Properties

Label 2890.2.b.d
Level 28902890
Weight 22
Character orbit 2890.b
Analytic conductor 23.07723.077
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2890,2,Mod(2311,2890)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2890, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2890.2311");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2890=25172 2890 = 2 \cdot 5 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2890.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.076766184223.0767661842
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+3iq3+q4iq5+3iq62iq7+q86q9iq10+4iq11+3iq123q132iq14+3q15+q166q183q19iq20+6q21+24iq99+O(q100) q + q^{2} + 3 i q^{3} + q^{4} - i q^{5} + 3 i q^{6} - 2 i q^{7} + q^{8} - 6 q^{9} - i q^{10} + 4 i q^{11} + 3 i q^{12} - 3 q^{13} - 2 i q^{14} + 3 q^{15} + q^{16} - 6 q^{18} - 3 q^{19} - i q^{20} + 6 q^{21} + \cdots - 24 i q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+2q4+2q812q96q13+6q15+2q1612q186q19+12q212q256q26+6q30+2q3224q334q3512q366q38++6q98+O(q100) 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 12 q^{9} - 6 q^{13} + 6 q^{15} + 2 q^{16} - 12 q^{18} - 6 q^{19} + 12 q^{21} - 2 q^{25} - 6 q^{26} + 6 q^{30} + 2 q^{32} - 24 q^{33} - 4 q^{35} - 12 q^{36} - 6 q^{38}+ \cdots + 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2890Z)×\left(\mathbb{Z}/2890\mathbb{Z}\right)^\times.

nn 581581 11571157
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2311.1
1.00000i
1.00000i
1.00000 3.00000i 1.00000 1.00000i 3.00000i 2.00000i 1.00000 −6.00000 1.00000i
2311.2 1.00000 3.00000i 1.00000 1.00000i 3.00000i 2.00000i 1.00000 −6.00000 1.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2890.2.b.d 2
17.b even 2 1 inner 2890.2.b.d 2
17.c even 4 1 170.2.a.d 1
17.c even 4 1 2890.2.a.b 1
51.f odd 4 1 1530.2.a.o 1
68.f odd 4 1 1360.2.a.a 1
85.f odd 4 1 850.2.c.a 2
85.i odd 4 1 850.2.c.a 2
85.j even 4 1 850.2.a.f 1
119.f odd 4 1 8330.2.a.a 1
136.i even 4 1 5440.2.a.b 1
136.j odd 4 1 5440.2.a.y 1
255.i odd 4 1 7650.2.a.l 1
340.n odd 4 1 6800.2.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.d 1 17.c even 4 1
850.2.a.f 1 85.j even 4 1
850.2.c.a 2 85.f odd 4 1
850.2.c.a 2 85.i odd 4 1
1360.2.a.a 1 68.f odd 4 1
1530.2.a.o 1 51.f odd 4 1
2890.2.a.b 1 17.c even 4 1
2890.2.b.d 2 1.a even 1 1 trivial
2890.2.b.d 2 17.b even 2 1 inner
5440.2.a.b 1 136.i even 4 1
5440.2.a.y 1 136.j odd 4 1
6800.2.a.z 1 340.n odd 4 1
7650.2.a.l 1 255.i odd 4 1
8330.2.a.a 1 119.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2890,[χ])S_{2}^{\mathrm{new}}(2890, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T112+16 T_{11}^{2} + 16 Copy content Toggle raw display
T13+3 T_{13} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)2 (T - 1)^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2+1 T^{2} + 1 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2+16 T^{2} + 16 Copy content Toggle raw display
1313 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
2323 T2+36 T^{2} + 36 Copy content Toggle raw display
2929 T2+81 T^{2} + 81 Copy content Toggle raw display
3131 T2+9 T^{2} + 9 Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 T2+36 T^{2} + 36 Copy content Toggle raw display
4343 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4747 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
5353 (T9)2 (T - 9)^{2} Copy content Toggle raw display
5959 (T+15)2 (T + 15)^{2} Copy content Toggle raw display
6161 T2+49 T^{2} + 49 Copy content Toggle raw display
6767 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
7171 T2+81 T^{2} + 81 Copy content Toggle raw display
7373 T2+9 T^{2} + 9 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
8989 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
9797 T2+49 T^{2} + 49 Copy content Toggle raw display
show more
show less