gp: [N,k,chi] = [288,3,Mod(161,288)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(288, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("288.161");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,0,0,0,0,0,0,0,0,-48]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = − 2 \beta = \sqrt{-2} β = − 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 288 Z ) × \left(\mathbb{Z}/288\mathbb{Z}\right)^\times ( Z / 2 8 8 Z ) × .
n n n
37 37 3 7
65 65 6 5
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 288 , [ χ ] ) S_{3}^{\mathrm{new}}(288, [\chi]) S 3 n e w ( 2 8 8 , [ χ ] ) :
T 5 2 + 98 T_{5}^{2} + 98 T 5 2 + 9 8
T5^2 + 98
T 7 T_{7} T 7
T7
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 + 98 T^{2} + 98 T 2 + 9 8
T^2 + 98
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
( T + 24 ) 2 (T + 24)^{2} ( T + 2 4 ) 2
(T + 24)^2
17 17 1 7
T 2 + 98 T^{2} + 98 T 2 + 9 8
T^2 + 98
19 19 1 9
T 2 T^{2} T 2
T^2
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 + 3362 T^{2} + 3362 T 2 + 3 3 6 2
T^2 + 3362
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
( T − 70 ) 2 (T - 70)^{2} ( T − 7 0 ) 2
(T - 70)^2
41 41 4 1
T 2 + 1922 T^{2} + 1922 T 2 + 1 9 2 2
T^2 + 1922
43 43 4 3
T 2 T^{2} T 2
T^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 + 578 T^{2} + 578 T 2 + 5 7 8
T^2 + 578
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
( T + 22 ) 2 (T + 22)^{2} ( T + 2 2 ) 2
(T + 22)^2
67 67 6 7
T 2 T^{2} T 2
T^2
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
( T − 96 ) 2 (T - 96)^{2} ( T − 9 6 ) 2
(T - 96)^2
79 79 7 9
T 2 T^{2} T 2
T^2
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 + 3362 T^{2} + 3362 T 2 + 3 3 6 2
T^2 + 3362
97 97 9 7
( T − 144 ) 2 (T - 144)^{2} ( T − 1 4 4 ) 2
(T - 144)^2
show more
show less