Properties

Label 2880.3.e.j.2431.1
Level $2880$
Weight $3$
Character 2880.2431
Analytic conductor $78.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2880,3,Mod(2431,2880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2880.2431");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.85100625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + x^{5} + 3x^{4} + 2x^{3} - 8x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{19} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2431.1
Root \(-1.34966 - 0.422403i\) of defining polynomial
Character \(\chi\) \(=\) 2880.2431
Dual form 2880.3.e.j.2431.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{5} -12.3959i q^{7} -11.0403i q^{11} -2.82009 q^{13} -6.52606 q^{17} -27.9928i q^{19} -7.90421i q^{23} +5.00000 q^{25} +50.7169 q^{29} -36.3467i q^{31} +27.7181i q^{35} +18.9279 q^{37} -5.30410 q^{41} -45.5870i q^{43} +11.7246i q^{47} -104.658 q^{49} +41.1680 q^{53} +24.6869i q^{55} -10.7008i q^{59} -56.1297 q^{61} +6.30590 q^{65} -16.1709i q^{67} +66.1617i q^{71} +15.6330 q^{73} -136.855 q^{77} -123.057i q^{79} +99.6700i q^{83} +14.5927 q^{85} -101.083 q^{89} +34.9575i q^{91} +62.5937i q^{95} +127.293 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} + 40 q^{25} + 64 q^{29} + 112 q^{37} + 16 q^{41} - 56 q^{49} + 352 q^{53} + 176 q^{61} + 80 q^{65} - 240 q^{73} - 288 q^{77} - 160 q^{85} - 80 q^{89} + 432 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) − 12.3959i − 1.77084i −0.464789 0.885422i \(-0.653870\pi\)
0.464789 0.885422i \(-0.346130\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 11.0403i − 1.00366i −0.864965 0.501832i \(-0.832659\pi\)
0.864965 0.501832i \(-0.167341\pi\)
\(12\) 0 0
\(13\) −2.82009 −0.216930 −0.108465 0.994100i \(-0.534593\pi\)
−0.108465 + 0.994100i \(0.534593\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.52606 −0.383886 −0.191943 0.981406i \(-0.561479\pi\)
−0.191943 + 0.981406i \(0.561479\pi\)
\(18\) 0 0
\(19\) − 27.9928i − 1.47330i −0.676273 0.736651i \(-0.736406\pi\)
0.676273 0.736651i \(-0.263594\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 7.90421i − 0.343661i −0.985126 0.171831i \(-0.945032\pi\)
0.985126 0.171831i \(-0.0549682\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 50.7169 1.74886 0.874429 0.485153i \(-0.161236\pi\)
0.874429 + 0.485153i \(0.161236\pi\)
\(30\) 0 0
\(31\) − 36.3467i − 1.17247i −0.810140 0.586236i \(-0.800609\pi\)
0.810140 0.586236i \(-0.199391\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 27.7181i 0.791945i
\(36\) 0 0
\(37\) 18.9279 0.511566 0.255783 0.966734i \(-0.417667\pi\)
0.255783 + 0.966734i \(0.417667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.30410 −0.129368 −0.0646842 0.997906i \(-0.520604\pi\)
−0.0646842 + 0.997906i \(0.520604\pi\)
\(42\) 0 0
\(43\) − 45.5870i − 1.06016i −0.847947 0.530081i \(-0.822162\pi\)
0.847947 0.530081i \(-0.177838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.7246i 0.249460i 0.992191 + 0.124730i \(0.0398064\pi\)
−0.992191 + 0.124730i \(0.960194\pi\)
\(48\) 0 0
\(49\) −104.658 −2.13589
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 41.1680 0.776755 0.388378 0.921500i \(-0.373036\pi\)
0.388378 + 0.921500i \(0.373036\pi\)
\(54\) 0 0
\(55\) 24.6869i 0.448853i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.7008i − 0.181370i −0.995880 0.0906848i \(-0.971094\pi\)
0.995880 0.0906848i \(-0.0289056\pi\)
\(60\) 0 0
\(61\) −56.1297 −0.920159 −0.460080 0.887878i \(-0.652179\pi\)
−0.460080 + 0.887878i \(0.652179\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.30590 0.0970139
\(66\) 0 0
\(67\) − 16.1709i − 0.241357i −0.992692 0.120679i \(-0.961493\pi\)
0.992692 0.120679i \(-0.0385071\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 66.1617i 0.931855i 0.884823 + 0.465928i \(0.154279\pi\)
−0.884823 + 0.465928i \(0.845721\pi\)
\(72\) 0 0
\(73\) 15.6330 0.214150 0.107075 0.994251i \(-0.465851\pi\)
0.107075 + 0.994251i \(0.465851\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −136.855 −1.77733
\(78\) 0 0
\(79\) − 123.057i − 1.55768i −0.627223 0.778840i \(-0.715809\pi\)
0.627223 0.778840i \(-0.284191\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 99.6700i 1.20084i 0.799684 + 0.600422i \(0.205001\pi\)
−0.799684 + 0.600422i \(0.794999\pi\)
\(84\) 0 0
\(85\) 14.5927 0.171679
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −101.083 −1.13576 −0.567881 0.823110i \(-0.692237\pi\)
−0.567881 + 0.823110i \(0.692237\pi\)
\(90\) 0 0
\(91\) 34.9575i 0.384148i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 62.5937i 0.658881i
\(96\) 0 0
\(97\) 127.293 1.31230 0.656151 0.754630i \(-0.272183\pi\)
0.656151 + 0.754630i \(0.272183\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −94.3535 −0.934193 −0.467096 0.884206i \(-0.654700\pi\)
−0.467096 + 0.884206i \(0.654700\pi\)
\(102\) 0 0
\(103\) 31.8455i 0.309180i 0.987979 + 0.154590i \(0.0494056\pi\)
−0.987979 + 0.154590i \(0.950594\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 33.7912i − 0.315805i −0.987455 0.157903i \(-0.949527\pi\)
0.987455 0.157903i \(-0.0504732\pi\)
\(108\) 0 0
\(109\) 83.4266 0.765382 0.382691 0.923876i \(-0.374997\pi\)
0.382691 + 0.923876i \(0.374997\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 111.796 0.989342 0.494671 0.869080i \(-0.335289\pi\)
0.494671 + 0.869080i \(0.335289\pi\)
\(114\) 0 0
\(115\) 17.6744i 0.153690i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 80.8964i 0.679802i
\(120\) 0 0
\(121\) −0.888544 −0.00734334
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) − 16.6855i − 0.131382i −0.997840 0.0656909i \(-0.979075\pi\)
0.997840 0.0656909i \(-0.0209251\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 196.418i 1.49937i 0.661794 + 0.749686i \(0.269796\pi\)
−0.661794 + 0.749686i \(0.730204\pi\)
\(132\) 0 0
\(133\) −346.995 −2.60899
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 117.127 0.854942 0.427471 0.904029i \(-0.359405\pi\)
0.427471 + 0.904029i \(0.359405\pi\)
\(138\) 0 0
\(139\) − 187.238i − 1.34704i −0.739170 0.673519i \(-0.764782\pi\)
0.739170 0.673519i \(-0.235218\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 31.1346i 0.217725i
\(144\) 0 0
\(145\) −113.406 −0.782113
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −50.2274 −0.337096 −0.168548 0.985693i \(-0.553908\pi\)
−0.168548 + 0.985693i \(0.553908\pi\)
\(150\) 0 0
\(151\) 213.160i 1.41166i 0.708382 + 0.705829i \(0.249425\pi\)
−0.708382 + 0.705829i \(0.750575\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 81.2736i 0.524346i
\(156\) 0 0
\(157\) −203.918 −1.29884 −0.649419 0.760431i \(-0.724988\pi\)
−0.649419 + 0.760431i \(0.724988\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −97.9798 −0.608570
\(162\) 0 0
\(163\) 215.898i 1.32452i 0.749272 + 0.662262i \(0.230404\pi\)
−0.749272 + 0.662262i \(0.769596\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 255.029i − 1.52712i −0.645737 0.763560i \(-0.723450\pi\)
0.645737 0.763560i \(-0.276550\pi\)
\(168\) 0 0
\(169\) −161.047 −0.952942
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −235.426 −1.36084 −0.680421 0.732822i \(-0.738203\pi\)
−0.680421 + 0.732822i \(0.738203\pi\)
\(174\) 0 0
\(175\) − 61.9795i − 0.354169i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 102.669i 0.573572i 0.957995 + 0.286786i \(0.0925869\pi\)
−0.957995 + 0.286786i \(0.907413\pi\)
\(180\) 0 0
\(181\) 56.8222 0.313935 0.156967 0.987604i \(-0.449828\pi\)
0.156967 + 0.987604i \(0.449828\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −42.3242 −0.228779
\(186\) 0 0
\(187\) 72.0498i 0.385293i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 158.493i 0.829808i 0.909865 + 0.414904i \(0.136185\pi\)
−0.909865 + 0.414904i \(0.863815\pi\)
\(192\) 0 0
\(193\) −156.732 −0.812084 −0.406042 0.913854i \(-0.633091\pi\)
−0.406042 + 0.913854i \(0.633091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 260.127 1.32044 0.660221 0.751072i \(-0.270463\pi\)
0.660221 + 0.751072i \(0.270463\pi\)
\(198\) 0 0
\(199\) 14.0326i 0.0705157i 0.999378 + 0.0352579i \(0.0112253\pi\)
−0.999378 + 0.0352579i \(0.988775\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 628.682i − 3.09696i
\(204\) 0 0
\(205\) 11.8603 0.0578553
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −309.049 −1.47870
\(210\) 0 0
\(211\) 74.4941i 0.353052i 0.984296 + 0.176526i \(0.0564860\pi\)
−0.984296 + 0.176526i \(0.943514\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 101.936i 0.474119i
\(216\) 0 0
\(217\) −450.550 −2.07627
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.4041 0.0832763
\(222\) 0 0
\(223\) − 159.996i − 0.717471i −0.933439 0.358736i \(-0.883208\pi\)
0.933439 0.358736i \(-0.116792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 175.978i − 0.775236i −0.921820 0.387618i \(-0.873298\pi\)
0.921820 0.387618i \(-0.126702\pi\)
\(228\) 0 0
\(229\) 114.170 0.498560 0.249280 0.968431i \(-0.419806\pi\)
0.249280 + 0.968431i \(0.419806\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −260.062 −1.11615 −0.558073 0.829792i \(-0.688459\pi\)
−0.558073 + 0.829792i \(0.688459\pi\)
\(234\) 0 0
\(235\) − 26.2170i − 0.111562i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 140.089i − 0.586147i −0.956090 0.293073i \(-0.905322\pi\)
0.956090 0.293073i \(-0.0946780\pi\)
\(240\) 0 0
\(241\) 105.920 0.439503 0.219752 0.975556i \(-0.429475\pi\)
0.219752 + 0.975556i \(0.429475\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 234.023 0.955197
\(246\) 0 0
\(247\) 78.9419i 0.319603i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 167.879i 0.668839i 0.942424 + 0.334420i \(0.108540\pi\)
−0.942424 + 0.334420i \(0.891460\pi\)
\(252\) 0 0
\(253\) −87.2650 −0.344921
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −198.849 −0.773732 −0.386866 0.922136i \(-0.626442\pi\)
−0.386866 + 0.922136i \(0.626442\pi\)
\(258\) 0 0
\(259\) − 234.629i − 0.905903i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 480.528i − 1.82710i −0.406722 0.913552i \(-0.633328\pi\)
0.406722 0.913552i \(-0.366672\pi\)
\(264\) 0 0
\(265\) −92.0545 −0.347376
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −291.496 −1.08363 −0.541815 0.840498i \(-0.682263\pi\)
−0.541815 + 0.840498i \(0.682263\pi\)
\(270\) 0 0
\(271\) 174.063i 0.642299i 0.947029 + 0.321150i \(0.104069\pi\)
−0.947029 + 0.321150i \(0.895931\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 55.2016i − 0.200733i
\(276\) 0 0
\(277\) 50.5203 0.182384 0.0911918 0.995833i \(-0.470932\pi\)
0.0911918 + 0.995833i \(0.470932\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 66.0514 0.235058 0.117529 0.993069i \(-0.462503\pi\)
0.117529 + 0.993069i \(0.462503\pi\)
\(282\) 0 0
\(283\) 116.934i 0.413196i 0.978426 + 0.206598i \(0.0662392\pi\)
−0.978426 + 0.206598i \(0.933761\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 65.7491i 0.229091i
\(288\) 0 0
\(289\) −246.411 −0.852631
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −68.3732 −0.233356 −0.116678 0.993170i \(-0.537224\pi\)
−0.116678 + 0.993170i \(0.537224\pi\)
\(294\) 0 0
\(295\) 23.9277i 0.0811110i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.2905i 0.0745503i
\(300\) 0 0
\(301\) −565.092 −1.87738
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 125.510 0.411508
\(306\) 0 0
\(307\) − 369.497i − 1.20357i −0.798657 0.601786i \(-0.794456\pi\)
0.798657 0.601786i \(-0.205544\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 303.446i − 0.975712i −0.872924 0.487856i \(-0.837779\pi\)
0.872924 0.487856i \(-0.162221\pi\)
\(312\) 0 0
\(313\) 297.693 0.951097 0.475549 0.879689i \(-0.342250\pi\)
0.475549 + 0.879689i \(0.342250\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 264.678 0.834948 0.417474 0.908689i \(-0.362916\pi\)
0.417474 + 0.908689i \(0.362916\pi\)
\(318\) 0 0
\(319\) − 559.931i − 1.75527i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 182.682i 0.565580i
\(324\) 0 0
\(325\) −14.1004 −0.0433859
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 145.337 0.441754
\(330\) 0 0
\(331\) 473.426i 1.43029i 0.698976 + 0.715145i \(0.253639\pi\)
−0.698976 + 0.715145i \(0.746361\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 36.1593i 0.107938i
\(336\) 0 0
\(337\) 29.7588 0.0883051 0.0441526 0.999025i \(-0.485941\pi\)
0.0441526 + 0.999025i \(0.485941\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −401.278 −1.17677
\(342\) 0 0
\(343\) 689.937i 2.01148i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 306.190i − 0.882391i −0.897411 0.441195i \(-0.854555\pi\)
0.897411 0.441195i \(-0.145445\pi\)
\(348\) 0 0
\(349\) −649.149 −1.86002 −0.930012 0.367528i \(-0.880204\pi\)
−0.930012 + 0.367528i \(0.880204\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 275.547 0.780587 0.390293 0.920691i \(-0.372374\pi\)
0.390293 + 0.920691i \(0.372374\pi\)
\(354\) 0 0
\(355\) − 147.942i − 0.416738i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 507.672i 1.41413i 0.707149 + 0.707065i \(0.249981\pi\)
−0.707149 + 0.707065i \(0.750019\pi\)
\(360\) 0 0
\(361\) −422.594 −1.17062
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −34.9564 −0.0957709
\(366\) 0 0
\(367\) 62.7671i 0.171028i 0.996337 + 0.0855138i \(0.0272532\pi\)
−0.996337 + 0.0855138i \(0.972747\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 510.315i − 1.37551i
\(372\) 0 0
\(373\) 272.776 0.731302 0.365651 0.930752i \(-0.380846\pi\)
0.365651 + 0.930752i \(0.380846\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −143.026 −0.379379
\(378\) 0 0
\(379\) 376.828i 0.994270i 0.867673 + 0.497135i \(0.165615\pi\)
−0.867673 + 0.497135i \(0.834385\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 412.206i − 1.07625i −0.842864 0.538127i \(-0.819132\pi\)
0.842864 0.538127i \(-0.180868\pi\)
\(384\) 0 0
\(385\) 306.016 0.794848
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −161.289 −0.414623 −0.207312 0.978275i \(-0.566471\pi\)
−0.207312 + 0.978275i \(0.566471\pi\)
\(390\) 0 0
\(391\) 51.5834i 0.131927i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 275.163i 0.696615i
\(396\) 0 0
\(397\) 186.505 0.469785 0.234893 0.972021i \(-0.424526\pi\)
0.234893 + 0.972021i \(0.424526\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −239.061 −0.596162 −0.298081 0.954541i \(-0.596347\pi\)
−0.298081 + 0.954541i \(0.596347\pi\)
\(402\) 0 0
\(403\) 102.501i 0.254344i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 208.970i − 0.513441i
\(408\) 0 0
\(409\) 47.8016 0.116874 0.0584372 0.998291i \(-0.481388\pi\)
0.0584372 + 0.998291i \(0.481388\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −132.646 −0.321177
\(414\) 0 0
\(415\) − 222.869i − 0.537033i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 239.009i 0.570428i 0.958464 + 0.285214i \(0.0920647\pi\)
−0.958464 + 0.285214i \(0.907935\pi\)
\(420\) 0 0
\(421\) 257.592 0.611857 0.305929 0.952054i \(-0.401033\pi\)
0.305929 + 0.952054i \(0.401033\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −32.6303 −0.0767772
\(426\) 0 0
\(427\) 695.779i 1.62946i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 343.164i 0.796205i 0.917341 + 0.398103i \(0.130331\pi\)
−0.917341 + 0.398103i \(0.869669\pi\)
\(432\) 0 0
\(433\) −234.760 −0.542171 −0.271085 0.962555i \(-0.587383\pi\)
−0.271085 + 0.962555i \(0.587383\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −221.261 −0.506317
\(438\) 0 0
\(439\) 374.473i 0.853013i 0.904484 + 0.426507i \(0.140256\pi\)
−0.904484 + 0.426507i \(0.859744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 108.557i − 0.245050i −0.992465 0.122525i \(-0.960901\pi\)
0.992465 0.122525i \(-0.0390992\pi\)
\(444\) 0 0
\(445\) 226.028 0.507929
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 431.511 0.961050 0.480525 0.876981i \(-0.340446\pi\)
0.480525 + 0.876981i \(0.340446\pi\)
\(450\) 0 0
\(451\) 58.5589i 0.129842i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 78.1674i − 0.171796i
\(456\) 0 0
\(457\) 219.747 0.480847 0.240424 0.970668i \(-0.422714\pi\)
0.240424 + 0.970668i \(0.422714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 223.434 0.484673 0.242337 0.970192i \(-0.422086\pi\)
0.242337 + 0.970192i \(0.422086\pi\)
\(462\) 0 0
\(463\) 740.855i 1.60012i 0.599921 + 0.800059i \(0.295198\pi\)
−0.599921 + 0.800059i \(0.704802\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 249.381i 0.534007i 0.963696 + 0.267004i \(0.0860336\pi\)
−0.963696 + 0.267004i \(0.913966\pi\)
\(468\) 0 0
\(469\) −200.454 −0.427406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −503.294 −1.06405
\(474\) 0 0
\(475\) − 139.964i − 0.294661i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 210.915i 0.440324i 0.975463 + 0.220162i \(0.0706587\pi\)
−0.975463 + 0.220162i \(0.929341\pi\)
\(480\) 0 0
\(481\) −53.3784 −0.110974
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −284.636 −0.586879
\(486\) 0 0
\(487\) − 710.541i − 1.45902i −0.683972 0.729508i \(-0.739749\pi\)
0.683972 0.729508i \(-0.260251\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 697.876i − 1.42134i −0.703528 0.710668i \(-0.748393\pi\)
0.703528 0.710668i \(-0.251607\pi\)
\(492\) 0 0
\(493\) −330.982 −0.671363
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 820.135 1.65017
\(498\) 0 0
\(499\) − 875.602i − 1.75471i −0.479838 0.877357i \(-0.659305\pi\)
0.479838 0.877357i \(-0.340695\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 142.849i 0.283995i 0.989867 + 0.141997i \(0.0453524\pi\)
−0.989867 + 0.141997i \(0.954648\pi\)
\(504\) 0 0
\(505\) 210.981 0.417784
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −147.662 −0.290102 −0.145051 0.989424i \(-0.546335\pi\)
−0.145051 + 0.989424i \(0.546335\pi\)
\(510\) 0 0
\(511\) − 193.785i − 0.379227i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 71.2087i − 0.138269i
\(516\) 0 0
\(517\) 129.443 0.250374
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 348.592 0.669082 0.334541 0.942381i \(-0.391419\pi\)
0.334541 + 0.942381i \(0.391419\pi\)
\(522\) 0 0
\(523\) 370.317i 0.708063i 0.935233 + 0.354032i \(0.115189\pi\)
−0.935233 + 0.354032i \(0.884811\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 237.201i 0.450096i
\(528\) 0 0
\(529\) 466.523 0.881897
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.9580 0.0280638
\(534\) 0 0
\(535\) 75.5593i 0.141232i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1155.46i 2.14371i
\(540\) 0 0
\(541\) 279.719 0.517041 0.258520 0.966006i \(-0.416765\pi\)
0.258520 + 0.966006i \(0.416765\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −186.548 −0.342289
\(546\) 0 0
\(547\) − 387.716i − 0.708804i −0.935093 0.354402i \(-0.884685\pi\)
0.935093 0.354402i \(-0.115315\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1419.71i − 2.57660i
\(552\) 0 0
\(553\) −1525.40 −2.75841
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 43.5564 0.0781983 0.0390991 0.999235i \(-0.487551\pi\)
0.0390991 + 0.999235i \(0.487551\pi\)
\(558\) 0 0
\(559\) 128.559i 0.229981i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 361.646i 0.642355i 0.947019 + 0.321178i \(0.104079\pi\)
−0.947019 + 0.321178i \(0.895921\pi\)
\(564\) 0 0
\(565\) −249.983 −0.442447
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −888.559 −1.56161 −0.780807 0.624772i \(-0.785192\pi\)
−0.780807 + 0.624772i \(0.785192\pi\)
\(570\) 0 0
\(571\) − 447.745i − 0.784142i −0.919935 0.392071i \(-0.871759\pi\)
0.919935 0.392071i \(-0.128241\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 39.5211i − 0.0687323i
\(576\) 0 0
\(577\) 1069.90 1.85425 0.927124 0.374756i \(-0.122273\pi\)
0.927124 + 0.374756i \(0.122273\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1235.50 2.12651
\(582\) 0 0
\(583\) − 454.508i − 0.779602i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 129.637i 0.220847i 0.993885 + 0.110424i \(0.0352208\pi\)
−0.993885 + 0.110424i \(0.964779\pi\)
\(588\) 0 0
\(589\) −1017.44 −1.72741
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −892.757 −1.50549 −0.752746 0.658311i \(-0.771271\pi\)
−0.752746 + 0.658311i \(0.771271\pi\)
\(594\) 0 0
\(595\) − 180.890i − 0.304017i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1030.62i 1.72057i 0.509816 + 0.860284i \(0.329714\pi\)
−0.509816 + 0.860284i \(0.670286\pi\)
\(600\) 0 0
\(601\) −815.961 −1.35767 −0.678836 0.734289i \(-0.737515\pi\)
−0.678836 + 0.734289i \(0.737515\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.98684 0.00328404
\(606\) 0 0
\(607\) 842.678i 1.38827i 0.719847 + 0.694133i \(0.244212\pi\)
−0.719847 + 0.694133i \(0.755788\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 33.0644i − 0.0541152i
\(612\) 0 0
\(613\) 731.088 1.19264 0.596320 0.802747i \(-0.296629\pi\)
0.596320 + 0.802747i \(0.296629\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 919.609 1.49045 0.745226 0.666812i \(-0.232342\pi\)
0.745226 + 0.666812i \(0.232342\pi\)
\(618\) 0 0
\(619\) 688.974i 1.11304i 0.830833 + 0.556522i \(0.187865\pi\)
−0.830833 + 0.556522i \(0.812135\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1253.01i 2.01126i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −123.525 −0.196383
\(630\) 0 0
\(631\) − 418.968i − 0.663975i −0.943284 0.331987i \(-0.892281\pi\)
0.943284 0.331987i \(-0.107719\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 37.3099i 0.0587557i
\(636\) 0 0
\(637\) 295.146 0.463337
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 47.2426 0.0737014 0.0368507 0.999321i \(-0.488267\pi\)
0.0368507 + 0.999321i \(0.488267\pi\)
\(642\) 0 0
\(643\) 710.880i 1.10557i 0.833325 + 0.552784i \(0.186435\pi\)
−0.833325 + 0.552784i \(0.813565\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 468.195i 0.723641i 0.932248 + 0.361820i \(0.117845\pi\)
−0.932248 + 0.361820i \(0.882155\pi\)
\(648\) 0 0
\(649\) −118.140 −0.182034
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 551.066 0.843900 0.421950 0.906619i \(-0.361346\pi\)
0.421950 + 0.906619i \(0.361346\pi\)
\(654\) 0 0
\(655\) − 439.203i − 0.670540i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 158.259i 0.240151i 0.992765 + 0.120075i \(0.0383136\pi\)
−0.992765 + 0.120075i \(0.961686\pi\)
\(660\) 0 0
\(661\) −92.4953 −0.139932 −0.0699662 0.997549i \(-0.522289\pi\)
−0.0699662 + 0.997549i \(0.522289\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 775.905 1.16678
\(666\) 0 0
\(667\) − 400.877i − 0.601015i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 619.690i 0.923532i
\(672\) 0 0
\(673\) 956.062 1.42060 0.710299 0.703900i \(-0.248560\pi\)
0.710299 + 0.703900i \(0.248560\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1116.67 1.64944 0.824719 0.565543i \(-0.191333\pi\)
0.824719 + 0.565543i \(0.191333\pi\)
\(678\) 0 0
\(679\) − 1577.92i − 2.32388i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 826.776i − 1.21051i −0.796033 0.605254i \(-0.793072\pi\)
0.796033 0.605254i \(-0.206928\pi\)
\(684\) 0 0
\(685\) −261.904 −0.382342
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −116.097 −0.168501
\(690\) 0 0
\(691\) − 965.432i − 1.39715i −0.715536 0.698576i \(-0.753818\pi\)
0.715536 0.698576i \(-0.246182\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 418.677i 0.602414i
\(696\) 0 0
\(697\) 34.6149 0.0496627
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1109.94 −1.58337 −0.791686 0.610928i \(-0.790797\pi\)
−0.791686 + 0.610928i \(0.790797\pi\)
\(702\) 0 0
\(703\) − 529.845i − 0.753691i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1169.60i 1.65431i
\(708\) 0 0
\(709\) 964.244 1.36001 0.680003 0.733210i \(-0.261979\pi\)
0.680003 + 0.733210i \(0.261979\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −287.292 −0.402934
\(714\) 0 0
\(715\) − 69.6191i − 0.0973694i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 190.820i − 0.265396i −0.991157 0.132698i \(-0.957636\pi\)
0.991157 0.132698i \(-0.0423641\pi\)
\(720\) 0 0
\(721\) 394.754 0.547509
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 253.585 0.349772
\(726\) 0 0
\(727\) 202.134i 0.278039i 0.990290 + 0.139019i \(0.0443951\pi\)
−0.990290 + 0.139019i \(0.955605\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 297.503i 0.406981i
\(732\) 0 0
\(733\) 962.435 1.31301 0.656504 0.754322i \(-0.272034\pi\)
0.656504 + 0.754322i \(0.272034\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −178.532 −0.242242
\(738\) 0 0
\(739\) − 932.112i − 1.26132i −0.776061 0.630658i \(-0.782785\pi\)
0.776061 0.630658i \(-0.217215\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1153.70i − 1.55276i −0.630266 0.776379i \(-0.717054\pi\)
0.630266 0.776379i \(-0.282946\pi\)
\(744\) 0 0
\(745\) 112.312 0.150754
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −418.872 −0.559242
\(750\) 0 0
\(751\) 204.359i 0.272116i 0.990701 + 0.136058i \(0.0434434\pi\)
−0.990701 + 0.136058i \(0.956557\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 476.641i − 0.631313i
\(756\) 0 0
\(757\) 216.739 0.286314 0.143157 0.989700i \(-0.454275\pi\)
0.143157 + 0.989700i \(0.454275\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1324.78 −1.74085 −0.870424 0.492303i \(-0.836155\pi\)
−0.870424 + 0.492303i \(0.836155\pi\)
\(762\) 0 0
\(763\) − 1034.15i − 1.35537i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.1772i 0.0393444i
\(768\) 0 0
\(769\) 444.088 0.577488 0.288744 0.957406i \(-0.406762\pi\)
0.288744 + 0.957406i \(0.406762\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −751.987 −0.972817 −0.486408 0.873732i \(-0.661693\pi\)
−0.486408 + 0.873732i \(0.661693\pi\)
\(774\) 0 0
\(775\) − 181.733i − 0.234495i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 148.476i 0.190599i
\(780\) 0 0
\(781\) 730.446 0.935271
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 455.974 0.580858
\(786\) 0 0
\(787\) 442.296i 0.562002i 0.959707 + 0.281001i \(0.0906665\pi\)
−0.959707 + 0.281001i \(0.909334\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1385.81i − 1.75197i
\(792\) 0 0
\(793\) 158.291 0.199610
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −56.2072 −0.0705235 −0.0352618 0.999378i \(-0.511226\pi\)
−0.0352618 + 0.999378i \(0.511226\pi\)
\(798\) 0 0
\(799\) − 76.5155i − 0.0957641i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 172.593i − 0.214935i
\(804\) 0 0
\(805\) 219.090 0.272161
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1522.16 −1.88153 −0.940765 0.339060i \(-0.889891\pi\)
−0.940765 + 0.339060i \(0.889891\pi\)
\(810\) 0 0
\(811\) − 930.734i − 1.14764i −0.818982 0.573819i \(-0.805461\pi\)
0.818982 0.573819i \(-0.194539\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 482.762i − 0.592346i
\(816\) 0 0
\(817\) −1276.10 −1.56194
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 349.814 0.426083 0.213041 0.977043i \(-0.431663\pi\)
0.213041 + 0.977043i \(0.431663\pi\)
\(822\) 0 0
\(823\) 61.2187i 0.0743849i 0.999308 + 0.0371924i \(0.0118414\pi\)
−0.999308 + 0.0371924i \(0.988159\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.2063i 0.0558721i 0.999610 + 0.0279361i \(0.00889348\pi\)
−0.999610 + 0.0279361i \(0.991107\pi\)
\(828\) 0 0
\(829\) −223.832 −0.270002 −0.135001 0.990845i \(-0.543104\pi\)
−0.135001 + 0.990845i \(0.543104\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 683.007 0.819937
\(834\) 0 0
\(835\) 570.262i 0.682949i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 361.794i 0.431220i 0.976480 + 0.215610i \(0.0691740\pi\)
−0.976480 + 0.215610i \(0.930826\pi\)
\(840\) 0 0
\(841\) 1731.20 2.05851
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 360.112 0.426168
\(846\) 0 0
\(847\) 11.0143i 0.0130039i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 149.610i − 0.175805i
\(852\) 0 0
\(853\) 844.503 0.990039 0.495019 0.868882i \(-0.335161\pi\)
0.495019 + 0.868882i \(0.335161\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1389.51 1.62137 0.810685 0.585482i \(-0.199095\pi\)
0.810685 + 0.585482i \(0.199095\pi\)
\(858\) 0 0
\(859\) − 1205.45i − 1.40332i −0.712512 0.701660i \(-0.752442\pi\)
0.712512 0.701660i \(-0.247558\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 258.868i − 0.299963i −0.988689 0.149981i \(-0.952079\pi\)
0.988689 0.149981i \(-0.0479214\pi\)
\(864\) 0 0
\(865\) 526.428 0.608587
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1358.58 −1.56339
\(870\) 0 0
\(871\) 45.6035i 0.0523576i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 138.590i 0.158389i
\(876\) 0 0
\(877\) 156.268 0.178185 0.0890926 0.996023i \(-0.471603\pi\)
0.0890926 + 0.996023i \(0.471603\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1343.58 1.52507 0.762533 0.646950i \(-0.223956\pi\)
0.762533 + 0.646950i \(0.223956\pi\)
\(882\) 0 0
\(883\) − 149.478i − 0.169284i −0.996411 0.0846420i \(-0.973025\pi\)
0.996411 0.0846420i \(-0.0269747\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1532.07i 1.72725i 0.504134 + 0.863626i \(0.331812\pi\)
−0.504134 + 0.863626i \(0.668188\pi\)
\(888\) 0 0
\(889\) −206.832 −0.232656
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 328.204 0.367529
\(894\) 0 0
\(895\) − 229.576i − 0.256509i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 1843.39i − 2.05049i
\(900\) 0 0
\(901\) −268.665 −0.298186
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −127.058 −0.140396
\(906\) 0 0
\(907\) 1245.02i 1.37268i 0.727280 + 0.686341i \(0.240784\pi\)
−0.727280 + 0.686341i \(0.759216\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 173.681i 0.190649i 0.995446 + 0.0953245i \(0.0303889\pi\)
−0.995446 + 0.0953245i \(0.969611\pi\)
\(912\) 0 0
\(913\) 1100.39 1.20524
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2434.78 2.65515
\(918\) 0 0
\(919\) 874.426i 0.951498i 0.879581 + 0.475749i \(0.157823\pi\)
−0.879581 + 0.475749i \(0.842177\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 186.582i − 0.202147i
\(924\) 0 0
\(925\) 94.6397 0.102313
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1564.05 1.68358 0.841792 0.539803i \(-0.181501\pi\)
0.841792 + 0.539803i \(0.181501\pi\)
\(930\) 0 0
\(931\) 2929.68i 3.14681i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 161.108i − 0.172308i
\(936\) 0 0
\(937\) 958.621 1.02308 0.511538 0.859261i \(-0.329076\pi\)
0.511538 + 0.859261i \(0.329076\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −752.357 −0.799529 −0.399765 0.916618i \(-0.630908\pi\)
−0.399765 + 0.916618i \(0.630908\pi\)
\(942\) 0 0
\(943\) 41.9247i 0.0444589i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1013.16i 1.06986i 0.844895 + 0.534932i \(0.179663\pi\)
−0.844895 + 0.534932i \(0.820337\pi\)
\(948\) 0 0
\(949\) −44.0863 −0.0464555
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.5482 0.0226109 0.0113054 0.999936i \(-0.496401\pi\)
0.0113054 + 0.999936i \(0.496401\pi\)
\(954\) 0 0
\(955\) − 354.402i − 0.371102i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1451.90i − 1.51397i
\(960\) 0 0
\(961\) −360.079 −0.374692
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 350.464 0.363175
\(966\) 0 0
\(967\) 303.965i 0.314338i 0.987572 + 0.157169i \(0.0502367\pi\)
−0.987572 + 0.157169i \(0.949763\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 356.162i − 0.366799i −0.983038 0.183399i \(-0.941290\pi\)
0.983038 0.183399i \(-0.0587101\pi\)
\(972\) 0 0
\(973\) −2320.99 −2.38539
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1845.09 1.88852 0.944262 0.329194i \(-0.106777\pi\)
0.944262 + 0.329194i \(0.106777\pi\)
\(978\) 0 0
\(979\) 1115.99i 1.13993i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 289.444i 0.294449i 0.989103 + 0.147225i \(0.0470340\pi\)
−0.989103 + 0.147225i \(0.952966\pi\)
\(984\) 0 0
\(985\) −581.662 −0.590519
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −360.329 −0.364337
\(990\) 0 0
\(991\) − 441.980i − 0.445994i −0.974819 0.222997i \(-0.928416\pi\)
0.974819 0.222997i \(-0.0715840\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 31.3779i − 0.0315356i
\(996\) 0 0
\(997\) 1045.42 1.04856 0.524282 0.851545i \(-0.324334\pi\)
0.524282 + 0.851545i \(0.324334\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.3.e.j.2431.1 8
3.2 odd 2 960.3.e.c.511.7 8
4.3 odd 2 inner 2880.3.e.j.2431.4 8
8.3 odd 2 180.3.c.b.91.7 8
8.5 even 2 180.3.c.b.91.8 8
12.11 even 2 960.3.e.c.511.4 8
24.5 odd 2 60.3.c.a.31.1 8
24.11 even 2 60.3.c.a.31.2 yes 8
40.3 even 4 900.3.f.f.199.7 16
40.13 odd 4 900.3.f.f.199.9 16
40.19 odd 2 900.3.c.u.451.2 8
40.27 even 4 900.3.f.f.199.10 16
40.29 even 2 900.3.c.u.451.1 8
40.37 odd 4 900.3.f.f.199.8 16
120.29 odd 2 300.3.c.d.151.8 8
120.53 even 4 300.3.f.b.199.8 16
120.59 even 2 300.3.c.d.151.7 8
120.77 even 4 300.3.f.b.199.9 16
120.83 odd 4 300.3.f.b.199.10 16
120.107 odd 4 300.3.f.b.199.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.3.c.a.31.1 8 24.5 odd 2
60.3.c.a.31.2 yes 8 24.11 even 2
180.3.c.b.91.7 8 8.3 odd 2
180.3.c.b.91.8 8 8.5 even 2
300.3.c.d.151.7 8 120.59 even 2
300.3.c.d.151.8 8 120.29 odd 2
300.3.f.b.199.7 16 120.107 odd 4
300.3.f.b.199.8 16 120.53 even 4
300.3.f.b.199.9 16 120.77 even 4
300.3.f.b.199.10 16 120.83 odd 4
900.3.c.u.451.1 8 40.29 even 2
900.3.c.u.451.2 8 40.19 odd 2
900.3.f.f.199.7 16 40.3 even 4
900.3.f.f.199.8 16 40.37 odd 4
900.3.f.f.199.9 16 40.13 odd 4
900.3.f.f.199.10 16 40.27 even 4
960.3.e.c.511.4 8 12.11 even 2
960.3.e.c.511.7 8 3.2 odd 2
2880.3.e.j.2431.1 8 1.1 even 1 trivial
2880.3.e.j.2431.4 8 4.3 odd 2 inner