Properties

Label 289.4.b.b.288.1
Level $289$
Weight $4$
Character 289.288
Analytic conductor $17.052$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [289,4,Mod(288,289)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(289, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("289.288");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 289.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.0515519917\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.27793984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{3} + 49x^{2} - 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 288.1
Root \(0.143705 - 0.143705i\) of defining polynomial
Character \(\chi\) \(=\) 289.288
Dual form 289.4.b.b.288.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.67129 q^{2} -7.62999i q^{3} +13.8209 q^{4} -11.9174i q^{5} +35.6419i q^{6} -26.1222i q^{7} -27.1912 q^{8} -31.2167 q^{9} +55.6696i q^{10} +3.24412i q^{11} -105.453i q^{12} -20.0515 q^{13} +122.024i q^{14} -90.9296 q^{15} +16.4506 q^{16} +145.822 q^{18} -57.3466 q^{19} -164.709i q^{20} -199.312 q^{21} -15.1542i q^{22} -77.0438i q^{23} +207.469i q^{24} -17.0243 q^{25} +93.6662 q^{26} +32.1732i q^{27} -361.033i q^{28} -286.162i q^{29} +424.758 q^{30} -8.54816i q^{31} +140.684 q^{32} +24.7526 q^{33} -311.309 q^{35} -431.443 q^{36} +357.982i q^{37} +267.882 q^{38} +152.992i q^{39} +324.049i q^{40} -194.467i q^{41} +931.044 q^{42} +74.2619 q^{43} +44.8367i q^{44} +372.021i q^{45} +359.894i q^{46} +23.6130 q^{47} -125.518i q^{48} -339.369 q^{49} +79.5255 q^{50} -277.130 q^{52} -104.330 q^{53} -150.290i q^{54} +38.6614 q^{55} +710.295i q^{56} +437.553i q^{57} +1336.75i q^{58} -249.363 q^{59} -1256.73 q^{60} +370.384i q^{61} +39.9309i q^{62} +815.448i q^{63} -788.781 q^{64} +238.961i q^{65} -115.626 q^{66} +939.650 q^{67} -587.843 q^{69} +1454.21 q^{70} -520.197i q^{71} +848.820 q^{72} +348.741i q^{73} -1672.24i q^{74} +129.895i q^{75} -792.583 q^{76} +84.7434 q^{77} -714.672i q^{78} +953.827i q^{79} -196.049i q^{80} -597.369 q^{81} +908.412i q^{82} +1414.28 q^{83} -2754.68 q^{84} -346.899 q^{86} -2183.41 q^{87} -88.2115i q^{88} -486.132 q^{89} -1737.82i q^{90} +523.788i q^{91} -1064.82i q^{92} -65.2223 q^{93} -110.303 q^{94} +683.422i q^{95} -1073.42i q^{96} -685.281i q^{97} +1585.29 q^{98} -101.271i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 50 q^{4} + 78 q^{8} - 118 q^{9} + 60 q^{13} - 216 q^{15} + 274 q^{16} - 206 q^{18} - 160 q^{19} - 384 q^{21} + 446 q^{25} - 52 q^{26} + 800 q^{30} + 142 q^{32} - 664 q^{33} - 664 q^{35}+ \cdots + 5714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.67129 −1.65155 −0.825775 0.564000i \(-0.809262\pi\)
−0.825775 + 0.564000i \(0.809262\pi\)
\(3\) − 7.62999i − 1.46839i −0.678938 0.734196i \(-0.737559\pi\)
0.678938 0.734196i \(-0.262441\pi\)
\(4\) 13.8209 1.72762
\(5\) − 11.9174i − 1.06592i −0.846139 0.532962i \(-0.821079\pi\)
0.846139 0.532962i \(-0.178921\pi\)
\(6\) 35.6419i 2.42512i
\(7\) − 26.1222i − 1.41047i −0.708975 0.705233i \(-0.750842\pi\)
0.708975 0.705233i \(-0.249158\pi\)
\(8\) −27.1912 −1.20169
\(9\) −31.2167 −1.15617
\(10\) 55.6696i 1.76043i
\(11\) 3.24412i 0.0889216i 0.999011 + 0.0444608i \(0.0141570\pi\)
−0.999011 + 0.0444608i \(0.985843\pi\)
\(12\) − 105.453i − 2.53682i
\(13\) −20.0515 −0.427790 −0.213895 0.976857i \(-0.568615\pi\)
−0.213895 + 0.976857i \(0.568615\pi\)
\(14\) 122.024i 2.32945i
\(15\) −90.9296 −1.56519
\(16\) 16.4506 0.257041
\(17\) 0 0
\(18\) 145.822 1.90948
\(19\) −57.3466 −0.692432 −0.346216 0.938155i \(-0.612534\pi\)
−0.346216 + 0.938155i \(0.612534\pi\)
\(20\) − 164.709i − 1.84151i
\(21\) −199.312 −2.07112
\(22\) − 15.1542i − 0.146858i
\(23\) − 77.0438i − 0.698467i −0.937036 0.349233i \(-0.886442\pi\)
0.937036 0.349233i \(-0.113558\pi\)
\(24\) 207.469i 1.76456i
\(25\) −17.0243 −0.136195
\(26\) 93.6662 0.706517
\(27\) 32.1732i 0.229323i
\(28\) − 361.033i − 2.43674i
\(29\) − 286.162i − 1.83238i −0.400744 0.916190i \(-0.631248\pi\)
0.400744 0.916190i \(-0.368752\pi\)
\(30\) 424.758 2.58500
\(31\) − 8.54816i − 0.0495256i −0.999693 0.0247628i \(-0.992117\pi\)
0.999693 0.0247628i \(-0.00788305\pi\)
\(32\) 140.684 0.777178
\(33\) 24.7526 0.130572
\(34\) 0 0
\(35\) −311.309 −1.50345
\(36\) −431.443 −1.99742
\(37\) 357.982i 1.59059i 0.606221 + 0.795296i \(0.292685\pi\)
−0.606221 + 0.795296i \(0.707315\pi\)
\(38\) 267.882 1.14359
\(39\) 152.992i 0.628164i
\(40\) 324.049i 1.28091i
\(41\) − 194.467i − 0.740748i −0.928883 0.370374i \(-0.879230\pi\)
0.928883 0.370374i \(-0.120770\pi\)
\(42\) 931.044 3.42055
\(43\) 74.2619 0.263368 0.131684 0.991292i \(-0.457962\pi\)
0.131684 + 0.991292i \(0.457962\pi\)
\(44\) 44.8367i 0.153622i
\(45\) 372.021i 1.23239i
\(46\) 359.894i 1.15355i
\(47\) 23.6130 0.0732831 0.0366416 0.999328i \(-0.488334\pi\)
0.0366416 + 0.999328i \(0.488334\pi\)
\(48\) − 125.518i − 0.377437i
\(49\) −339.369 −0.989415
\(50\) 79.5255 0.224932
\(51\) 0 0
\(52\) −277.130 −0.739058
\(53\) −104.330 −0.270393 −0.135197 0.990819i \(-0.543167\pi\)
−0.135197 + 0.990819i \(0.543167\pi\)
\(54\) − 150.290i − 0.378739i
\(55\) 38.6614 0.0947837
\(56\) 710.295i 1.69495i
\(57\) 437.553i 1.01676i
\(58\) 1336.75i 3.02627i
\(59\) −249.363 −0.550243 −0.275122 0.961409i \(-0.588718\pi\)
−0.275122 + 0.961409i \(0.588718\pi\)
\(60\) −1256.73 −2.70405
\(61\) 370.384i 0.777424i 0.921359 + 0.388712i \(0.127080\pi\)
−0.921359 + 0.388712i \(0.872920\pi\)
\(62\) 39.9309i 0.0817940i
\(63\) 815.448i 1.63074i
\(64\) −788.781 −1.54059
\(65\) 238.961i 0.455992i
\(66\) −115.626 −0.215646
\(67\) 939.650 1.71338 0.856691 0.515830i \(-0.172517\pi\)
0.856691 + 0.515830i \(0.172517\pi\)
\(68\) 0 0
\(69\) −587.843 −1.02562
\(70\) 1454.21 2.48302
\(71\) − 520.197i − 0.869522i −0.900546 0.434761i \(-0.856833\pi\)
0.900546 0.434761i \(-0.143167\pi\)
\(72\) 848.820 1.38937
\(73\) 348.741i 0.559137i 0.960126 + 0.279568i \(0.0901914\pi\)
−0.960126 + 0.279568i \(0.909809\pi\)
\(74\) − 1672.24i − 2.62694i
\(75\) 129.895i 0.199987i
\(76\) −792.583 −1.19626
\(77\) 84.7434 0.125421
\(78\) − 714.672i − 1.03744i
\(79\) 953.827i 1.35840i 0.733951 + 0.679202i \(0.237674\pi\)
−0.733951 + 0.679202i \(0.762326\pi\)
\(80\) − 196.049i − 0.273986i
\(81\) −597.369 −0.819437
\(82\) 908.412i 1.22338i
\(83\) 1414.28 1.87033 0.935166 0.354211i \(-0.115250\pi\)
0.935166 + 0.354211i \(0.115250\pi\)
\(84\) −2754.68 −3.57809
\(85\) 0 0
\(86\) −346.899 −0.434966
\(87\) −2183.41 −2.69065
\(88\) − 88.2115i − 0.106857i
\(89\) −486.132 −0.578987 −0.289493 0.957180i \(-0.593487\pi\)
−0.289493 + 0.957180i \(0.593487\pi\)
\(90\) − 1737.82i − 2.03536i
\(91\) 523.788i 0.603384i
\(92\) − 1064.82i − 1.20668i
\(93\) −65.2223 −0.0727230
\(94\) −110.303 −0.121031
\(95\) 683.422i 0.738080i
\(96\) − 1073.42i − 1.14120i
\(97\) − 685.281i − 0.717317i −0.933469 0.358659i \(-0.883234\pi\)
0.933469 0.358659i \(-0.116766\pi\)
\(98\) 1585.29 1.63407
\(99\) − 101.271i − 0.102809i
\(100\) −235.292 −0.235292
\(101\) 864.755 0.851944 0.425972 0.904736i \(-0.359932\pi\)
0.425972 + 0.904736i \(0.359932\pi\)
\(102\) 0 0
\(103\) 1880.91 1.79933 0.899665 0.436580i \(-0.143810\pi\)
0.899665 + 0.436580i \(0.143810\pi\)
\(104\) 545.224 0.514073
\(105\) 2375.28i 2.20765i
\(106\) 487.355 0.446567
\(107\) − 32.8149i − 0.0296480i −0.999890 0.0148240i \(-0.995281\pi\)
0.999890 0.0148240i \(-0.00471880\pi\)
\(108\) 444.663i 0.396183i
\(109\) − 528.727i − 0.464613i −0.972643 0.232307i \(-0.925373\pi\)
0.972643 0.232307i \(-0.0746273\pi\)
\(110\) −180.599 −0.156540
\(111\) 2731.40 2.33561
\(112\) − 429.727i − 0.362548i
\(113\) − 414.691i − 0.345229i −0.984989 0.172614i \(-0.944779\pi\)
0.984989 0.172614i \(-0.0552215\pi\)
\(114\) − 2043.94i − 1.67923i
\(115\) −918.161 −0.744513
\(116\) − 3955.03i − 3.16565i
\(117\) 625.940 0.494600
\(118\) 1164.85 0.908754
\(119\) 0 0
\(120\) 2472.49 1.88088
\(121\) 1320.48 0.992093
\(122\) − 1730.17i − 1.28395i
\(123\) −1483.78 −1.08771
\(124\) − 118.143i − 0.0855613i
\(125\) − 1286.79i − 0.920751i
\(126\) − 3809.19i − 2.69325i
\(127\) −596.093 −0.416494 −0.208247 0.978076i \(-0.566776\pi\)
−0.208247 + 0.978076i \(0.566776\pi\)
\(128\) 2559.15 1.76718
\(129\) − 566.617i − 0.386728i
\(130\) − 1116.26i − 0.753094i
\(131\) 121.819i 0.0812472i 0.999175 + 0.0406236i \(0.0129344\pi\)
−0.999175 + 0.0406236i \(0.987066\pi\)
\(132\) 342.103 0.225578
\(133\) 1498.02i 0.976652i
\(134\) −4389.38 −2.82973
\(135\) 383.420 0.244441
\(136\) 0 0
\(137\) −897.365 −0.559614 −0.279807 0.960056i \(-0.590270\pi\)
−0.279807 + 0.960056i \(0.590270\pi\)
\(138\) 2745.98 1.69387
\(139\) − 2113.61i − 1.28974i −0.764292 0.644871i \(-0.776911\pi\)
0.764292 0.644871i \(-0.223089\pi\)
\(140\) −4302.57 −2.59738
\(141\) − 180.167i − 0.107608i
\(142\) 2429.99i 1.43606i
\(143\) − 65.0493i − 0.0380398i
\(144\) −513.534 −0.297184
\(145\) −3410.31 −1.95318
\(146\) − 1629.07i − 0.923442i
\(147\) 2589.38i 1.45285i
\(148\) 4947.65i 2.74793i
\(149\) 2580.76 1.41895 0.709476 0.704729i \(-0.248932\pi\)
0.709476 + 0.704729i \(0.248932\pi\)
\(150\) − 606.778i − 0.330288i
\(151\) −1342.77 −0.723662 −0.361831 0.932244i \(-0.617848\pi\)
−0.361831 + 0.932244i \(0.617848\pi\)
\(152\) 1559.32 0.832091
\(153\) 0 0
\(154\) −395.861 −0.207139
\(155\) −101.872 −0.0527906
\(156\) 2114.50i 1.08523i
\(157\) −2495.82 −1.26871 −0.634357 0.773041i \(-0.718735\pi\)
−0.634357 + 0.773041i \(0.718735\pi\)
\(158\) − 4455.60i − 2.24347i
\(159\) 796.036i 0.397043i
\(160\) − 1676.59i − 0.828413i
\(161\) −2012.55 −0.985164
\(162\) 2790.48 1.35334
\(163\) − 1961.58i − 0.942595i −0.881974 0.471297i \(-0.843786\pi\)
0.881974 0.471297i \(-0.156214\pi\)
\(164\) − 2687.72i − 1.27973i
\(165\) − 294.986i − 0.139180i
\(166\) −6606.51 −3.08894
\(167\) 2179.24i 1.00979i 0.863182 + 0.504894i \(0.168468\pi\)
−0.863182 + 0.504894i \(0.831532\pi\)
\(168\) 5419.54 2.48885
\(169\) −1794.94 −0.816995
\(170\) 0 0
\(171\) 1790.17 0.800571
\(172\) 1026.37 0.454999
\(173\) 3111.45i 1.36739i 0.729766 + 0.683697i \(0.239629\pi\)
−0.729766 + 0.683697i \(0.760371\pi\)
\(174\) 10199.4 4.44374
\(175\) 444.713i 0.192098i
\(176\) 53.3677i 0.0228565i
\(177\) 1902.64i 0.807972i
\(178\) 2270.86 0.956226
\(179\) −810.106 −0.338269 −0.169135 0.985593i \(-0.554097\pi\)
−0.169135 + 0.985593i \(0.554097\pi\)
\(180\) 5141.68i 2.12910i
\(181\) 3356.23i 1.37827i 0.724634 + 0.689134i \(0.242009\pi\)
−0.724634 + 0.689134i \(0.757991\pi\)
\(182\) − 2446.77i − 0.996519i
\(183\) 2826.03 1.14156
\(184\) 2094.92i 0.839343i
\(185\) 4266.22 1.69545
\(186\) 304.672 0.120106
\(187\) 0 0
\(188\) 326.353 0.126605
\(189\) 840.434 0.323453
\(190\) − 3192.46i − 1.21898i
\(191\) 1338.41 0.507038 0.253519 0.967330i \(-0.418412\pi\)
0.253519 + 0.967330i \(0.418412\pi\)
\(192\) 6018.39i 2.26219i
\(193\) 227.465i 0.0848358i 0.999100 + 0.0424179i \(0.0135061\pi\)
−0.999100 + 0.0424179i \(0.986494\pi\)
\(194\) 3201.15i 1.18468i
\(195\) 1823.27 0.669575
\(196\) −4690.40 −1.70933
\(197\) − 815.549i − 0.294952i −0.989066 0.147476i \(-0.952885\pi\)
0.989066 0.147476i \(-0.0471148\pi\)
\(198\) 473.064i 0.169794i
\(199\) 1866.90i 0.665030i 0.943098 + 0.332515i \(0.107897\pi\)
−0.943098 + 0.332515i \(0.892103\pi\)
\(200\) 462.912 0.163664
\(201\) − 7169.52i − 2.51591i
\(202\) −4039.52 −1.40703
\(203\) −7475.19 −2.58451
\(204\) 0 0
\(205\) −2317.54 −0.789581
\(206\) −8786.25 −2.97168
\(207\) 2405.05i 0.807549i
\(208\) −329.859 −0.109960
\(209\) − 186.039i − 0.0615721i
\(210\) − 11095.6i − 3.64605i
\(211\) 1102.88i 0.359836i 0.983682 + 0.179918i \(0.0575833\pi\)
−0.983682 + 0.179918i \(0.942417\pi\)
\(212\) −1441.94 −0.467135
\(213\) −3969.10 −1.27680
\(214\) 153.288i 0.0489651i
\(215\) − 885.008i − 0.280731i
\(216\) − 874.828i − 0.275576i
\(217\) −223.297 −0.0698542
\(218\) 2469.84i 0.767332i
\(219\) 2660.89 0.821032
\(220\) 534.337 0.163750
\(221\) 0 0
\(222\) −12759.2 −3.85738
\(223\) 568.848 0.170820 0.0854100 0.996346i \(-0.472780\pi\)
0.0854100 + 0.996346i \(0.472780\pi\)
\(224\) − 3674.98i − 1.09618i
\(225\) 531.442 0.157464
\(226\) 1937.14i 0.570163i
\(227\) − 2106.99i − 0.616061i −0.951377 0.308030i \(-0.900330\pi\)
0.951377 0.308030i \(-0.0996698\pi\)
\(228\) 6047.39i 1.75657i
\(229\) −4336.30 −1.25131 −0.625656 0.780099i \(-0.715169\pi\)
−0.625656 + 0.780099i \(0.715169\pi\)
\(230\) 4289.00 1.22960
\(231\) − 646.591i − 0.184167i
\(232\) 7781.11i 2.20196i
\(233\) − 4517.39i − 1.27014i −0.772453 0.635072i \(-0.780970\pi\)
0.772453 0.635072i \(-0.219030\pi\)
\(234\) −2923.95 −0.816856
\(235\) − 281.405i − 0.0781143i
\(236\) −3446.43 −0.950609
\(237\) 7277.69 1.99467
\(238\) 0 0
\(239\) 5300.88 1.43467 0.717333 0.696731i \(-0.245363\pi\)
0.717333 + 0.696731i \(0.245363\pi\)
\(240\) −1495.85 −0.402319
\(241\) − 1368.82i − 0.365864i −0.983126 0.182932i \(-0.941441\pi\)
0.983126 0.182932i \(-0.0585588\pi\)
\(242\) −6168.32 −1.63849
\(243\) 5426.60i 1.43258i
\(244\) 5119.05i 1.34309i
\(245\) 4044.40i 1.05464i
\(246\) 6931.17 1.79640
\(247\) 1149.88 0.296216
\(248\) 232.435i 0.0595146i
\(249\) − 10790.9i − 2.74638i
\(250\) 6010.96i 1.52067i
\(251\) −5547.63 −1.39507 −0.697536 0.716549i \(-0.745720\pi\)
−0.697536 + 0.716549i \(0.745720\pi\)
\(252\) 11270.3i 2.81730i
\(253\) 249.939 0.0621088
\(254\) 2784.52 0.687860
\(255\) 0 0
\(256\) −5644.28 −1.37800
\(257\) 193.949 0.0470748 0.0235374 0.999723i \(-0.492507\pi\)
0.0235374 + 0.999723i \(0.492507\pi\)
\(258\) 2646.83i 0.638700i
\(259\) 9351.29 2.24348
\(260\) 3302.67i 0.787780i
\(261\) 8933.04i 2.11855i
\(262\) − 569.052i − 0.134184i
\(263\) 1345.63 0.315494 0.157747 0.987480i \(-0.449577\pi\)
0.157747 + 0.987480i \(0.449577\pi\)
\(264\) −673.052 −0.156907
\(265\) 1243.34i 0.288218i
\(266\) − 6997.67i − 1.61299i
\(267\) 3709.18i 0.850180i
\(268\) 12986.8 2.96007
\(269\) − 3083.04i − 0.698797i −0.936974 0.349398i \(-0.886386\pi\)
0.936974 0.349398i \(-0.113614\pi\)
\(270\) −1791.07 −0.403707
\(271\) −422.163 −0.0946294 −0.0473147 0.998880i \(-0.515066\pi\)
−0.0473147 + 0.998880i \(0.515066\pi\)
\(272\) 0 0
\(273\) 3996.50 0.886004
\(274\) 4191.85 0.924230
\(275\) − 55.2288i − 0.0121106i
\(276\) −8124.54 −1.77188
\(277\) − 8260.00i − 1.79168i −0.444377 0.895840i \(-0.646575\pi\)
0.444377 0.895840i \(-0.353425\pi\)
\(278\) 9873.28i 2.13007i
\(279\) 266.845i 0.0572602i
\(280\) 8464.86 1.80669
\(281\) −3321.91 −0.705226 −0.352613 0.935769i \(-0.614707\pi\)
−0.352613 + 0.935769i \(0.614707\pi\)
\(282\) 841.611i 0.177721i
\(283\) 7954.43i 1.67082i 0.549629 + 0.835409i \(0.314769\pi\)
−0.549629 + 0.835409i \(0.685231\pi\)
\(284\) − 7189.61i − 1.50220i
\(285\) 5214.50 1.08379
\(286\) 303.864i 0.0628246i
\(287\) −5079.91 −1.04480
\(288\) −4391.69 −0.898552
\(289\) 0 0
\(290\) 15930.5 3.22577
\(291\) −5228.69 −1.05330
\(292\) 4819.92i 0.965974i
\(293\) −1171.99 −0.233681 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) − 12095.8i − 2.39945i
\(295\) 2971.76i 0.586517i
\(296\) − 9733.98i − 1.91141i
\(297\) −104.374 −0.0203918
\(298\) −12055.5 −2.34347
\(299\) 1544.84i 0.298798i
\(300\) 1795.27i 0.345500i
\(301\) − 1939.88i − 0.371472i
\(302\) 6272.46 1.19516
\(303\) − 6598.07i − 1.25099i
\(304\) −943.387 −0.177983
\(305\) 4414.01 0.828675
\(306\) 0 0
\(307\) 865.763 0.160950 0.0804751 0.996757i \(-0.474356\pi\)
0.0804751 + 0.996757i \(0.474356\pi\)
\(308\) 1171.23 0.216679
\(309\) − 14351.3i − 2.64212i
\(310\) 475.872 0.0871862
\(311\) 6994.83i 1.27537i 0.770297 + 0.637685i \(0.220108\pi\)
−0.770297 + 0.637685i \(0.779892\pi\)
\(312\) − 4160.05i − 0.754861i
\(313\) − 3442.33i − 0.621635i −0.950470 0.310818i \(-0.899397\pi\)
0.950470 0.310818i \(-0.100603\pi\)
\(314\) 11658.7 2.09534
\(315\) 9718.02 1.73825
\(316\) 13182.8i 2.34680i
\(317\) − 2066.15i − 0.366078i −0.983106 0.183039i \(-0.941407\pi\)
0.983106 0.183039i \(-0.0585935\pi\)
\(318\) − 3718.52i − 0.655736i
\(319\) 928.344 0.162938
\(320\) 9400.22i 1.64215i
\(321\) −250.377 −0.0435349
\(322\) 9401.21 1.62705
\(323\) 0 0
\(324\) −8256.20 −1.41567
\(325\) 341.362 0.0582627
\(326\) 9163.11i 1.55674i
\(327\) −4034.18 −0.682234
\(328\) 5287.80i 0.890152i
\(329\) − 616.823i − 0.103363i
\(330\) 1377.96i 0.229862i
\(331\) −9027.44 −1.49907 −0.749536 0.661964i \(-0.769723\pi\)
−0.749536 + 0.661964i \(0.769723\pi\)
\(332\) 19546.7 3.23121
\(333\) − 11175.0i − 1.83900i
\(334\) − 10179.8i − 1.66771i
\(335\) − 11198.2i − 1.82633i
\(336\) −3278.81 −0.532362
\(337\) 204.309i 0.0330250i 0.999864 + 0.0165125i \(0.00525633\pi\)
−0.999864 + 0.0165125i \(0.994744\pi\)
\(338\) 8384.67 1.34931
\(339\) −3164.09 −0.506931
\(340\) 0 0
\(341\) 27.7312 0.00440390
\(342\) −8362.39 −1.32218
\(343\) − 94.8397i − 0.0149296i
\(344\) −2019.27 −0.316488
\(345\) 7005.56i 1.09324i
\(346\) − 14534.5i − 2.25832i
\(347\) − 143.063i − 0.0221326i −0.999939 0.0110663i \(-0.996477\pi\)
0.999939 0.0110663i \(-0.00352259\pi\)
\(348\) −30176.8 −4.64841
\(349\) 3998.42 0.613268 0.306634 0.951828i \(-0.400797\pi\)
0.306634 + 0.951828i \(0.400797\pi\)
\(350\) − 2077.38i − 0.317259i
\(351\) − 645.119i − 0.0981024i
\(352\) 456.396i 0.0691079i
\(353\) −5809.57 −0.875956 −0.437978 0.898986i \(-0.644305\pi\)
−0.437978 + 0.898986i \(0.644305\pi\)
\(354\) − 8887.77i − 1.33441i
\(355\) −6199.39 −0.926844
\(356\) −6718.79 −1.00027
\(357\) 0 0
\(358\) 3784.24 0.558668
\(359\) 4895.37 0.719687 0.359844 0.933013i \(-0.382830\pi\)
0.359844 + 0.933013i \(0.382830\pi\)
\(360\) − 10115.7i − 1.48096i
\(361\) −3570.37 −0.520538
\(362\) − 15677.9i − 2.27628i
\(363\) − 10075.2i − 1.45678i
\(364\) 7239.24i 1.04242i
\(365\) 4156.08 0.595998
\(366\) −13201.2 −1.88535
\(367\) − 528.151i − 0.0751206i −0.999294 0.0375603i \(-0.988041\pi\)
0.999294 0.0375603i \(-0.0119586\pi\)
\(368\) − 1267.42i − 0.179535i
\(369\) 6070.62i 0.856433i
\(370\) −19928.7 −2.80012
\(371\) 2725.33i 0.381380i
\(372\) −901.433 −0.125637
\(373\) −10113.5 −1.40390 −0.701950 0.712226i \(-0.747687\pi\)
−0.701950 + 0.712226i \(0.747687\pi\)
\(374\) 0 0
\(375\) −9818.18 −1.35202
\(376\) −642.066 −0.0880639
\(377\) 5737.98i 0.783875i
\(378\) −3925.91 −0.534198
\(379\) 729.385i 0.0988548i 0.998778 + 0.0494274i \(0.0157396\pi\)
−0.998778 + 0.0494274i \(0.984260\pi\)
\(380\) 9445.52i 1.27512i
\(381\) 4548.18i 0.611576i
\(382\) −6252.12 −0.837399
\(383\) 1608.08 0.214540 0.107270 0.994230i \(-0.465789\pi\)
0.107270 + 0.994230i \(0.465789\pi\)
\(384\) − 19526.3i − 2.59491i
\(385\) − 1009.92i − 0.133689i
\(386\) − 1062.56i − 0.140111i
\(387\) −2318.21 −0.304499
\(388\) − 9471.22i − 1.23925i
\(389\) −9824.09 −1.28047 −0.640233 0.768181i \(-0.721162\pi\)
−0.640233 + 0.768181i \(0.721162\pi\)
\(390\) −8517.02 −1.10584
\(391\) 0 0
\(392\) 9227.87 1.18897
\(393\) 929.478 0.119303
\(394\) 3809.66i 0.487127i
\(395\) 11367.1 1.44796
\(396\) − 1399.65i − 0.177614i
\(397\) − 2876.88i − 0.363694i −0.983327 0.181847i \(-0.941792\pi\)
0.983327 0.181847i \(-0.0582076\pi\)
\(398\) − 8720.82i − 1.09833i
\(399\) 11429.9 1.43411
\(400\) −280.061 −0.0350076
\(401\) 6515.91i 0.811444i 0.913996 + 0.405722i \(0.132980\pi\)
−0.913996 + 0.405722i \(0.867020\pi\)
\(402\) 33490.9i 4.15516i
\(403\) 171.403i 0.0211866i
\(404\) 11951.7 1.47183
\(405\) 7119.09i 0.873457i
\(406\) 34918.8 4.26845
\(407\) −1161.34 −0.141438
\(408\) 0 0
\(409\) −8870.10 −1.07237 −0.536183 0.844101i \(-0.680134\pi\)
−0.536183 + 0.844101i \(0.680134\pi\)
\(410\) 10825.9 1.30403
\(411\) 6846.89i 0.821732i
\(412\) 25995.9 3.10855
\(413\) 6513.92i 0.776099i
\(414\) − 11234.7i − 1.33371i
\(415\) − 16854.5i − 1.99363i
\(416\) −2820.93 −0.332469
\(417\) −16126.8 −1.89385
\(418\) 869.041i 0.101689i
\(419\) 1009.53i 0.117706i 0.998267 + 0.0588531i \(0.0187443\pi\)
−0.998267 + 0.0588531i \(0.981256\pi\)
\(420\) 32828.6i 3.81398i
\(421\) −3253.60 −0.376652 −0.188326 0.982107i \(-0.560306\pi\)
−0.188326 + 0.982107i \(0.560306\pi\)
\(422\) − 5151.87i − 0.594287i
\(423\) −737.119 −0.0847280
\(424\) 2836.86 0.324930
\(425\) 0 0
\(426\) 18540.8 2.10870
\(427\) 9675.25 1.09653
\(428\) − 453.532i − 0.0512203i
\(429\) −496.325 −0.0558573
\(430\) 4134.13i 0.463640i
\(431\) 2352.51i 0.262915i 0.991322 + 0.131457i \(0.0419656\pi\)
−0.991322 + 0.131457i \(0.958034\pi\)
\(432\) 529.269i 0.0589455i
\(433\) 5860.51 0.650434 0.325217 0.945639i \(-0.394563\pi\)
0.325217 + 0.945639i \(0.394563\pi\)
\(434\) 1043.08 0.115368
\(435\) 26020.6i 2.86803i
\(436\) − 7307.50i − 0.802674i
\(437\) 4418.20i 0.483641i
\(438\) −12429.8 −1.35597
\(439\) 2894.17i 0.314650i 0.987547 + 0.157325i \(0.0502870\pi\)
−0.987547 + 0.157325i \(0.949713\pi\)
\(440\) −1051.25 −0.113901
\(441\) 10594.0 1.14394
\(442\) 0 0
\(443\) −8256.85 −0.885541 −0.442771 0.896635i \(-0.646004\pi\)
−0.442771 + 0.896635i \(0.646004\pi\)
\(444\) 37750.5 4.03504
\(445\) 5793.42i 0.617156i
\(446\) −2657.25 −0.282118
\(447\) − 19691.1i − 2.08358i
\(448\) 20604.7i 2.17295i
\(449\) − 15487.1i − 1.62779i −0.581009 0.813897i \(-0.697342\pi\)
0.581009 0.813897i \(-0.302658\pi\)
\(450\) −2482.52 −0.260060
\(451\) 630.874 0.0658685
\(452\) − 5731.42i − 0.596423i
\(453\) 10245.3i 1.06262i
\(454\) 9842.35i 1.01745i
\(455\) 6242.19 0.643162
\(456\) − 11897.6i − 1.22184i
\(457\) 16055.6 1.64343 0.821716 0.569897i \(-0.193017\pi\)
0.821716 + 0.569897i \(0.193017\pi\)
\(458\) 20256.1 2.06661
\(459\) 0 0
\(460\) −12689.8 −1.28623
\(461\) −14064.0 −1.42088 −0.710440 0.703758i \(-0.751504\pi\)
−0.710440 + 0.703758i \(0.751504\pi\)
\(462\) 3020.41i 0.304161i
\(463\) −8071.30 −0.810162 −0.405081 0.914281i \(-0.632757\pi\)
−0.405081 + 0.914281i \(0.632757\pi\)
\(464\) − 4707.55i − 0.470997i
\(465\) 777.280i 0.0775172i
\(466\) 21102.0i 2.09771i
\(467\) −8582.41 −0.850421 −0.425211 0.905094i \(-0.639800\pi\)
−0.425211 + 0.905094i \(0.639800\pi\)
\(468\) 8651.07 0.854479
\(469\) − 24545.7i − 2.41667i
\(470\) 1314.53i 0.129010i
\(471\) 19043.1i 1.86297i
\(472\) 6780.49 0.661224
\(473\) 240.914i 0.0234191i
\(474\) −33996.2 −3.29429
\(475\) 976.286 0.0943054
\(476\) 0 0
\(477\) 3256.84 0.312621
\(478\) −24761.9 −2.36942
\(479\) − 6320.96i − 0.602948i −0.953474 0.301474i \(-0.902521\pi\)
0.953474 0.301474i \(-0.0974787\pi\)
\(480\) −12792.4 −1.21643
\(481\) − 7178.07i − 0.680441i
\(482\) 6394.13i 0.604242i
\(483\) 15355.8i 1.44661i
\(484\) 18250.2 1.71396
\(485\) −8166.77 −0.764606
\(486\) − 25349.2i − 2.36597i
\(487\) − 7336.47i − 0.682643i −0.939947 0.341321i \(-0.889126\pi\)
0.939947 0.341321i \(-0.110874\pi\)
\(488\) − 10071.2i − 0.934225i
\(489\) −14966.8 −1.38410
\(490\) − 18892.6i − 1.74179i
\(491\) −6672.53 −0.613294 −0.306647 0.951823i \(-0.599207\pi\)
−0.306647 + 0.951823i \(0.599207\pi\)
\(492\) −20507.2 −1.87914
\(493\) 0 0
\(494\) −5371.43 −0.489215
\(495\) −1206.88 −0.109586
\(496\) − 140.623i − 0.0127301i
\(497\) −13588.7 −1.22643
\(498\) 50407.6i 4.53578i
\(499\) − 17920.9i − 1.60772i −0.594821 0.803858i \(-0.702777\pi\)
0.594821 0.803858i \(-0.297223\pi\)
\(500\) − 17784.6i − 1.59070i
\(501\) 16627.6 1.48276
\(502\) 25914.6 2.30403
\(503\) 11325.3i 1.00392i 0.864891 + 0.501959i \(0.167387\pi\)
−0.864891 + 0.501959i \(0.832613\pi\)
\(504\) − 22173.0i − 1.95965i
\(505\) − 10305.6i − 0.908108i
\(506\) −1167.54 −0.102576
\(507\) 13695.4i 1.19967i
\(508\) −8238.56 −0.719541
\(509\) −8313.78 −0.723972 −0.361986 0.932184i \(-0.617901\pi\)
−0.361986 + 0.932184i \(0.617901\pi\)
\(510\) 0 0
\(511\) 9109.87 0.788644
\(512\) 5892.85 0.508651
\(513\) − 1845.02i − 0.158791i
\(514\) −905.993 −0.0777464
\(515\) − 22415.5i − 1.91795i
\(516\) − 7831.17i − 0.668117i
\(517\) 76.6033i 0.00651646i
\(518\) −43682.6 −3.70521
\(519\) 23740.3 2.00787
\(520\) − 6497.65i − 0.547963i
\(521\) − 5121.64i − 0.430677i −0.976539 0.215339i \(-0.930914\pi\)
0.976539 0.215339i \(-0.0690856\pi\)
\(522\) − 41728.8i − 3.49889i
\(523\) 13378.5 1.11855 0.559275 0.828982i \(-0.311080\pi\)
0.559275 + 0.828982i \(0.311080\pi\)
\(524\) 1683.65i 0.140364i
\(525\) 3393.15 0.282075
\(526\) −6285.81 −0.521054
\(527\) 0 0
\(528\) 407.195 0.0335623
\(529\) 6231.26 0.512144
\(530\) − 5808.01i − 0.476007i
\(531\) 7784.29 0.636176
\(532\) 20704.0i 1.68728i
\(533\) 3899.35i 0.316885i
\(534\) − 17326.6i − 1.40411i
\(535\) −391.068 −0.0316025
\(536\) −25550.2 −2.05896
\(537\) 6181.10i 0.496712i
\(538\) 14401.8i 1.15410i
\(539\) − 1100.95i − 0.0879804i
\(540\) 5299.23 0.422301
\(541\) 9906.81i 0.787296i 0.919261 + 0.393648i \(0.128787\pi\)
−0.919261 + 0.393648i \(0.871213\pi\)
\(542\) 1972.04 0.156285
\(543\) 25608.0 2.02384
\(544\) 0 0
\(545\) −6301.05 −0.495243
\(546\) −18668.8 −1.46328
\(547\) 16399.6i 1.28189i 0.767585 + 0.640947i \(0.221458\pi\)
−0.767585 + 0.640947i \(0.778542\pi\)
\(548\) −12402.4 −0.966798
\(549\) − 11562.2i − 0.898836i
\(550\) 257.990i 0.0200013i
\(551\) 16410.4i 1.26880i
\(552\) 15984.2 1.23248
\(553\) 24916.1 1.91598
\(554\) 38584.8i 2.95905i
\(555\) − 32551.2i − 2.48959i
\(556\) − 29212.0i − 2.22818i
\(557\) 22044.3 1.67692 0.838461 0.544962i \(-0.183456\pi\)
0.838461 + 0.544962i \(0.183456\pi\)
\(558\) − 1246.51i − 0.0945681i
\(559\) −1489.06 −0.112666
\(560\) −5121.22 −0.386448
\(561\) 0 0
\(562\) 15517.6 1.16472
\(563\) −12048.8 −0.901947 −0.450973 0.892537i \(-0.648923\pi\)
−0.450973 + 0.892537i \(0.648923\pi\)
\(564\) − 2490.07i − 0.185906i
\(565\) −4942.04 −0.367988
\(566\) − 37157.4i − 2.75944i
\(567\) 15604.6i 1.15579i
\(568\) 14144.8i 1.04490i
\(569\) 23785.4 1.75243 0.876217 0.481916i \(-0.160059\pi\)
0.876217 + 0.481916i \(0.160059\pi\)
\(570\) −24358.4 −1.78993
\(571\) 10878.3i 0.797271i 0.917110 + 0.398635i \(0.130516\pi\)
−0.917110 + 0.398635i \(0.869484\pi\)
\(572\) − 899.041i − 0.0657182i
\(573\) − 10212.1i − 0.744531i
\(574\) 23729.7 1.72554
\(575\) 1311.62i 0.0951274i
\(576\) 24623.1 1.78119
\(577\) 6315.86 0.455689 0.227845 0.973698i \(-0.426832\pi\)
0.227845 + 0.973698i \(0.426832\pi\)
\(578\) 0 0
\(579\) 1735.56 0.124572
\(580\) −47133.7 −3.37434
\(581\) − 36944.1i − 2.63804i
\(582\) 24424.7 1.73958
\(583\) − 338.459i − 0.0240438i
\(584\) − 9482.69i − 0.671912i
\(585\) − 7459.58i − 0.527206i
\(586\) 5474.72 0.385936
\(587\) −18192.1 −1.27916 −0.639581 0.768724i \(-0.720892\pi\)
−0.639581 + 0.768724i \(0.720892\pi\)
\(588\) 35787.7i 2.50996i
\(589\) 490.207i 0.0342931i
\(590\) − 13882.0i − 0.968663i
\(591\) −6222.63 −0.433104
\(592\) 5889.03i 0.408848i
\(593\) 9828.72 0.680636 0.340318 0.940310i \(-0.389465\pi\)
0.340318 + 0.940310i \(0.389465\pi\)
\(594\) 487.559 0.0336781
\(595\) 0 0
\(596\) 35668.5 2.45140
\(597\) 14244.4 0.976524
\(598\) − 7216.40i − 0.493479i
\(599\) 4662.57 0.318043 0.159021 0.987275i \(-0.449166\pi\)
0.159021 + 0.987275i \(0.449166\pi\)
\(600\) − 3532.01i − 0.240323i
\(601\) − 21658.6i − 1.47000i −0.678066 0.735001i \(-0.737182\pi\)
0.678066 0.735001i \(-0.262818\pi\)
\(602\) 9061.76i 0.613504i
\(603\) −29332.8 −1.98097
\(604\) −18558.3 −1.25021
\(605\) − 15736.6i − 1.05750i
\(606\) 30821.5i 2.06607i
\(607\) 25764.7i 1.72283i 0.507902 + 0.861415i \(0.330421\pi\)
−0.507902 + 0.861415i \(0.669579\pi\)
\(608\) −8067.76 −0.538143
\(609\) 57035.6i 3.79507i
\(610\) −20619.1 −1.36860
\(611\) −473.475 −0.0313498
\(612\) 0 0
\(613\) 16018.1 1.05541 0.527705 0.849428i \(-0.323053\pi\)
0.527705 + 0.849428i \(0.323053\pi\)
\(614\) −4044.23 −0.265817
\(615\) 17682.8i 1.15941i
\(616\) −2304.28 −0.150718
\(617\) 22250.3i 1.45180i 0.687798 + 0.725902i \(0.258578\pi\)
−0.687798 + 0.725902i \(0.741422\pi\)
\(618\) 67038.9i 4.36360i
\(619\) 3765.95i 0.244534i 0.992497 + 0.122267i \(0.0390164\pi\)
−0.992497 + 0.122267i \(0.960984\pi\)
\(620\) −1407.96 −0.0912018
\(621\) 2478.74 0.160175
\(622\) − 32674.9i − 2.10634i
\(623\) 12698.8i 0.816642i
\(624\) 2516.82i 0.161464i
\(625\) −17463.2 −1.11765
\(626\) 16080.1i 1.02666i
\(627\) −1419.47 −0.0904120
\(628\) −34494.5 −2.19185
\(629\) 0 0
\(630\) −45395.7 −2.87080
\(631\) 20806.5 1.31267 0.656334 0.754470i \(-0.272106\pi\)
0.656334 + 0.754470i \(0.272106\pi\)
\(632\) − 25935.7i − 1.63239i
\(633\) 8414.96 0.528380
\(634\) 9651.60i 0.604596i
\(635\) 7103.88i 0.443951i
\(636\) 11002.0i 0.685937i
\(637\) 6804.85 0.423262
\(638\) −4336.56 −0.269100
\(639\) 16238.8i 1.00532i
\(640\) − 30498.4i − 1.88368i
\(641\) 2439.58i 0.150324i 0.997171 + 0.0751620i \(0.0239474\pi\)
−0.997171 + 0.0751620i \(0.976053\pi\)
\(642\) 1169.58 0.0719000
\(643\) − 19320.1i − 1.18493i −0.805595 0.592466i \(-0.798154\pi\)
0.805595 0.592466i \(-0.201846\pi\)
\(644\) −27815.4 −1.70199
\(645\) −6752.60 −0.412222
\(646\) 0 0
\(647\) −14067.1 −0.854766 −0.427383 0.904071i \(-0.640564\pi\)
−0.427383 + 0.904071i \(0.640564\pi\)
\(648\) 16243.2 0.984712
\(649\) − 808.963i − 0.0489285i
\(650\) −1594.60 −0.0962238
\(651\) 1703.75i 0.102573i
\(652\) − 27110.9i − 1.62844i
\(653\) − 15893.7i − 0.952478i −0.879316 0.476239i \(-0.842000\pi\)
0.879316 0.476239i \(-0.158000\pi\)
\(654\) 18844.8 1.12674
\(655\) 1451.77 0.0866033
\(656\) − 3199.11i − 0.190403i
\(657\) − 10886.5i − 0.646459i
\(658\) 2881.36i 0.170710i
\(659\) −9653.54 −0.570635 −0.285318 0.958433i \(-0.592099\pi\)
−0.285318 + 0.958433i \(0.592099\pi\)
\(660\) − 4076.98i − 0.240449i
\(661\) −5389.06 −0.317111 −0.158555 0.987350i \(-0.550684\pi\)
−0.158555 + 0.987350i \(0.550684\pi\)
\(662\) 42169.7 2.47579
\(663\) 0 0
\(664\) −38456.0 −2.24757
\(665\) 17852.5 1.04104
\(666\) 52201.7i 3.03720i
\(667\) −22047.0 −1.27986
\(668\) 30119.1i 1.74453i
\(669\) − 4340.30i − 0.250831i
\(670\) 52309.9i 3.01628i
\(671\) −1201.57 −0.0691297
\(672\) −28040.1 −1.60963
\(673\) 3032.18i 0.173673i 0.996223 + 0.0868366i \(0.0276758\pi\)
−0.996223 + 0.0868366i \(0.972324\pi\)
\(674\) − 954.386i − 0.0545424i
\(675\) − 547.726i − 0.0312326i
\(676\) −24807.7 −1.41145
\(677\) − 22029.2i − 1.25059i −0.780388 0.625295i \(-0.784979\pi\)
0.780388 0.625295i \(-0.215021\pi\)
\(678\) 14780.4 0.837222
\(679\) −17901.1 −1.01175
\(680\) 0 0
\(681\) −16076.3 −0.904618
\(682\) −129.540 −0.00727326
\(683\) − 9040.72i − 0.506491i −0.967402 0.253246i \(-0.918502\pi\)
0.967402 0.253246i \(-0.0814980\pi\)
\(684\) 24741.8 1.38308
\(685\) 10694.3i 0.596506i
\(686\) 443.023i 0.0246570i
\(687\) 33085.9i 1.83742i
\(688\) 1221.65 0.0676964
\(689\) 2091.97 0.115672
\(690\) − 32725.0i − 1.80553i
\(691\) 22863.5i 1.25871i 0.777118 + 0.629355i \(0.216681\pi\)
−0.777118 + 0.629355i \(0.783319\pi\)
\(692\) 43003.1i 2.36233i
\(693\) −2645.41 −0.145008
\(694\) 668.288i 0.0365531i
\(695\) −25188.7 −1.37477
\(696\) 59369.7 3.23334
\(697\) 0 0
\(698\) −18677.8 −1.01284
\(699\) −34467.6 −1.86507
\(700\) 6146.34i 0.331871i
\(701\) 1753.00 0.0944507 0.0472253 0.998884i \(-0.484962\pi\)
0.0472253 + 0.998884i \(0.484962\pi\)
\(702\) 3013.54i 0.162021i
\(703\) − 20529.1i − 1.10138i
\(704\) − 2558.90i − 0.136992i
\(705\) −2147.12 −0.114702
\(706\) 27138.2 1.44668
\(707\) − 22589.3i − 1.20164i
\(708\) 26296.2i 1.39587i
\(709\) 11547.0i 0.611645i 0.952089 + 0.305823i \(0.0989315\pi\)
−0.952089 + 0.305823i \(0.901069\pi\)
\(710\) 28959.2 1.53073
\(711\) − 29775.3i − 1.57055i
\(712\) 13218.5 0.695765
\(713\) −658.582 −0.0345920
\(714\) 0 0
\(715\) −775.218 −0.0405476
\(716\) −11196.4 −0.584399
\(717\) − 40445.6i − 2.10665i
\(718\) −22867.7 −1.18860
\(719\) − 10289.8i − 0.533720i −0.963735 0.266860i \(-0.914014\pi\)
0.963735 0.266860i \(-0.0859861\pi\)
\(720\) 6119.99i 0.316776i
\(721\) − 49133.4i − 2.53790i
\(722\) 16678.2 0.859695
\(723\) −10444.0 −0.537231
\(724\) 46386.2i 2.38112i
\(725\) 4871.72i 0.249560i
\(726\) 47064.2i 2.40595i
\(727\) 2950.10 0.150499 0.0752497 0.997165i \(-0.476025\pi\)
0.0752497 + 0.997165i \(0.476025\pi\)
\(728\) − 14242.5i − 0.725083i
\(729\) 25275.9 1.28415
\(730\) −19414.2 −0.984320
\(731\) 0 0
\(732\) 39058.3 1.97218
\(733\) −24348.2 −1.22691 −0.613453 0.789731i \(-0.710220\pi\)
−0.613453 + 0.789731i \(0.710220\pi\)
\(734\) 2467.15i 0.124065i
\(735\) 30858.7 1.54863
\(736\) − 10838.8i − 0.542833i
\(737\) 3048.33i 0.152357i
\(738\) − 28357.6i − 1.41444i
\(739\) 29233.5 1.45517 0.727585 0.686017i \(-0.240642\pi\)
0.727585 + 0.686017i \(0.240642\pi\)
\(740\) 58963.1 2.92909
\(741\) − 8773.59i − 0.434961i
\(742\) − 12730.8i − 0.629868i
\(743\) 15340.6i 0.757457i 0.925508 + 0.378729i \(0.123639\pi\)
−0.925508 + 0.378729i \(0.876361\pi\)
\(744\) 1773.47 0.0873908
\(745\) − 30755.9i − 1.51250i
\(746\) 47242.9 2.31861
\(747\) −44149.2 −2.16243
\(748\) 0 0
\(749\) −857.197 −0.0418175
\(750\) 45863.5 2.23293
\(751\) 39862.6i 1.93689i 0.249223 + 0.968446i \(0.419825\pi\)
−0.249223 + 0.968446i \(0.580175\pi\)
\(752\) 388.448 0.0188368
\(753\) 42328.3i 2.04851i
\(754\) − 26803.7i − 1.29461i
\(755\) 16002.3i 0.771369i
\(756\) 11615.6 0.558802
\(757\) −26375.1 −1.26634 −0.633169 0.774013i \(-0.718246\pi\)
−0.633169 + 0.774013i \(0.718246\pi\)
\(758\) − 3407.17i − 0.163264i
\(759\) − 1907.03i − 0.0912000i
\(760\) − 18583.1i − 0.886946i
\(761\) 7848.63 0.373867 0.186933 0.982373i \(-0.440145\pi\)
0.186933 + 0.982373i \(0.440145\pi\)
\(762\) − 21245.9i − 1.01005i
\(763\) −13811.5 −0.655322
\(764\) 18498.1 0.875967
\(765\) 0 0
\(766\) −7511.78 −0.354323
\(767\) 5000.10 0.235389
\(768\) 43065.8i 2.02344i
\(769\) 31818.9 1.49209 0.746046 0.665895i \(-0.231950\pi\)
0.746046 + 0.665895i \(0.231950\pi\)
\(770\) 4717.63i 0.220794i
\(771\) − 1479.83i − 0.0691242i
\(772\) 3143.78i 0.146564i
\(773\) 29559.8 1.37541 0.687706 0.725990i \(-0.258618\pi\)
0.687706 + 0.725990i \(0.258618\pi\)
\(774\) 10829.0 0.502896
\(775\) 145.527i 0.00674512i
\(776\) 18633.6i 0.861996i
\(777\) − 71350.2i − 3.29430i
\(778\) 45891.2 2.11475
\(779\) 11152.0i 0.512917i
\(780\) 25199.3 1.15677
\(781\) 1687.58 0.0773193
\(782\) 0 0
\(783\) 9206.75 0.420208
\(784\) −5582.84 −0.254320
\(785\) 29743.6i 1.35235i
\(786\) −4341.86 −0.197034
\(787\) − 28038.7i − 1.26998i −0.772521 0.634989i \(-0.781005\pi\)
0.772521 0.634989i \(-0.218995\pi\)
\(788\) − 11271.6i − 0.509563i
\(789\) − 10267.1i − 0.463269i
\(790\) −53099.2 −2.39137
\(791\) −10832.6 −0.486934
\(792\) 2753.67i 0.123545i
\(793\) − 7426.75i − 0.332574i
\(794\) 13438.7i 0.600659i
\(795\) 9486.68 0.423217
\(796\) 25802.3i 1.14892i
\(797\) −5320.45 −0.236462 −0.118231 0.992986i \(-0.537722\pi\)
−0.118231 + 0.992986i \(0.537722\pi\)
\(798\) −53392.2 −2.36850
\(799\) 0 0
\(800\) −2395.05 −0.105847
\(801\) 15175.4 0.669409
\(802\) − 30437.7i − 1.34014i
\(803\) −1131.35 −0.0497194
\(804\) − 99089.4i − 4.34653i
\(805\) 23984.4i 1.05011i
\(806\) − 800.673i − 0.0349907i
\(807\) −23523.6 −1.02611
\(808\) −23513.8 −1.02378
\(809\) − 30934.0i − 1.34435i −0.740390 0.672177i \(-0.765359\pi\)
0.740390 0.672177i \(-0.234641\pi\)
\(810\) − 33255.3i − 1.44256i
\(811\) − 40364.5i − 1.74771i −0.486189 0.873854i \(-0.661613\pi\)
0.486189 0.873854i \(-0.338387\pi\)
\(812\) −103314. −4.46504
\(813\) 3221.10i 0.138953i
\(814\) 5424.94 0.233592
\(815\) −23376.9 −1.00473
\(816\) 0 0
\(817\) −4258.66 −0.182364
\(818\) 41434.8 1.77107
\(819\) − 16350.9i − 0.697616i
\(820\) −32030.6 −1.36409
\(821\) 19799.7i 0.841672i 0.907137 + 0.420836i \(0.138263\pi\)
−0.907137 + 0.420836i \(0.861737\pi\)
\(822\) − 31983.8i − 1.35713i
\(823\) − 18756.4i − 0.794419i −0.917728 0.397210i \(-0.869979\pi\)
0.917728 0.397210i \(-0.130021\pi\)
\(824\) −51144.1 −2.16225
\(825\) −421.395 −0.0177832
\(826\) − 30428.4i − 1.28177i
\(827\) − 20958.0i − 0.881234i −0.897695 0.440617i \(-0.854760\pi\)
0.897695 0.440617i \(-0.145240\pi\)
\(828\) 33240.0i 1.39513i
\(829\) −31320.3 −1.31218 −0.656091 0.754682i \(-0.727791\pi\)
−0.656091 + 0.754682i \(0.727791\pi\)
\(830\) 78732.4i 3.29258i
\(831\) −63023.7 −2.63089
\(832\) 15816.2 0.659049
\(833\) 0 0
\(834\) 75333.0 3.12778
\(835\) 25970.8 1.07636
\(836\) − 2571.23i − 0.106373i
\(837\) 275.021 0.0113574
\(838\) − 4715.82i − 0.194398i
\(839\) 30290.6i 1.24642i 0.782053 + 0.623212i \(0.214173\pi\)
−0.782053 + 0.623212i \(0.785827\pi\)
\(840\) − 64586.8i − 2.65292i
\(841\) −57499.9 −2.35762
\(842\) 15198.5 0.622060
\(843\) 25346.1i 1.03555i
\(844\) 15242.8i 0.621659i
\(845\) 21391.0i 0.870855i
\(846\) 3443.29 0.139933
\(847\) − 34493.7i − 1.39931i
\(848\) −1716.29 −0.0695021
\(849\) 60692.2 2.45342
\(850\) 0 0
\(851\) 27580.3 1.11098
\(852\) −54856.6 −2.20582
\(853\) − 21111.8i − 0.847425i −0.905797 0.423712i \(-0.860727\pi\)
0.905797 0.423712i \(-0.139273\pi\)
\(854\) −45195.9 −1.81097
\(855\) − 21334.2i − 0.853348i
\(856\) 892.277i 0.0356278i
\(857\) 39983.0i 1.59369i 0.604184 + 0.796845i \(0.293499\pi\)
−0.604184 + 0.796845i \(0.706501\pi\)
\(858\) 2318.48 0.0922512
\(859\) 39503.3 1.56907 0.784537 0.620082i \(-0.212901\pi\)
0.784537 + 0.620082i \(0.212901\pi\)
\(860\) − 12231.6i − 0.484995i
\(861\) 38759.6i 1.53418i
\(862\) − 10989.2i − 0.434217i
\(863\) 26019.9 1.02634 0.513168 0.858288i \(-0.328472\pi\)
0.513168 + 0.858288i \(0.328472\pi\)
\(864\) 4526.26i 0.178225i
\(865\) 37080.4 1.45754
\(866\) −27376.1 −1.07422
\(867\) 0 0
\(868\) −3086.17 −0.120681
\(869\) −3094.33 −0.120791
\(870\) − 121550.i − 4.73669i
\(871\) −18841.4 −0.732968
\(872\) 14376.7i 0.558323i
\(873\) 21392.2i 0.829343i
\(874\) − 20638.7i − 0.798757i
\(875\) −33613.8 −1.29869
\(876\) 36775.9 1.41843
\(877\) − 15038.3i − 0.579027i −0.957174 0.289514i \(-0.906506\pi\)
0.957174 0.289514i \(-0.0934935\pi\)
\(878\) − 13519.5i − 0.519660i
\(879\) 8942.30i 0.343136i
\(880\) 636.004 0.0243633
\(881\) − 18334.3i − 0.701133i −0.936538 0.350567i \(-0.885989\pi\)
0.936538 0.350567i \(-0.114011\pi\)
\(882\) −49487.5 −1.88927
\(883\) 26659.5 1.01604 0.508020 0.861345i \(-0.330378\pi\)
0.508020 + 0.861345i \(0.330378\pi\)
\(884\) 0 0
\(885\) 22674.5 0.861237
\(886\) 38570.1 1.46251
\(887\) 11473.7i 0.434327i 0.976135 + 0.217163i \(0.0696804\pi\)
−0.976135 + 0.217163i \(0.930320\pi\)
\(888\) −74270.1 −2.80669
\(889\) 15571.3i 0.587450i
\(890\) − 27062.7i − 1.01926i
\(891\) − 1937.94i − 0.0728656i
\(892\) 7862.01 0.295111
\(893\) −1354.12 −0.0507436
\(894\) 91983.0i 3.44113i
\(895\) 9654.36i 0.360569i
\(896\) − 66850.7i − 2.49255i
\(897\) 11787.1 0.438752
\(898\) 72344.6i 2.68838i
\(899\) −2446.16 −0.0907498
\(900\) 7345.03 0.272038
\(901\) 0 0
\(902\) −2946.99 −0.108785
\(903\) −14801.3 −0.545466
\(904\) 11276.0i 0.414860i
\(905\) 39997.5 1.46913
\(906\) − 47858.8i − 1.75497i
\(907\) 20361.6i 0.745421i 0.927948 + 0.372710i \(0.121571\pi\)
−0.927948 + 0.372710i \(0.878429\pi\)
\(908\) − 29120.5i − 1.06432i
\(909\) −26994.8 −0.984995
\(910\) −29159.1 −1.06221
\(911\) 19261.9i 0.700523i 0.936652 + 0.350262i \(0.113907\pi\)
−0.936652 + 0.350262i \(0.886093\pi\)
\(912\) 7198.03i 0.261349i
\(913\) 4588.09i 0.166313i
\(914\) −75000.3 −2.71421
\(915\) − 33678.9i − 1.21682i
\(916\) −59931.7 −2.16179
\(917\) 3182.18 0.114596
\(918\) 0 0
\(919\) −21191.8 −0.760666 −0.380333 0.924850i \(-0.624191\pi\)
−0.380333 + 0.924850i \(0.624191\pi\)
\(920\) 24965.9 0.894677
\(921\) − 6605.76i − 0.236338i
\(922\) 65697.0 2.34665
\(923\) 10430.7i 0.371973i
\(924\) − 8936.49i − 0.318170i
\(925\) − 6094.40i − 0.216630i
\(926\) 37703.4 1.33802
\(927\) −58715.6 −2.08034
\(928\) − 40258.5i − 1.42409i
\(929\) − 40815.0i − 1.44144i −0.693227 0.720719i \(-0.743812\pi\)
0.693227 0.720719i \(-0.256188\pi\)
\(930\) − 3630.90i − 0.128024i
\(931\) 19461.7 0.685102
\(932\) − 62434.5i − 2.19432i
\(933\) 53370.4 1.87274
\(934\) 40090.9 1.40451
\(935\) 0 0
\(936\) −17020.1 −0.594358
\(937\) 38439.1 1.34018 0.670092 0.742278i \(-0.266255\pi\)
0.670092 + 0.742278i \(0.266255\pi\)
\(938\) 114660.i 3.99124i
\(939\) −26264.9 −0.912804
\(940\) − 3889.28i − 0.134951i
\(941\) 2244.08i 0.0777415i 0.999244 + 0.0388708i \(0.0123761\pi\)
−0.999244 + 0.0388708i \(0.987624\pi\)
\(942\) − 88955.6i − 3.07678i
\(943\) −14982.5 −0.517388
\(944\) −4102.18 −0.141435
\(945\) − 10015.8i − 0.344776i
\(946\) − 1125.38i − 0.0386778i
\(947\) − 42289.0i − 1.45112i −0.688160 0.725559i \(-0.741581\pi\)
0.688160 0.725559i \(-0.258419\pi\)
\(948\) 100584. 3.44602
\(949\) − 6992.76i − 0.239193i
\(950\) −4560.51 −0.155750
\(951\) −15764.7 −0.537546
\(952\) 0 0
\(953\) 37426.2 1.27214 0.636072 0.771629i \(-0.280558\pi\)
0.636072 + 0.771629i \(0.280558\pi\)
\(954\) −15213.6 −0.516309
\(955\) − 15950.4i − 0.540464i
\(956\) 73263.0 2.47855
\(957\) − 7083.25i − 0.239257i
\(958\) 29527.0i 0.995799i
\(959\) 23441.2i 0.789317i
\(960\) 71723.5 2.41132
\(961\) 29717.9 0.997547
\(962\) 33530.8i 1.12378i
\(963\) 1024.37i 0.0342782i
\(964\) − 18918.3i − 0.632072i
\(965\) 2710.80 0.0904286
\(966\) − 71731.1i − 2.38914i
\(967\) −1088.56 −0.0362003 −0.0181001 0.999836i \(-0.505762\pi\)
−0.0181001 + 0.999836i \(0.505762\pi\)
\(968\) −35905.4 −1.19219
\(969\) 0 0
\(970\) 38149.3 1.26278
\(971\) −39506.5 −1.30569 −0.652845 0.757491i \(-0.726425\pi\)
−0.652845 + 0.757491i \(0.726425\pi\)
\(972\) 75000.6i 2.47494i
\(973\) −55212.1 −1.81914
\(974\) 34270.8i 1.12742i
\(975\) − 2604.59i − 0.0855525i
\(976\) 6093.05i 0.199830i
\(977\) 43326.8 1.41878 0.709389 0.704817i \(-0.248971\pi\)
0.709389 + 0.704817i \(0.248971\pi\)
\(978\) 69914.4 2.28591
\(979\) − 1577.07i − 0.0514845i
\(980\) 55897.3i 1.82202i
\(981\) 16505.1i 0.537174i
\(982\) 31169.3 1.01288
\(983\) 10664.1i 0.346014i 0.984921 + 0.173007i \(0.0553483\pi\)
−0.984921 + 0.173007i \(0.944652\pi\)
\(984\) 40345.9 1.30709
\(985\) −9719.22 −0.314396
\(986\) 0 0
\(987\) −4706.35 −0.151778
\(988\) 15892.4 0.511747
\(989\) − 5721.42i − 0.183954i
\(990\) 5637.69 0.180987
\(991\) 15461.4i 0.495609i 0.968810 + 0.247804i \(0.0797090\pi\)
−0.968810 + 0.247804i \(0.920291\pi\)
\(992\) − 1202.59i − 0.0384902i
\(993\) 68879.2i 2.20122i
\(994\) 63476.7 2.02551
\(995\) 22248.6 0.708871
\(996\) − 149141.i − 4.74469i
\(997\) − 46061.1i − 1.46316i −0.681756 0.731579i \(-0.738784\pi\)
0.681756 0.731579i \(-0.261216\pi\)
\(998\) 83713.7i 2.65522i
\(999\) −11517.4 −0.364760
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.4.b.b.288.1 6
17.4 even 4 17.4.a.b.1.3 3
17.13 even 4 289.4.a.b.1.3 3
17.16 even 2 inner 289.4.b.b.288.2 6
51.38 odd 4 153.4.a.g.1.1 3
68.55 odd 4 272.4.a.h.1.3 3
85.4 even 4 425.4.a.g.1.1 3
85.38 odd 4 425.4.b.f.324.2 6
85.72 odd 4 425.4.b.f.324.5 6
119.55 odd 4 833.4.a.d.1.3 3
136.21 even 4 1088.4.a.v.1.3 3
136.123 odd 4 1088.4.a.x.1.1 3
187.21 odd 4 2057.4.a.e.1.1 3
204.191 even 4 2448.4.a.bi.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.4.a.b.1.3 3 17.4 even 4
153.4.a.g.1.1 3 51.38 odd 4
272.4.a.h.1.3 3 68.55 odd 4
289.4.a.b.1.3 3 17.13 even 4
289.4.b.b.288.1 6 1.1 even 1 trivial
289.4.b.b.288.2 6 17.16 even 2 inner
425.4.a.g.1.1 3 85.4 even 4
425.4.b.f.324.2 6 85.38 odd 4
425.4.b.f.324.5 6 85.72 odd 4
833.4.a.d.1.3 3 119.55 odd 4
1088.4.a.v.1.3 3 136.21 even 4
1088.4.a.x.1.1 3 136.123 odd 4
2057.4.a.e.1.1 3 187.21 odd 4
2448.4.a.bi.1.3 3 204.191 even 4