Properties

Label 2883.2.a.r
Level 28832883
Weight 22
Character orbit 2883.a
Self dual yes
Analytic conductor 23.02123.021
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2883,2,Mod(1,2883)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2883, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2883.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2883=3312 2883 = 3 \cdot 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2883.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 23.020870902723.0208709027
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.1413480448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x72x6+16x5x416x3+2x2+4x1 x^{8} - 4x^{7} - 2x^{6} + 16x^{5} - x^{4} - 16x^{3} + 2x^{2} + 4x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7+β1)q2+q3+(β5β3β21)q4+(2β7+β4β1+1)q5+(β7+β1)q6+(β7+β6β5+1)q7++(β5+β4β2+1)q99+O(q100) q + ( - \beta_{7} + \beta_1) q^{2} + q^{3} + ( - \beta_{5} - \beta_{3} - \beta_{2} - 1) q^{4} + (2 \beta_{7} + \beta_{4} - \beta_1 + 1) q^{5} + ( - \beta_{7} + \beta_1) q^{6} + ( - \beta_{7} + \beta_{6} - \beta_{5} + \cdots - 1) q^{7}+ \cdots + (\beta_{5} + \beta_{4} - \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q2+8q3+4q4+4q68q7+8q920q108q11+4q1216q1312q14+4q16+4q1816q1912q208q2116q23+8q25+8q99+O(q100) 8 q + 4 q^{2} + 8 q^{3} + 4 q^{4} + 4 q^{6} - 8 q^{7} + 8 q^{9} - 20 q^{10} - 8 q^{11} + 4 q^{12} - 16 q^{13} - 12 q^{14} + 4 q^{16} + 4 q^{18} - 16 q^{19} - 12 q^{20} - 8 q^{21} - 16 q^{23} + 8 q^{25}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84x72x6+16x5x416x3+2x2+4x1 x^{8} - 4x^{7} - 2x^{6} + 16x^{5} - x^{4} - 16x^{3} + 2x^{2} + 4x - 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν74ν62ν5+16ν4ν316ν2+2ν+3 \nu^{7} - 4\nu^{6} - 2\nu^{5} + 16\nu^{4} - \nu^{3} - 16\nu^{2} + 2\nu + 3 Copy content Toggle raw display
β3\beta_{3}== 2ν7+8ν6+3ν528ν4+3ν3+20ν22ν3 -2\nu^{7} + 8\nu^{6} + 3\nu^{5} - 28\nu^{4} + 3\nu^{3} + 20\nu^{2} - 2\nu - 3 Copy content Toggle raw display
β4\beta_{4}== 2ν7+9ν6ν529ν4+16ν3+15ν28ν+1 -2\nu^{7} + 9\nu^{6} - \nu^{5} - 29\nu^{4} + 16\nu^{3} + 15\nu^{2} - 8\nu + 1 Copy content Toggle raw display
β5\beta_{5}== 3ν7+12ν6+5ν544ν4+4ν3+35ν22ν5 -3\nu^{7} + 12\nu^{6} + 5\nu^{5} - 44\nu^{4} + 4\nu^{3} + 35\nu^{2} - 2\nu - 5 Copy content Toggle raw display
β6\beta_{6}== 2ν77ν68ν5+30ν4+14ν333ν211ν+8 2\nu^{7} - 7\nu^{6} - 8\nu^{5} + 30\nu^{4} + 14\nu^{3} - 33\nu^{2} - 11\nu + 8 Copy content Toggle raw display
β7\beta_{7}== 2ν7+6ν6+12ν529ν426ν3+35ν2+16ν9 -2\nu^{7} + 6\nu^{6} + 12\nu^{5} - 29\nu^{4} - 26\nu^{3} + 35\nu^{2} + 16\nu - 9 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β3β2+2β1+1 -\beta_{5} + \beta_{3} - \beta_{2} + 2\beta _1 + 1 Copy content Toggle raw display
ν3\nu^{3}== β7+β63β5+β4+2β33β2+7β1 \beta_{7} + \beta_{6} - 3\beta_{5} + \beta_{4} + 2\beta_{3} - 3\beta_{2} + 7\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 3β7+2β613β5+4β4+9β311β2+20β1+2 3\beta_{7} + 2\beta_{6} - 13\beta_{5} + 4\beta_{4} + 9\beta_{3} - 11\beta_{2} + 20\beta _1 + 2 Copy content Toggle raw display
ν5\nu^{5}== 13β7+9β643β5+17β4+25β337β2+65β11 13\beta_{7} + 9\beta_{6} - 43\beta_{5} + 17\beta_{4} + 25\beta_{3} - 37\beta_{2} + 65\beta _1 - 1 Copy content Toggle raw display
ν6\nu^{6}== 42β7+25β6151β5+60β4+87β3125β2+205β11 42\beta_{7} + 25\beta_{6} - 151\beta_{5} + 60\beta_{4} + 87\beta_{3} - 125\beta_{2} + 205\beta _1 - 1 Copy content Toggle raw display
ν7\nu^{7}== 147β7+87β6501β5+211β4+272β3416β2+667β125 147\beta_{7} + 87\beta_{6} - 501\beta_{5} + 211\beta_{4} + 272\beta_{3} - 416\beta_{2} + 667\beta _1 - 25 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−0.867710
0.426500
−1.55182
1.98771
−0.733914
0.319701
3.28192
1.13761
−2.28192 1.00000 3.20718 2.11277 −2.28192 1.56903 −2.75468 1.00000 −4.82118
1.2 −0.987714 1.00000 −1.02442 4.03512 −0.987714 −3.85422 2.98726 1.00000 −3.98554
1.3 −0.137609 1.00000 −1.98106 −0.677863 −0.137609 2.14378 0.547830 1.00000 0.0932799
1.4 0.573500 1.00000 −1.67110 −1.97206 0.573500 0.440009 −2.10538 1.00000 −1.13098
1.5 0.680299 1.00000 −1.53719 0.966483 0.680299 −4.84476 −2.40635 1.00000 0.657497
1.6 1.73391 1.00000 1.00646 −1.94715 1.73391 4.25897 −1.72271 1.00000 −3.37619
1.7 1.86771 1.00000 1.48834 1.48102 1.86771 −4.98324 −0.955629 1.00000 2.76613
1.8 2.55182 1.00000 4.51180 −3.99832 2.55182 −2.72957 6.40966 1.00000 −10.2030
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
3131 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2883.2.a.r yes 8
3.b odd 2 1 8649.2.a.bd 8
31.b odd 2 1 2883.2.a.q 8
93.c even 2 1 8649.2.a.bc 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2883.2.a.q 8 31.b odd 2 1
2883.2.a.r yes 8 1.a even 1 1 trivial
8649.2.a.bc 8 93.c even 2 1
8649.2.a.bd 8 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2883))S_{2}^{\mathrm{new}}(\Gamma_0(2883)):

T284T272T26+24T2521T2416T23+22T224T21 T_{2}^{8} - 4T_{2}^{7} - 2T_{2}^{6} + 24T_{2}^{5} - 21T_{2}^{4} - 16T_{2}^{3} + 22T_{2}^{2} - 4T_{2} - 1 Copy content Toggle raw display
T118+8T1174T116184T115506T114112T113+1328T112+1872T11+764 T_{11}^{8} + 8T_{11}^{7} - 4T_{11}^{6} - 184T_{11}^{5} - 506T_{11}^{4} - 112T_{11}^{3} + 1328T_{11}^{2} + 1872T_{11} + 764 Copy content Toggle raw display
T138+16T137+68T136176T1352226T1346240T1335112T132+4000T13+5956 T_{13}^{8} + 16T_{13}^{7} + 68T_{13}^{6} - 176T_{13}^{5} - 2226T_{13}^{4} - 6240T_{13}^{3} - 5112T_{13}^{2} + 4000T_{13} + 5956 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T84T7+1 T^{8} - 4 T^{7} + \cdots - 1 Copy content Toggle raw display
33 (T1)8 (T - 1)^{8} Copy content Toggle raw display
55 T824T6++127 T^{8} - 24 T^{6} + \cdots + 127 Copy content Toggle raw display
77 T8+8T7++1601 T^{8} + 8 T^{7} + \cdots + 1601 Copy content Toggle raw display
1111 T8+8T7++764 T^{8} + 8 T^{7} + \cdots + 764 Copy content Toggle raw display
1313 T8+16T7++5956 T^{8} + 16 T^{7} + \cdots + 5956 Copy content Toggle raw display
1717 T856T6+64 T^{8} - 56 T^{6} + \cdots - 64 Copy content Toggle raw display
1919 T8+16T7++10369 T^{8} + 16 T^{7} + \cdots + 10369 Copy content Toggle raw display
2323 T8+16T7+772 T^{8} + 16 T^{7} + \cdots - 772 Copy content Toggle raw display
2929 T8+16T7++7996 T^{8} + 16 T^{7} + \cdots + 7996 Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8+16T7++4 T^{8} + 16 T^{7} + \cdots + 4 Copy content Toggle raw display
4141 T8244T6++2938879 T^{8} - 244 T^{6} + \cdots + 2938879 Copy content Toggle raw display
4343 T8+32T7++4 T^{8} + 32 T^{7} + \cdots + 4 Copy content Toggle raw display
4747 T8+8T7+69376 T^{8} + 8 T^{7} + \cdots - 69376 Copy content Toggle raw display
5353 T8+16T7+392192 T^{8} + 16 T^{7} + \cdots - 392192 Copy content Toggle raw display
5959 T824T7++813343 T^{8} - 24 T^{7} + \cdots + 813343 Copy content Toggle raw display
6161 T8+48T7++43072 T^{8} + 48 T^{7} + \cdots + 43072 Copy content Toggle raw display
6767 T8+40T7++10211584 T^{8} + 40 T^{7} + \cdots + 10211584 Copy content Toggle raw display
7171 T816T7+92993 T^{8} - 16 T^{7} + \cdots - 92993 Copy content Toggle raw display
7373 T8+48T7++1604 T^{8} + 48 T^{7} + \cdots + 1604 Copy content Toggle raw display
7979 T8296T6++12356 T^{8} - 296 T^{6} + \cdots + 12356 Copy content Toggle raw display
8383 T8+24T7+31610948 T^{8} + 24 T^{7} + \cdots - 31610948 Copy content Toggle raw display
8989 T8+24T7+23670788 T^{8} + 24 T^{7} + \cdots - 23670788 Copy content Toggle raw display
9797 T8252T6++3697 T^{8} - 252 T^{6} + \cdots + 3697 Copy content Toggle raw display
show more
show less