0
\(382\) 2.74834 8.31533i 0.140617 0.425449i
\(383\) 28.4633 1.45440 0.727202 0.686423i \(-0.240820\pi\)
0.727202 + 0.686423i \(0.240820\pi\)
\(384\) 0 0
\(385\) 9.59587 0.489051
\(386\) 6.46997 19.5754i 0.329313 0.996364i
\(387\) 0 0
\(388\) −5.96533 4.42684i −0.302844 0.224739i
\(389\) 21.0834 + 8.73304i 1.06897 + 0.442783i 0.846628 0.532185i \(-0.178629\pi\)
0.222344 + 0.974968i \(0.428629\pi\)
\(390\) 0 0
\(391\) 0.828427 + 0.828427i 0.0418954 + 0.0418954i
\(392\) −5.40031 7.67486i −0.272757 0.387639i
\(393\) 0 0
\(394\) −18.5025 + 21.4433i −0.932142 + 1.08030i
\(395\) −2.85570 + 6.89426i −0.143686 + 0.346888i
\(396\) 0 0
\(397\) −6.46808 + 2.67916i −0.324623 + 0.134463i −0.539043 0.842278i \(-0.681214\pi\)
0.214420 + 0.976742i \(0.431214\pi\)
\(398\) −22.1138 + 11.1272i −1.10846 + 0.557755i
\(399\) 0 0
\(400\) 8.33232 15.5672i 0.416616 0.778359i
\(401\) 24.9871i 1.24780i 0.781505 + 0.623898i \(0.214452\pi\)
−0.781505 + 0.623898i \(0.785548\pi\)
\(402\) 0 0
\(403\) −30.7623 + 12.7422i −1.53238 + 0.634733i
\(404\) −10.0646 16.8026i −0.500731 0.835962i
\(405\) 0 0
\(406\) −8.37519 7.22658i −0.415654 0.358649i
\(407\) 10.8546 10.8546i 0.538041 0.538041i
\(408\) 0 0
\(409\) 9.19951 + 9.19951i 0.454887 + 0.454887i 0.896973 0.442086i \(-0.145761\pi\)
−0.442086 + 0.896973i \(0.645761\pi\)
\(410\) 0.173378 + 2.35503i 0.00856251 + 0.116307i
\(411\) 0 0
\(412\) −0.186681 1.26099i −0.00919711 0.0621247i
\(413\) −13.4649 32.5071i −0.662563 1.59957i
\(414\) 0 0
\(415\) −7.49430 −0.367881
\(416\) −25.7428 + 9.90890i −1.26215 + 0.485824i
\(417\) 0 0
\(418\) −21.9962 7.27005i −1.07587 0.355590i
\(419\) −10.4739 25.2863i −0.511685 1.23532i −0.942902 0.333070i \(-0.891916\pi\)
0.431217 0.902248i \(-0.358084\pi\)
\(420\) 0 0
\(421\) −16.6841 6.91080i −0.813135 0.336812i −0.0629310 0.998018i \(-0.520045\pi\)
−0.750204 + 0.661206i \(0.770045\pi\)
\(422\) −0.398813 5.41717i −0.0194139 0.263703i
\(423\) 0 0
\(424\) −2.70988 12.0920i −0.131603 0.587238i
\(425\) −9.53003 + 9.53003i −0.462274 + 0.462274i
\(426\) 0 0
\(427\) 4.36444 10.5367i 0.211210 0.509906i
\(428\) 30.5961 18.3267i 1.47892 0.885854i
\(429\) 0 0
\(430\) 0.952171 + 1.89231i 0.0459178 + 0.0912555i
\(431\) 26.5985i 1.28121i 0.767872 + 0.640603i \(0.221316\pi\)
−0.767872 + 0.640603i \(0.778684\pi\)
\(432\) 0 0
\(433\) 9.96788i 0.479026i −0.970893 0.239513i \(-0.923012\pi\)
0.970893 0.239513i \(-0.0769878\pi\)
\(434\) −27.7091 + 13.9426i −1.33008 + 0.669267i
\(435\) 0 0
\(436\) 15.1322 + 3.79503i 0.724701 + 0.181749i
\(437\) −0.616281 + 1.48783i −0.0294807 + 0.0711727i
\(438\) 0 0
\(439\) 17.4631 17.4631i 0.833466 0.833466i −0.154523 0.987989i \(-0.549384\pi\)
0.987989 + 0.154523i \(0.0493840\pi\)
\(440\) 1.44814 8.32453i 0.0690371 0.396857i
\(441\) 0 0
\(442\) 20.9981 1.54589i 0.998779 0.0735303i
\(443\) −34.7377 14.3888i −1.65044 0.683634i −0.653149 0.757229i \(-0.726553\pi\)
−0.997288 + 0.0735956i \(0.976553\pi\)
\(444\) 0 0
\(445\) 3.14108 + 7.58323i 0.148901 + 0.359480i
\(446\) 12.2291 37.0001i 0.579064 1.75201i
\(447\) 0 0
\(448\) −23.2394 + 10.9670i −1.09796 + 0.518140i
\(449\) 8.35000 0.394061 0.197030 0.980397i \(-0.436870\pi\)
0.197030 + 0.980397i \(0.436870\pi\)
\(450\) 0 0
\(451\) −3.25870 7.86720i −0.153446 0.370452i
\(452\) 10.4496 14.0811i 0.491506 0.662321i
\(453\) 0 0
\(454\) 22.2125 1.63529i 1.04249 0.0767480i
\(455\) −8.47682 8.47682i −0.397400 0.397400i
\(456\) 0 0
\(457\) −18.0734 + 18.0734i −0.845436 + 0.845436i −0.989560 0.144123i \(-0.953964\pi\)
0.144123 + 0.989560i \(0.453964\pi\)
\(458\) 18.2777 21.1828i 0.854061 0.989807i
\(459\) 0 0
\(460\) −0.569728 0.142883i −0.0265637 0.00666196i
\(461\) −26.4451 + 10.9539i −1.23167 + 0.510175i −0.901102 0.433607i \(-0.857241\pi\)
−0.330569 + 0.943782i \(0.607241\pi\)
\(462\) 0 0
\(463\) 4.94169i 0.229660i −0.993385 0.114830i \(-0.963368\pi\)
0.993385 0.114830i \(-0.0366323\pi\)
\(464\) −7.53307 + 6.17500i −0.349714 + 0.286667i
\(465\) 0 0
\(466\) −6.03151 11.9868i −0.279404 0.555280i
\(467\) −20.6806 + 8.56617i −0.956983 + 0.396395i −0.805851 0.592118i \(-0.798292\pi\)
−0.151132 + 0.988514i \(0.548292\pi\)
\(468\) 0 0
\(469\) −6.41071 + 15.4768i −0.296019 + 0.714653i
\(470\) 6.04057 + 5.21215i 0.278631 + 0.240418i
\(471\) 0 0
\(472\) −30.2323 + 6.77522i −1.39155 + 0.311855i
\(473\) −5.40158 5.40158i −0.248365 0.248365i
\(474\) 0 0
\(475\) −17.1157 7.08955i −0.785322 0.325291i
\(476\) 19.4032 2.87250i 0.889344 0.131661i
\(477\) 0 0
\(478\) −35.1800 11.6275i −1.60909 0.531829i
\(479\) 5.50637 0.251592 0.125796 0.992056i \(-0.459851\pi\)
0.125796 + 0.992056i \(0.459851\pi\)
\(480\) 0 0
\(481\) −19.1775 −0.874418
\(482\) 18.3603 + 6.06833i 0.836287 + 0.276405i
\(483\) 0 0
\(484\) 1.24036 + 8.37840i 0.0563800 + 0.380836i
\(485\) −2.62636 1.08787i −0.119257 0.0493978i
\(486\) 0 0
\(487\) 24.9561 + 24.9561i 1.13087 + 1.13087i 0.990033 + 0.140837i \(0.0449794\pi\)
0.140837 + 0.990033i \(0.455021\pi\)
\(488\) −8.48206 5.37632i −0.383965 0.243375i
\(489\) 0 0
\(490\) −2.71899 2.34610i −0.122831 0.105986i
\(491\) −4.79438 + 11.5746i −0.216367 + 0.522357i −0.994377 0.105895i \(-0.966229\pi\)
0.778010 + 0.628252i \(0.216229\pi\)
\(492\) 0 0
\(493\) 6.86900 2.84523i 0.309364 0.128143i
\(494\) 13.0088 + 25.8533i 0.585294 + 1.16319i
\(495\) 0 0
\(496\) 7.91375 + 26.1421i 0.355338 + 1.17382i
\(497\) 29.3949i 1.31854i
\(498\) 0 0
\(499\) 8.71684 3.61063i 0.390219 0.161634i −0.178943 0.983859i \(-0.557268\pi\)
0.569162 + 0.822225i \(0.307268\pi\)
\(500\) 3.50551 13.9778i 0.156771 0.625105i
\(501\) 0 0
\(502\) 13.2054 15.3042i 0.589384 0.683062i
\(503\) −5.07960 + 5.07960i −0.226488 + 0.226488i −0.811224 0.584736i \(-0.801198\pi\)
0.584736 + 0.811224i \(0.301198\pi\)
\(504\) 0 0
\(505\) −5.30002 5.30002i −0.235848 0.235848i
\(506\) 2.11239 0.155514i 0.0939071 0.00691346i
\(507\) 0 0
\(508\) 18.4123 + 13.6637i 0.816915 + 0.606229i
\(509\) 13.5628 + 32.7435i 0.601161 + 1.45133i 0.872388 + 0.488815i \(0.162571\pi\)
−0.271227 + 0.962515i \(0.587429\pi\)
\(510\) 0 0
\(511\) 12.9060 0.570926
\(512\) 6.00685 + 21.8155i 0.265468 + 0.964120i
\(513\) 0 0
\(514\) 8.90522 26.9435i 0.392792 1.18843i
\(515\) −0.186681 0.450688i −0.00822614 0.0198597i
\(516\) 0 0
\(517\) −26.5807 11.0101i −1.16902 0.484223i
\(518\) −17.8174 + 1.31172i −0.782852 + 0.0576337i
\(519\) 0 0
\(520\) −8.63301 + 6.07450i −0.378583 + 0.266384i
\(521\) 17.4496 17.4496i 0.764479 0.764479i −0.212650 0.977129i \(-0.568209\pi\)
0.977129 + 0.212650i \(0.0682093\pi\)
\(522\) 0 0
\(523\) 16.6581 40.2163i 0.728410 1.75854i 0.0805847 0.996748i \(-0.474321\pi\)
0.647825 0.761789i \(-0.275679\pi\)
\(524\) −5.49483 + 21.9099i −0.240043 + 0.957139i
\(525\) 0 0
\(526\) −8.48581 + 4.26987i −0.369999 + 0.186175i
\(527\) 20.8486i 0.908179i
\(528\) 0 0
\(529\) 22.8528i 0.993598i
\(530\) −2.13153 4.23613i −0.0925877 0.184006i
\(531\) 0 0
\(532\) 13.8546 + 23.1300i 0.600672 + 1.00281i
\(533\) −4.07107 + 9.82843i −0.176338 + 0.425716i
\(534\) 0 0
\(535\) 9.65087 9.65087i 0.417244 0.417244i
\(536\) 12.4589 + 7.89702i 0.538142 + 0.341099i
\(537\) 0 0
\(538\) −2.51546 34.1681i −0.108449 1.47309i
\(539\) 11.9645 + 4.95587i 0.515349 + 0.213464i
\(540\) 0 0
\(541\) 15.9692 + 38.5531i 0.686571 + 1.65753i 0.751578 + 0.659644i \(0.229293\pi\)
−0.0650071 + 0.997885i \(0.520707\pi\)
\(542\) 0.930737 + 0.307622i 0.0399786 + 0.0132135i
\(543\) 0 0
\(544\) 0.436252 17.2660i 0.0187041 0.740275i
\(545\) 5.97018 0.255734
\(546\) 0 0
\(547\) 0.383100 + 0.924886i 0.0163802 + 0.0395453i 0.931858 0.362823i \(-0.118187\pi\)
−0.915478 + 0.402368i \(0.868187\pi\)
\(548\) −9.58094 + 1.41839i −0.409277 + 0.0605905i
\(549\) 0 0
\(550\) 1.78900 + 24.3004i 0.0762833 + 1.03617i
\(551\) 7.22658 + 7.22658i 0.307863 + 0.307863i
\(552\) 0 0
\(553\) −22.1454 + 22.1454i −0.941717 + 0.941717i
\(554\) −31.3084 27.0147i −1.33017 1.14774i
\(555\) 0 0
\(556\) 32.9870 19.7588i 1.39896 0.837958i
\(557\) −8.29127 + 3.43436i −0.351312 + 0.145518i −0.551359 0.834268i \(-0.685891\pi\)
0.200047 + 0.979786i \(0.435891\pi\)
\(558\) 0 0
\(559\) 9.54333i 0.403640i
\(560\) −7.60527 + 6.23418i −0.321381 + 0.263442i
\(561\) 0 0
\(562\) 12.4696 6.27441i 0.525997 0.264670i
\(563\) 22.7143 9.40857i 0.957293 0.396524i 0.151326 0.988484i \(-0.451646\pi\)
0.805967 + 0.591960i \(0.201646\pi\)
\(564\) 0 0
\(565\) 2.56792 6.19951i 0.108033 0.260816i
\(566\) 14.6079 16.9297i 0.614015 0.711607i
\(567\) 0 0
\(568\) 25.5004 + 4.43605i 1.06997 + 0.186132i
\(569\) 16.6413 + 16.6413i 0.697639 + 0.697639i 0.963901 0.266262i \(-0.0857886\pi\)
−0.266262 + 0.963901i \(0.585789\pi\)
\(570\) 0 0
\(571\) 9.37532 + 3.88338i 0.392345 + 0.162515i 0.570129 0.821555i \(-0.306893\pi\)
−0.177785 + 0.984069i \(0.556893\pi\)
\(572\) 22.6844 30.5681i 0.948483 1.27811i
\(573\) 0 0
\(574\) −3.11009 + 9.40986i −0.129813 + 0.392760i
\(575\) 1.69382 0.0706371
\(576\) 0 0
\(577\) −23.0348 −0.958951 −0.479476 0.877555i \(-0.659173\pi\)
−0.479476 + 0.877555i \(0.659173\pi\)
\(578\) 3.40751 10.3097i 0.141734 0.428828i
\(579\) 0 0
\(580\) −2.22135 + 2.99335i −0.0922365 + 0.124292i
\(581\) −29.0584 12.0364i −1.20555 0.499354i
\(582\) 0 0
\(583\) 12.0920 + 12.0920i 0.500798 + 0.500798i
\(584\) 1.94767 11.1961i 0.0805952 0.463297i
\(585\) 0 0
\(586\) 9.85571 11.4222i 0.407136 0.471847i
\(587\) −1.02732 + 2.48018i −0.0424022 + 0.102368i −0.943662 0.330912i \(-0.892644\pi\)
0.901260 + 0.433280i \(0.142644\pi\)
\(588\) 0 0
\(589\) 26.4766 10.9670i 1.09095 0.451885i
\(590\) −10.5912 + 5.32924i −0.436031 + 0.219401i
\(591\) 0 0
\(592\) −1.55093 + 15.6548i −0.0637430 + 0.643408i
\(593\) 13.9339i 0.572197i 0.958200 + 0.286098i \(0.0923584\pi\)
−0.958200 + 0.286098i \(0.907642\pi\)
\(594\) 0 0
\(595\) 6.93484 2.87250i 0.284301 0.117761i
\(596\) −4.17808 + 2.50262i −0.171141 + 0.102511i
\(597\) 0 0
\(598\) −2.00343 1.72867i −0.0819262 0.0706906i
\(599\) 7.02222 7.02222i 0.286920 0.286920i −0.548941 0.835861i \(-0.684969\pi\)
0.835861 + 0.548941i \(0.184969\pi\)
\(600\) 0 0
\(601\) 24.0970 + 24.0970i 0.982938 + 0.982938i 0.999857 0.0169188i \(-0.00538568\pi\)
−0.0169188 + 0.999857i \(0.505386\pi\)
\(602\) 0.652755 + 8.86652i 0.0266043 + 0.361373i
\(603\) 0 0
\(604\) 11.7904 1.74548i 0.479743 0.0710224i
\(605\) 1.24036 + 2.99450i 0.0504278 + 0.121744i
\(606\) 0 0
\(607\) −27.8275 −1.12948 −0.564742 0.825268i \(-0.691024\pi\)
−0.564742 + 0.825268i \(0.691024\pi\)
\(608\) 22.1564 8.52841i 0.898560 0.345873i
\(609\) 0 0
\(610\) −3.64893 1.20602i −0.147741 0.0488305i
\(611\) 13.7548 + 33.2070i 0.556460 + 1.34341i
\(612\) 0 0
\(613\) −9.98279 4.13501i −0.403201 0.167011i 0.171861 0.985121i \(-0.445022\pi\)
−0.575062 + 0.818110i \(0.695022\pi\)
\(614\) −0.782532 10.6293i −0.0315804 0.428964i
\(615\) 0 0
\(616\) 18.9848 29.9518i 0.764920 1.20679i
\(617\) −23.2080 + 23.2080i −0.934318 + 0.934318i −0.997972 0.0636543i \(-0.979725\pi\)
0.0636543 + 0.997972i \(0.479725\pi\)
\(618\) 0 0
\(619\) −11.5644 + 27.9189i −0.464811 + 1.12215i 0.501588 + 0.865107i \(0.332749\pi\)
−0.966399 + 0.257047i \(0.917251\pi\)
\(620\) 5.37109 + 8.96695i 0.215708 + 0.360122i
\(621\) 0 0
\(622\) 4.18038 + 8.30795i 0.167618 + 0.333118i
\(623\) 34.4481i 1.38013i
\(624\) 0 0
\(625\) 16.5563i 0.662254i
\(626\) −0.581831 + 0.292764i −0.0232546 + 0.0117012i
\(627\) 0 0
\(628\) 7.42967 29.6248i 0.296476 1.18216i
\(629\) 4.59519 11.0938i 0.183222 0.442338i
\(630\) 0 0
\(631\) −1.34980 + 1.34980i −0.0537346 + 0.0537346i −0.733463 0.679729i \(-0.762097\pi\)
0.679729 + 0.733463i \(0.262097\pi\)
\(632\) 15.8694 + 22.5534i 0.631250 + 0.897127i
\(633\) 0 0
\(634\) −29.2214 + 2.15129i −1.16053 + 0.0854385i
\(635\) 8.10641 + 3.35778i 0.321693 + 0.133250i
\(636\) 0 0
\(637\) −6.19133 14.9472i −0.245309 0.592229i
\(638\) 4.21827 12.7627i 0.167003 0.505282i
\(639\) 0 0
\(640\) 4.26050 + 7.53849i 0.168411 + 0.297985i
\(641\) −41.5334 −1.64047 −0.820235 0.572027i \(-0.806157\pi\)
−0.820235 + 0.572027i \(0.806157\pi\)
\(642\) 0 0
\(643\) −1.57282 3.79713i −0.0620261 0.149744i 0.889828 0.456297i \(-0.150824\pi\)
−0.951854 + 0.306553i \(0.900824\pi\)
\(644\) −1.97958 1.46904i −0.0780066 0.0578883i
\(645\) 0 0
\(646\) −18.0727 + 1.33051i −0.711060 + 0.0523484i
\(647\) 5.84193 + 5.84193i 0.229670 + 0.229670i 0.812555 0.582885i \(-0.198076\pi\)
−0.582885 + 0.812555i \(0.698076\pi\)
\(648\) 0 0
\(649\) 30.2323 30.2323i 1.18672 1.18672i
\(650\) 19.8862 23.0470i 0.780001 0.903976i
\(651\) 0 0
\(652\) −3.46271 + 13.8071i −0.135610 + 0.540729i
\(653\) 26.0231 10.7791i 1.01836 0.421820i 0.189864 0.981810i \(-0.439195\pi\)
0.828499 + 0.559991i \(0.189195\pi\)
\(654\) 0 0
\(655\) 8.64422i 0.337758i
\(656\) 7.69382 + 4.11811i 0.300393 + 0.160785i
\(657\) 0 0
\(658\) 15.0507 + 29.9112i 0.586736 + 1.16606i
\(659\) −37.6498 + 15.5951i −1.46663 + 0.607497i −0.966087 0.258215i \(-0.916866\pi\)
−0.500541 + 0.865713i \(0.666866\pi\)
\(660\) 0 0
\(661\) 3.14241 7.58644i 0.122226 0.295078i −0.850910 0.525311i \(-0.823949\pi\)
0.973136 + 0.230233i \(0.0739488\pi\)
\(662\) 16.5581 + 14.2873i 0.643549 + 0.555290i
\(663\) 0 0
\(664\) −14.8270 + 23.3921i −0.575399 + 0.907790i
\(665\) 7.29585 + 7.29585i 0.282921 + 0.282921i
\(666\) 0 0
\(667\) −0.863279 0.357582i −0.0334263 0.0138456i
\(668\) 1.35181 + 9.13118i 0.0523029 + 0.353296i
\(669\) 0 0
\(670\) 5.35973 + 1.77147i 0.207065 + 0.0684378i
\(671\) 13.8584 0.534997
\(672\) 0 0
\(673\) −5.24262 −0.202088 −0.101044 0.994882i \(-0.532218\pi\)
−0.101044 + 0.994882i \(0.532218\pi\)
\(674\) −5.97474 1.97474i −0.230138 0.0760640i
\(675\) 0 0
\(676\) −21.3226 + 3.15666i −0.820102 + 0.121410i
\(677\) −14.5716 6.03574i −0.560031 0.231972i 0.0846677 0.996409i \(-0.473017\pi\)
−0.644699 + 0.764437i \(0.723017\pi\)
\(678\) 0 0
\(679\) −8.43625 8.43625i −0.323754 0.323754i
\(680\) −1.44538 6.44955i −0.0554278 0.247329i
\(681\) 0 0
\(682\) −28.5376 24.6238i −1.09276 0.942894i
\(683\) 14.9028 35.9785i 0.570240 1.37668i −0.331112 0.943592i \(-0.607424\pi\)
0.901351 0.433089i \(-0.142576\pi\)
\(684\) 0 0
\(685\) −3.42429 + 1.41839i −0.130835 + 0.0541938i
\(686\) 7.51833 + 14.9417i 0.287051 + 0.570476i
\(687\) 0 0
\(688\) 7.79033 + 0.771795i 0.297004 + 0.0294244i
\(689\) 21.3637i 0.813892i
\(690\) 0 0
\(691\) 14.6714 6.07710i 0.558127 0.231184i −0.0857448 0.996317i \(-0.527327\pi\)
0.643872 + 0.765133i \(0.277327\pi\)
\(692\) 14.4170 + 3.61568i 0.548053 + 0.137447i
\(693\) 0 0
\(694\) −7.87485 + 9.12649i −0.298925 + 0.346437i
\(695\) 10.4050 10.4050i 0.394685 0.394685i
\(696\) 0 0
\(697\) −4.71006 4.71006i −0.178406 0.178406i
\(698\) −47.6863 + 3.51067i −1.80495 + 0.132881i
\(699\) 0 0
\(700\) 16.8995 22.7727i 0.638741 0.860726i
\(701\) −9.58351 23.1366i −0.361964 0.873859i −0.995013 0.0997466i \(-0.968197\pi\)
0.633049 0.774112i \(-0.281803\pi\)
\(702\) 0 0
\(703\) 16.5057 0.622524
\(704\) −23.1185 20.9897i −0.871311 0.791078i
\(705\) 0 0
\(706\) −9.18737 + 27.7972i −0.345771 + 1.04616i
\(707\) −12.0381 29.0625i −0.452739 1.09301i
\(708\) 0 0
\(709\) 27.4256 + 11.3601i 1.02999 + 0.426636i 0.832709 0.553711i \(-0.186789\pi\)
0.197282 + 0.980347i \(0.436789\pi\)
\(710\) 9.87841 0.727250i 0.370730 0.0272932i
\(711\) 0 0
\(712\) 29.8841 + 5.19864i 1.11996 + 0.194827i
\(713\) −1.85276 + 1.85276i −0.0693864 + 0.0693864i
\(714\) 0 0
\(715\) 5.57457 13.4582i 0.208477 0.503309i
\(716\) −3.76634 0.944569i −0.140755 0.0353002i
\(717\) 0 0
\(718\) 35.6393 17.9329i 1.33005 0.669249i
\(719\) 38.9976i 1.45436i −0.686445 0.727182i \(-0.740830\pi\)
0.686445 0.727182i \(-0.259170\pi\)
\(720\) 0 0
\(721\) 2.04732i 0.0762462i
\(722\) 0.881204 + 1.75128i 0.0327950 + 0.0651758i
\(723\) 0 0
\(724\) −27.4448 + 16.4391i −1.01998 + 0.610953i
\(725\) 4.11354 9.93095i 0.152773 0.368826i
\(726\) 0 0
\(727\) 34.9474 34.9474i 1.29613 1.29613i 0.365198 0.930930i \(-0.381001\pi\)
0.930930 0.365198i \(-0.118999\pi\)
\(728\) −43.2298 + 9.68802i −1.60220 + 0.359062i
\(729\) 0 0
\(730\) −0.319303 4.33717i −0.0118179 0.160526i
\(731\) −5.52062 2.28672i −0.204188 0.0845773i
\(732\) 0 0
\(733\) −13.8093 33.3387i −0.510060 1.23139i −0.943849 0.330378i \(-0.892824\pi\)
0.433789 0.901015i \(-0.357176\pi\)
\(734\) −12.2766 4.05758i −0.453136 0.149768i
\(735\) 0 0
\(736\) −1.57316 + 1.49562i −0.0579873 + 0.0551292i
\(737\) −20.3559 −0.749819
\(738\) 0 0
\(739\) 6.75096 + 16.2983i 0.248338 + 0.599542i 0.998063 0.0622080i \(-0.0198142\pi\)
−0.749725 + 0.661750i \(0.769814\pi\)
\(740\) 0.881632 + 5.95525i 0.0324094 + 0.218919i
\(741\) 0 0
\(742\) −1.46126 19.8486i −0.0536444 0.728664i
\(743\) 20.6145 + 20.6145i 0.756272 + 0.756272i 0.975642 0.219370i \(-0.0704002\pi\)
−0.219370 + 0.975642i \(0.570400\pi\)
\(744\) 0 0
\(745\) −1.31788 + 1.31788i −0.0482835 + 0.0482835i
\(746\) 10.4076 + 8.98024i 0.381048 + 0.328790i
\(747\) 0 0
\(748\) 12.2475 + 20.4470i 0.447812 + 0.747616i
\(749\) 52.9203 21.9203i 1.93367 0.800951i
\(750\) 0 0
\(751\) 27.0344i 0.986499i −0.869888 0.493249i \(-0.835809\pi\)
0.869888 0.493249i \(-0.164191\pi\)
\(752\) 28.2197 8.54266i 1.02907 0.311519i
\(753\) 0 0
\(754\) −15.0007 + 7.54804i −0.546294 + 0.274883i
\(755\) 4.21395 1.74548i 0.153361 0.0635244i
\(756\) 0 0
\(757\) −19.5424 + 47.1795i −0.710280 + 1.71477i −0.0109802 + 0.999940i \(0.503495\pi\)
−0.699300 + 0.714828i \(0.746505\pi\)
\(758\) −7.80216 + 9.04225i −0.283387 + 0.328429i
\(759\) 0 0
\(760\) 7.43027 5.22820i 0.269524 0.189647i
\(761\) 2.53714 + 2.53714i 0.0919713 + 0.0919713i 0.751596 0.659624i \(-0.229285\pi\)
−0.659624 + 0.751596i \(0.729285\pi\)
\(762\) 0 0
\(763\) 23.1488 + 9.58854i 0.838042 + 0.347129i
\(764\) −9.94587 7.38078i −0.359829 0.267027i
\(765\) 0 0
\(766\) 12.6322 38.2197i 0.456418 1.38093i
\(767\) −53.4134 −1.92865
\(768\) 0 0
\(769\) −24.0627 −0.867725 −0.433862 0.900979i \(-0.642850\pi\)
−0.433862 + 0.900979i \(0.642850\pi\)
\(770\) 4.25870 12.8851i 0.153473 0.464345i
\(771\) 0 0
\(772\) −23.4140 17.3754i −0.842687 0.625354i
\(773\) 43.4146 + 17.9829i 1.56152 + 0.646801i 0.985352 0.170534i \(-0.0545492\pi\)
0.576163 + 0.817335i \(0.304549\pi\)
\(774\) 0 0
\(775\) −21.3137 21.3137i −0.765611 0.765611i
\(776\) −8.59169 + 6.04542i −0.308424 + 0.217018i
\(777\) 0 0
\(778\) 21.0834 24.4345i 0.755877 0.876018i
\(779\) 3.50389 8.45914i 0.125540 0.303080i
\(780\) 0 0
\(781\) −32.9997 + 13.6689i −1.18082 + 0.489113i
\(782\) 1.48005 0.744728i 0.0529265 0.0266314i
\(783\) 0 0
\(784\) −12.7023 + 3.84523i −0.453653 + 0.137330i
\(785\) 11.6880i 0.417163i
\(786\) 0 0
\(787\) −4.62213 + 1.91455i −0.164761 + 0.0682463i −0.463540 0.886076i \(-0.653421\pi\)
0.298778 + 0.954323i \(0.403421\pi\)
\(788\) 20.5820 + 34.3613i 0.733202 + 1.22407i
\(789\) 0 0
\(790\) 7.99005 + 6.89426i 0.284273 + 0.245287i
\(791\) 19.9137 19.9137i 0.708051 0.708051i
\(792\) 0 0
\(793\) −12.2423 12.2423i −0.434735 0.434735i
\(794\) 0.726939 + 9.87418i 0.0257981 + 0.350422i
\(795\) 0 0
\(796\) 5.12703 + 34.6321i 0.181723 + 1.22750i
\(797\) 7.78397 + 18.7922i 0.275722 + 0.665653i 0.999708 0.0241622i \(-0.00769183\pi\)
−0.723986 + 0.689815i \(0.757692\pi\)
\(798\) 0 0
\(799\) −22.5054 −0.796185
\(800\) −17.2052 18.0972i −0.608297 0.639833i
\(801\) 0 0
\(802\) 33.5520 + 11.0894i 1.18476 + 0.391581i
\(803\) 6.00142 + 14.4887i 0.211785 + 0.511295i
\(804\) 0 0
\(805\) −0.871553 0.361009i −0.0307182 0.0127239i
\(806\) 3.45734 + 46.9618i 0.121780 + 1.65416i
\(807\) 0 0
\(808\) −27.0288 + 6.05730i −0.950870 + 0.213095i
\(809\) 5.79631 5.79631i 0.203787 0.203787i −0.597833 0.801621i \(-0.703971\pi\)
0.801621 + 0.597833i \(0.203971\pi\)
\(810\) 0 0
\(811\) −2.59457 + 6.26386i −0.0911078 + 0.219954i −0.962864 0.269986i \(-0.912981\pi\)
0.871757 + 0.489939i \(0.162981\pi\)
\(812\) −13.4206 + 8.03877i −0.470971 + 0.282105i
\(813\) 0 0
\(814\) −9.75789 19.3925i −0.342014 0.679708i
\(815\) 5.44739i 0.190814i
\(816\) 0 0
\(817\) 8.21377i 0.287363i
\(818\) 16.4356 8.27005i 0.574659 0.289156i
\(819\) 0 0
\(820\) 3.23921 + 0.812369i 0.113118 + 0.0283691i
\(821\) −14.5014 + 35.0095i −0.506103 + 1.22184i 0.440006 + 0.897995i \(0.354976\pi\)
−0.946110 + 0.323847i \(0.895024\pi\)
\(822\) 0 0
\(823\) −6.84972 + 6.84972i −0.238766 + 0.238766i −0.816339 0.577573i \(-0.804000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(824\) −1.77608 0.308966i −0.0618726 0.0107633i
\(825\) 0 0
\(826\) −49.6254 + 3.65343i −1.72669 + 0.127119i
\(827\) −27.6932 11.4709i −0.962987 0.398882i −0.154890 0.987932i \(-0.549502\pi\)
−0.808097 + 0.589049i \(0.799502\pi\)
\(828\) 0 0
\(829\) 1.60232 + 3.86834i 0.0556509 + 0.134353i 0.949259 0.314494i \(-0.101835\pi\)
−0.893609 + 0.448847i \(0.851835\pi\)
\(830\) −3.32601 + 10.0631i −0.115448 + 0.349297i
\(831\) 0 0
\(832\) 1.88057 + 38.9644i 0.0651972 + 1.35085i
\(833\) 10.1302 0.350990
\(834\) 0 0
\(835\) 1.35181 + 3.26355i 0.0467811 + 0.112940i
\(836\) −19.5240 + 26.3094i −0.675253 + 0.909928i
\(837\) 0 0
\(838\) −38.6022 + 2.84190i −1.33349 + 0.0981717i
\(839\) −11.4718 11.4718i −0.396050 0.396050i 0.480787 0.876837i \(-0.340351\pi\)
−0.876837 + 0.480787i \(0.840351\pi\)
\(840\) 0 0
\(841\) 16.3131 16.3131i 0.562519 0.562519i
\(842\) −16.6841 + 19.3359i −0.574973 + 0.666361i
\(843\) 0 0
\(844\) −7.45101 1.86865i −0.256474 0.0643217i
\(845\) −7.62086 + 3.15666i −0.262165 + 0.108592i
\(846\) 0 0
\(847\) 13.6030i 0.467404i
\(848\) −17.4394 1.72774i −0.598872 0.0593308i
\(849\) 0 0
\(850\) 8.56718 + 17.0261i 0.293852 + 0.583992i
\(851\) −1.39424 + 0.577512i −0.0477939 + 0.0197969i
\(852\) 0 0
\(853\) −4.85275 + 11.7156i −0.166155 + 0.401133i −0.984924 0.172990i \(-0.944657\pi\)
0.818769 + 0.574124i \(0.194657\pi\)
\(854\) −12.2114 10.5367i −0.417865 0.360558i
\(855\) 0 0
\(856\) −11.0298 49.2171i −0.376992 1.68221i
\(857\) 13.5307 + 13.5307i 0.462200 + 0.462200i 0.899376 0.437176i \(-0.144021\pi\)
−0.437176 + 0.899376i \(0.644021\pi\)
\(858\) 0 0
\(859\) −50.3433 20.8529i −1.71769 0.711491i −0.999884 0.0152507i \(-0.995145\pi\)
−0.717808 0.696241i \(-0.754855\pi\)
\(860\) 2.96353 0.438728i 0.101055 0.0149605i
\(861\) 0 0
\(862\) 35.7158 + 11.8046i 1.21648 + 0.402066i
\(863\) 9.50637 0.323601 0.161800 0.986824i \(-0.448270\pi\)
0.161800 + 0.986824i \(0.448270\pi\)
\(864\) 0 0
\(865\) 5.68802 0.193399
\(866\) −13.3846 4.42380i −0.454827 0.150327i
\(867\) 0 0
\(868\) 6.42429 + 43.3949i 0.218055 + 1.47292i
\(869\) −35.1591 14.5634i −1.19269 0.494028i
\(870\) 0 0
\(871\) 17.9821 + 17.9821i 0.609299 + 0.609299i
\(872\) 11.8116 18.6348i 0.399992 0.631055i
\(873\) 0 0
\(874\) 1.72431 + 1.48783i 0.0583257 + 0.0503267i
\(875\) 8.85704 21.3828i 0.299423 0.722870i
\(876\) 0 0
\(877\) 16.7883 6.95392i 0.566899 0.234817i −0.0807782 0.996732i \(-0.525741\pi\)
0.647677 + 0.761915i \(0.275741\pi\)
\(878\) −15.6987 31.1991i −0.529806 1.05292i
\(879\) 0 0
\(880\) −10.5353 5.63899i −0.355144 0.190090i
\(881\) 46.9687i 1.58242i −0.611547 0.791208i \(-0.709453\pi\)
0.611547 0.791208i \(-0.290547\pi\)
\(882\) 0 0
\(883\) 11.0237 4.56617i 0.370978 0.153664i −0.189403 0.981900i \(-0.560655\pi\)
0.560380 + 0.828236i \(0.310655\pi\)
\(884\) 7.24331 28.8818i 0.243619 0.971399i
\(885\) 0 0
\(886\) −34.7377 + 40.2590i −1.16704 + 1.35253i
\(887\) −31.9419 + 31.9419i −1.07250 + 1.07250i −0.0753464 + 0.997157i \(0.524006\pi\)
−0.997157 + 0.0753464i \(0.975994\pi\)
\(888\) 0 0
\(889\) 26.0390 + 26.0390i 0.873319 + 0.873319i
\(890\) 11.5766 0.852270i 0.388048 0.0285682i
\(891\) 0 0
\(892\) −44.2554 32.8417i −1.48178 1.09962i
\(893\) −11.8385 28.5807i −0.396160 0.956416i
\(894\) 0 0
\(895\) −1.48595 −0.0496699
\(896\) 4.41233 + 36.0724i 0.147406 + 1.20510i
\(897\) 0 0
\(898\) 3.70578 11.2121i 0.123663 0.374154i
\(899\) 6.36330 + 15.3624i 0.212228 + 0.512364i
\(900\) 0 0
\(901\) 12.3585 + 5.11904i 0.411720 + 0.170540i
\(902\) −12.0101 + 0.884184i −0.399892 + 0.0294401i
\(903\) 0 0
\(904\) −14.2702 20.2807i −0.474620 0.674525i
\(905\) −8.65685 + 8.65685i −0.287764 + 0.287764i
\(906\) 0 0
\(907\) 4.99616 12.0618i 0.165895 0.400505i −0.818969 0.573838i \(-0.805454\pi\)
0.984863 + 0.173333i \(0.0554538\pi\)
\(908\) 7.66223 30.5521i 0.254280 1.01391i
\(909\) 0 0
\(910\) −15.1445 + 7.62038i −0.502035 + 0.252613i
\(911\) 13.1188i 0.434645i −0.976100 0.217322i \(-0.930268\pi\)
0.976100 0.217322i \(-0.0697323\pi\)
\(912\) 0 0
\(913\) 38.2191i 1.26487i
\(914\) 16.2473 + 32.2895i 0.537414 + 1.06804i
\(915\) 0 0
\(916\) −20.3319 33.9438i −0.671785 1.12154i
\(917\) −13.8833 + 33.5171i −0.458465 + 1.10683i
\(918\) 0 0
\(919\) −17.2415 + 17.2415i −0.568746 + 0.568746i −0.931777 0.363031i \(-0.881742\pi\)
0.363031 + 0.931777i \(0.381742\pi\)
\(920\) −0.444708 + 0.701602i −0.0146616 + 0.0231311i
\(921\) 0 0
\(922\) 2.97213 + 40.3712i 0.0978819 + 1.32955i
\(923\) 41.2263 + 17.0765i 1.35698 + 0.562080i
\(924\) 0 0
\(925\) −6.64357 16.0390i −0.218439 0.527359i
\(926\) −6.63556 2.19315i −0.218058 0.0720714i
\(927\) 0 0
\(928\) 4.94840 + 12.8557i 0.162439 + 0.422009i
\(929\) 45.9966 1.50910 0.754550 0.656242i \(-0.227855\pi\)
0.754550 + 0.656242i \(0.227855\pi\)
\(930\) 0 0
\(931\) 5.32876 + 12.8648i 0.174643 + 0.421626i
\(932\) −18.7724 + 2.77912i −0.614911 + 0.0910331i
\(933\) 0 0
\(934\) 2.32426 + 31.5710i 0.0760522 + 1.03303i
\(935\) 6.44955 + 6.44955i 0.210923 + 0.210923i
\(936\) 0 0
\(937\) −3.67273 + 3.67273i −0.119983 + 0.119983i −0.764549 0.644566i \(-0.777038\pi\)
0.644566 + 0.764549i \(0.277038\pi\)
\(938\) 17.9367 + 15.4768i 0.585655 + 0.505336i
\(939\) 0 0
\(940\) 9.67956 5.79793i 0.315713 0.189108i
\(941\) −41.7873 + 17.3089i −1.36223 + 0.564253i −0.939670 0.342083i \(-0.888868\pi\)
−0.422558 + 0.906336i \(0.638868\pi\)
\(942\) 0 0
\(943\) 0.837141i 0.0272611i
\(944\) −4.31969 + 43.6020i −0.140594 + 1.41912i
\(945\) 0 0
\(946\) −9.65035 + 4.85584i −0.313760 + 0.157877i
\(947\) 43.6427 18.0774i 1.41820 0.587436i 0.463790 0.885945i \(-0.346489\pi\)
0.954407 + 0.298509i \(0.0964894\pi\)
\(948\) 0 0
\(949\) 7.49753 18.1006i 0.243380 0.587571i
\(950\) −17.1157 + 19.8361i −0.555306 + 0.643568i
\(951\) 0 0
\(952\) 4.75413 27.3289i 0.154082 0.885735i
\(953\) −6.12750 6.12750i −0.198489 0.198489i 0.600863 0.799352i \(-0.294824\pi\)
−0.799352 + 0.600863i \(0.794824\pi\)
\(954\) 0 0
\(955\) −4.37887 1.81379i −0.141697 0.0586928i
\(956\) −31.2261 + 42.0783i −1.00993 + 1.36091i
\(957\) 0 0
\(958\) 2.44376 7.39380i 0.0789542 0.238883i
\(959\) −15.5554 −0.502310
\(960\) 0 0
\(961\) 15.6274 0.504110
\(962\) −8.51107 + 25.7510i −0.274408 + 0.830245i
\(963\) 0 0
\(964\) 16.2968 21.9605i 0.524884 0.707300i
\(965\) −10.3085 4.26991i −0.331842 0.137453i
\(966\) 0 0
\(967\) 1.03516 + 1.03516i 0.0332885 + 0.0332885i 0.723555 0.690267i \(-0.242507\pi\)
−0.690267 + 0.723555i \(0.742507\pi\)
\(968\) 11.8008 + 2.05286i 0.379291 + 0.0659814i
\(969\) 0 0
\(970\) −2.62636 + 3.04380i −0.0843273 + 0.0977305i
\(971\) −15.4218 + 37.2315i −0.494909 + 1.19482i 0.457285 + 0.889320i \(0.348822\pi\)
−0.952194 + 0.305495i \(0.901178\pi\)
\(972\) 0 0
\(973\) 57.0556 23.6332i 1.82912 0.757646i
\(974\) 44.5861 22.4347i 1.42863 0.718855i
\(975\) 0 0
\(976\) −10.9836 + 9.00343i −0.351575 + 0.288193i
\(977\) 28.8457i 0.922857i −0.887177 0.461429i \(-0.847337\pi\)
0.887177 0.461429i \(-0.152663\pi\)
\(978\) 0 0
\(979\) −38.6727 + 16.0187i −1.23598 + 0.511961i
\(980\) −4.35698 + 2.60977i −0.139179 + 0.0833661i
\(981\) 0 0
\(982\) 13.4143 + 11.5746i 0.428069 + 0.369362i
\(983\) 40.9561 40.9561i 1.30630 1.30630i 0.382231 0.924067i \(-0.375156\pi\)
0.924067 0.382231i \(-0.124844\pi\)
\(984\) 0 0
\(985\) 10.8385 + 10.8385i 0.345344 + 0.345344i
\(986\) −0.771998 10.4862i −0.0245854 0.333950i
\(987\) 0 0
\(988\) 40.4885 5.99402i 1.28811 0.190695i
\(989\) 0.287389 + 0.693818i 0.00913843 + 0.0220621i
\(990\) 0 0
\(991\) −41.9605 −1.33292 −0.666460 0.745541i \(-0.732191\pi\)
−0.666460 + 0.745541i \(0.732191\pi\)
\(992\) 38.6151 + 0.975667i 1.22603 + 0.0309775i
\(993\) 0 0
\(994\) 39.4706 + 13.0456i 1.25193 + 0.413781i
\(995\) 5.12703 + 12.3777i 0.162538 + 0.392401i
\(996\) 0 0
\(997\) −31.4380 13.0221i −0.995652 0.412413i −0.175451 0.984488i \(-0.556138\pi\)
−0.820201 + 0.572076i \(0.806138\pi\)
\(998\) −0.979674 13.3071i −0.0310111 0.421230i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.v.b.37.1 8
3.2 odd 2 32.2.g.b.5.2 8
4.3 odd 2 1152.2.v.b.1009.2 8
12.11 even 2 128.2.g.b.113.1 8
15.2 even 4 800.2.ba.c.549.1 8
15.8 even 4 800.2.ba.d.549.2 8
15.14 odd 2 800.2.y.b.101.1 8
24.5 odd 2 256.2.g.d.225.1 8
24.11 even 2 256.2.g.c.225.2 8
32.13 even 8 inner 288.2.v.b.109.1 8
32.19 odd 8 1152.2.v.b.145.2 8
48.5 odd 4 512.2.g.e.193.2 8
48.11 even 4 512.2.g.g.193.1 8
48.29 odd 4 512.2.g.h.193.1 8
48.35 even 4 512.2.g.f.193.2 8
96.5 odd 8 512.2.g.h.321.1 8
96.11 even 8 512.2.g.g.321.1 8
96.29 odd 8 256.2.g.d.33.1 8
96.35 even 8 256.2.g.c.33.2 8
96.53 odd 8 512.2.g.e.321.2 8
96.59 even 8 512.2.g.f.321.2 8
96.77 odd 8 32.2.g.b.13.2 yes 8
96.83 even 8 128.2.g.b.17.1 8
192.77 odd 16 4096.2.a.k.1.5 8
192.83 even 16 4096.2.a.q.1.5 8
192.173 odd 16 4096.2.a.k.1.4 8
192.179 even 16 4096.2.a.q.1.4 8
480.77 even 8 800.2.ba.d.749.2 8
480.173 even 8 800.2.ba.c.749.1 8
480.269 odd 8 800.2.y.b.301.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.g.b.5.2 8 3.2 odd 2
32.2.g.b.13.2 yes 8 96.77 odd 8
128.2.g.b.17.1 8 96.83 even 8
128.2.g.b.113.1 8 12.11 even 2
256.2.g.c.33.2 8 96.35 even 8
256.2.g.c.225.2 8 24.11 even 2
256.2.g.d.33.1 8 96.29 odd 8
256.2.g.d.225.1 8 24.5 odd 2
288.2.v.b.37.1 8 1.1 even 1 trivial
288.2.v.b.109.1 8 32.13 even 8 inner
512.2.g.e.193.2 8 48.5 odd 4
512.2.g.e.321.2 8 96.53 odd 8
512.2.g.f.193.2 8 48.35 even 4
512.2.g.f.321.2 8 96.59 even 8
512.2.g.g.193.1 8 48.11 even 4
512.2.g.g.321.1 8 96.11 even 8
512.2.g.h.193.1 8 48.29 odd 4
512.2.g.h.321.1 8 96.5 odd 8
800.2.y.b.101.1 8 15.14 odd 2
800.2.y.b.301.1 8 480.269 odd 8
800.2.ba.c.549.1 8 15.2 even 4
800.2.ba.c.749.1 8 480.173 even 8
800.2.ba.d.549.2 8 15.8 even 4
800.2.ba.d.749.2 8 480.77 even 8
1152.2.v.b.145.2 8 32.19 odd 8
1152.2.v.b.1009.2 8 4.3 odd 2
4096.2.a.k.1.4 8 192.173 odd 16
4096.2.a.k.1.5 8 192.77 odd 16
4096.2.a.q.1.4 8 192.179 even 16
4096.2.a.q.1.5 8 192.83 even 16