Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2883,2,Mod(1,2883)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2883, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2883.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2883.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.8.1413480448.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.28192 | 1.00000 | 3.20718 | 2.11277 | −2.28192 | 1.56903 | −2.75468 | 1.00000 | −4.82118 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −0.987714 | 1.00000 | −1.02442 | 4.03512 | −0.987714 | −3.85422 | 2.98726 | 1.00000 | −3.98554 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −0.137609 | 1.00000 | −1.98106 | −0.677863 | −0.137609 | 2.14378 | 0.547830 | 1.00000 | 0.0932799 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | 0.573500 | 1.00000 | −1.67110 | −1.97206 | 0.573500 | 0.440009 | −2.10538 | 1.00000 | −1.13098 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | 0.680299 | 1.00000 | −1.53719 | 0.966483 | 0.680299 | −4.84476 | −2.40635 | 1.00000 | 0.657497 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 1.73391 | 1.00000 | 1.00646 | −1.94715 | 1.73391 | 4.25897 | −1.72271 | 1.00000 | −3.37619 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 1.86771 | 1.00000 | 1.48834 | 1.48102 | 1.86771 | −4.98324 | −0.955629 | 1.00000 | 2.76613 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 2.55182 | 1.00000 | 4.51180 | −3.99832 | 2.55182 | −2.72957 | 6.40966 | 1.00000 | −10.2030 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2883.2.a.r | yes | 8 |
3.b | odd | 2 | 1 | 8649.2.a.bd | 8 | ||
31.b | odd | 2 | 1 | 2883.2.a.q | ✓ | 8 | |
93.c | even | 2 | 1 | 8649.2.a.bc | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2883.2.a.q | ✓ | 8 | 31.b | odd | 2 | 1 | |
2883.2.a.r | yes | 8 | 1.a | even | 1 | 1 | trivial |
8649.2.a.bc | 8 | 93.c | even | 2 | 1 | ||
8649.2.a.bd | 8 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|