Properties

Label 288.3.e.b
Level 288288
Weight 33
Character orbit 288.e
Analytic conductor 7.8477.847
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,3,Mod(161,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 288=2532 288 = 2^{5} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 288.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.847431613587.84743161358
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{-2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+2 x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{-2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+7βq524q137βq1773q25+41βq29+70q37+31βq4149q49+17βq5322q61168βq65+96q73+98q8541βq89++144q97+O(q100) q + 7 \beta q^{5} - 24 q^{13} - 7 \beta q^{17} - 73 q^{25} + 41 \beta q^{29} + 70 q^{37} + 31 \beta q^{41} - 49 q^{49} + 17 \beta q^{53} - 22 q^{61} - 168 \beta q^{65} + 96 q^{73} + 98 q^{85} - 41 \beta q^{89} + \cdots + 144 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q48q13146q25+140q3798q4944q61+192q73+196q85+288q97+O(q100) 2 q - 48 q^{13} - 146 q^{25} + 140 q^{37} - 98 q^{49} - 44 q^{61} + 192 q^{73} + 196 q^{85} + 288 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/288Z)×\left(\mathbb{Z}/288\mathbb{Z}\right)^\times.

nn 3737 6565 127127
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
1.41421i
1.41421i
0 0 0 9.89949i 0 0 0 0 0
161.2 0 0 0 9.89949i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
3.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 288.3.e.b 2
3.b odd 2 1 inner 288.3.e.b 2
4.b odd 2 1 CM 288.3.e.b 2
8.b even 2 1 576.3.e.e 2
8.d odd 2 1 576.3.e.e 2
12.b even 2 1 inner 288.3.e.b 2
16.e even 4 2 2304.3.h.e 4
16.f odd 4 2 2304.3.h.e 4
24.f even 2 1 576.3.e.e 2
24.h odd 2 1 576.3.e.e 2
48.i odd 4 2 2304.3.h.e 4
48.k even 4 2 2304.3.h.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
288.3.e.b 2 1.a even 1 1 trivial
288.3.e.b 2 3.b odd 2 1 inner
288.3.e.b 2 4.b odd 2 1 CM
288.3.e.b 2 12.b even 2 1 inner
576.3.e.e 2 8.b even 2 1
576.3.e.e 2 8.d odd 2 1
576.3.e.e 2 24.f even 2 1
576.3.e.e 2 24.h odd 2 1
2304.3.h.e 4 16.e even 4 2
2304.3.h.e 4 16.f odd 4 2
2304.3.h.e 4 48.i odd 4 2
2304.3.h.e 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(288,[χ])S_{3}^{\mathrm{new}}(288, [\chi]):

T52+98 T_{5}^{2} + 98 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+98 T^{2} + 98 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T+24)2 (T + 24)^{2} Copy content Toggle raw display
1717 T2+98 T^{2} + 98 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+3362 T^{2} + 3362 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T70)2 (T - 70)^{2} Copy content Toggle raw display
4141 T2+1922 T^{2} + 1922 Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+578 T^{2} + 578 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+22)2 (T + 22)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T96)2 (T - 96)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+3362 T^{2} + 3362 Copy content Toggle raw display
9797 (T144)2 (T - 144)^{2} Copy content Toggle raw display
show more
show less