Properties

Label 2890.2.b.d
Level $2890$
Weight $2$
Character orbit 2890.b
Analytic conductor $23.077$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2890,2,Mod(2311,2890)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2890, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2890.2311");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + 3 i q^{3} + q^{4} - i q^{5} + 3 i q^{6} - 2 i q^{7} + q^{8} - 6 q^{9} - i q^{10} + 4 i q^{11} + 3 i q^{12} - 3 q^{13} - 2 i q^{14} + 3 q^{15} + q^{16} - 6 q^{18} - 3 q^{19} - i q^{20} + 6 q^{21} + \cdots - 24 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 12 q^{9} - 6 q^{13} + 6 q^{15} + 2 q^{16} - 12 q^{18} - 6 q^{19} + 12 q^{21} - 2 q^{25} - 6 q^{26} + 6 q^{30} + 2 q^{32} - 24 q^{33} - 4 q^{35} - 12 q^{36} - 6 q^{38}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2890\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2311.1
1.00000i
1.00000i
1.00000 3.00000i 1.00000 1.00000i 3.00000i 2.00000i 1.00000 −6.00000 1.00000i
2311.2 1.00000 3.00000i 1.00000 1.00000i 3.00000i 2.00000i 1.00000 −6.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2890.2.b.d 2
17.b even 2 1 inner 2890.2.b.d 2
17.c even 4 1 170.2.a.d 1
17.c even 4 1 2890.2.a.b 1
51.f odd 4 1 1530.2.a.o 1
68.f odd 4 1 1360.2.a.a 1
85.f odd 4 1 850.2.c.a 2
85.i odd 4 1 850.2.c.a 2
85.j even 4 1 850.2.a.f 1
119.f odd 4 1 8330.2.a.a 1
136.i even 4 1 5440.2.a.b 1
136.j odd 4 1 5440.2.a.y 1
255.i odd 4 1 7650.2.a.l 1
340.n odd 4 1 6800.2.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.d 1 17.c even 4 1
850.2.a.f 1 85.j even 4 1
850.2.c.a 2 85.f odd 4 1
850.2.c.a 2 85.i odd 4 1
1360.2.a.a 1 68.f odd 4 1
1530.2.a.o 1 51.f odd 4 1
2890.2.a.b 1 17.c even 4 1
2890.2.b.d 2 1.a even 1 1 trivial
2890.2.b.d 2 17.b even 2 1 inner
5440.2.a.b 1 136.i even 4 1
5440.2.a.y 1 136.j odd 4 1
6800.2.a.z 1 340.n odd 4 1
7650.2.a.l 1 255.i odd 4 1
8330.2.a.a 1 119.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2890, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 3)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 81 \) Copy content Toggle raw display
$31$ \( T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( T^{2} + 36 \) Copy content Toggle raw display
$43$ \( (T + 6)^{2} \) Copy content Toggle raw display
$47$ \( (T + 13)^{2} \) Copy content Toggle raw display
$53$ \( (T - 9)^{2} \) Copy content Toggle raw display
$59$ \( (T + 15)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 49 \) Copy content Toggle raw display
$67$ \( (T + 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 81 \) Copy content Toggle raw display
$73$ \( T^{2} + 9 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( (T + 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 49 \) Copy content Toggle raw display
show more
show less