Properties

Label 2900.2.a.j.1.1
Level $2900$
Weight $2$
Character 2900.1
Self dual yes
Analytic conductor $23.157$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2900,2,Mod(1,2900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1566165862\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.3076177.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 11x^{3} - x^{2} + 29x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.67880\) of defining polynomial
Character \(\chi\) \(=\) 2900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.67880 q^{3} +1.65303 q^{7} +4.17598 q^{9} +4.63554 q^{11} -3.45956 q^{13} -1.49718 q^{17} -5.51965 q^{19} -4.42815 q^{21} -6.60977 q^{23} -3.15021 q^{27} +1.00000 q^{29} +0.464244 q^{31} -12.4177 q^{33} +4.53358 q^{37} +9.26748 q^{39} +7.43878 q^{41} +10.5890 q^{43} -5.54074 q^{47} -4.26748 q^{49} +4.01064 q^{51} -11.9463 q^{53} +14.7861 q^{57} +3.91553 q^{59} -2.71641 q^{61} +6.90302 q^{63} +7.17033 q^{67} +17.7063 q^{69} +4.81152 q^{71} -3.54609 q^{73} +7.66270 q^{77} +1.74783 q^{79} -4.08915 q^{81} +6.23607 q^{83} -2.67880 q^{87} -2.66696 q^{89} -5.71877 q^{91} -1.24362 q^{93} -14.9220 q^{97} +19.3579 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{7} + 7 q^{9} - 8 q^{13} - 7 q^{17} + 2 q^{19} - 13 q^{21} - 11 q^{23} - 3 q^{27} + 5 q^{29} - 7 q^{31} - 15 q^{33} - 18 q^{37} + 12 q^{39} - 11 q^{41} - 8 q^{43} + 3 q^{47} + 13 q^{49} - 19 q^{51}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.67880 −1.54661 −0.773303 0.634036i \(-0.781397\pi\)
−0.773303 + 0.634036i \(0.781397\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.65303 0.624788 0.312394 0.949953i \(-0.398869\pi\)
0.312394 + 0.949953i \(0.398869\pi\)
\(8\) 0 0
\(9\) 4.17598 1.39199
\(10\) 0 0
\(11\) 4.63554 1.39767 0.698834 0.715284i \(-0.253703\pi\)
0.698834 + 0.715284i \(0.253703\pi\)
\(12\) 0 0
\(13\) −3.45956 −0.959510 −0.479755 0.877402i \(-0.659275\pi\)
−0.479755 + 0.877402i \(0.659275\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.49718 −0.363118 −0.181559 0.983380i \(-0.558114\pi\)
−0.181559 + 0.983380i \(0.558114\pi\)
\(18\) 0 0
\(19\) −5.51965 −1.26630 −0.633148 0.774031i \(-0.718237\pi\)
−0.633148 + 0.774031i \(0.718237\pi\)
\(20\) 0 0
\(21\) −4.42815 −0.966301
\(22\) 0 0
\(23\) −6.60977 −1.37823 −0.689116 0.724651i \(-0.742001\pi\)
−0.689116 + 0.724651i \(0.742001\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.15021 −0.606258
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 0.464244 0.0833807 0.0416904 0.999131i \(-0.486726\pi\)
0.0416904 + 0.999131i \(0.486726\pi\)
\(32\) 0 0
\(33\) −12.4177 −2.16164
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.53358 0.745316 0.372658 0.927969i \(-0.378446\pi\)
0.372658 + 0.927969i \(0.378446\pi\)
\(38\) 0 0
\(39\) 9.26748 1.48399
\(40\) 0 0
\(41\) 7.43878 1.16174 0.580871 0.813996i \(-0.302712\pi\)
0.580871 + 0.813996i \(0.302712\pi\)
\(42\) 0 0
\(43\) 10.5890 1.61481 0.807403 0.590001i \(-0.200873\pi\)
0.807403 + 0.590001i \(0.200873\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.54074 −0.808200 −0.404100 0.914715i \(-0.632415\pi\)
−0.404100 + 0.914715i \(0.632415\pi\)
\(48\) 0 0
\(49\) −4.26748 −0.609641
\(50\) 0 0
\(51\) 4.01064 0.561601
\(52\) 0 0
\(53\) −11.9463 −1.64095 −0.820474 0.571683i \(-0.806291\pi\)
−0.820474 + 0.571683i \(0.806291\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 14.7861 1.95846
\(58\) 0 0
\(59\) 3.91553 0.509759 0.254879 0.966973i \(-0.417964\pi\)
0.254879 + 0.966973i \(0.417964\pi\)
\(60\) 0 0
\(61\) −2.71641 −0.347801 −0.173901 0.984763i \(-0.555637\pi\)
−0.173901 + 0.984763i \(0.555637\pi\)
\(62\) 0 0
\(63\) 6.90302 0.869699
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.17033 0.875995 0.437997 0.898976i \(-0.355688\pi\)
0.437997 + 0.898976i \(0.355688\pi\)
\(68\) 0 0
\(69\) 17.7063 2.13158
\(70\) 0 0
\(71\) 4.81152 0.571022 0.285511 0.958375i \(-0.407837\pi\)
0.285511 + 0.958375i \(0.407837\pi\)
\(72\) 0 0
\(73\) −3.54609 −0.415038 −0.207519 0.978231i \(-0.566539\pi\)
−0.207519 + 0.978231i \(0.566539\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.66270 0.873245
\(78\) 0 0
\(79\) 1.74783 0.196646 0.0983232 0.995155i \(-0.468652\pi\)
0.0983232 + 0.995155i \(0.468652\pi\)
\(80\) 0 0
\(81\) −4.08915 −0.454350
\(82\) 0 0
\(83\) 6.23607 0.684497 0.342249 0.939609i \(-0.388812\pi\)
0.342249 + 0.939609i \(0.388812\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.67880 −0.287198
\(88\) 0 0
\(89\) −2.66696 −0.282697 −0.141349 0.989960i \(-0.545144\pi\)
−0.141349 + 0.989960i \(0.545144\pi\)
\(90\) 0 0
\(91\) −5.71877 −0.599490
\(92\) 0 0
\(93\) −1.24362 −0.128957
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.9220 −1.51510 −0.757551 0.652776i \(-0.773604\pi\)
−0.757551 + 0.652776i \(0.773604\pi\)
\(98\) 0 0
\(99\) 19.3579 1.94554
\(100\) 0 0
\(101\) −15.3265 −1.52504 −0.762521 0.646963i \(-0.776039\pi\)
−0.762521 + 0.646963i \(0.776039\pi\)
\(102\) 0 0
\(103\) −12.2618 −1.20819 −0.604097 0.796911i \(-0.706466\pi\)
−0.604097 + 0.796911i \(0.706466\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.73750 0.554665 0.277333 0.960774i \(-0.410550\pi\)
0.277333 + 0.960774i \(0.410550\pi\)
\(108\) 0 0
\(109\) 12.4341 1.19097 0.595485 0.803366i \(-0.296960\pi\)
0.595485 + 0.803366i \(0.296960\pi\)
\(110\) 0 0
\(111\) −12.1446 −1.15271
\(112\) 0 0
\(113\) −8.15021 −0.766707 −0.383354 0.923602i \(-0.625231\pi\)
−0.383354 + 0.923602i \(0.625231\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −14.4471 −1.33563
\(118\) 0 0
\(119\) −2.47488 −0.226872
\(120\) 0 0
\(121\) 10.4882 0.953476
\(122\) 0 0
\(123\) −19.9270 −1.79676
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −20.5184 −1.82072 −0.910359 0.413820i \(-0.864194\pi\)
−0.910359 + 0.413820i \(0.864194\pi\)
\(128\) 0 0
\(129\) −28.3658 −2.49747
\(130\) 0 0
\(131\) −11.3602 −0.992548 −0.496274 0.868166i \(-0.665299\pi\)
−0.496274 + 0.868166i \(0.665299\pi\)
\(132\) 0 0
\(133\) −9.12416 −0.791165
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.0251 −1.19825 −0.599123 0.800657i \(-0.704484\pi\)
−0.599123 + 0.800657i \(0.704484\pi\)
\(138\) 0 0
\(139\) 12.4481 1.05584 0.527919 0.849295i \(-0.322973\pi\)
0.527919 + 0.849295i \(0.322973\pi\)
\(140\) 0 0
\(141\) 14.8425 1.24997
\(142\) 0 0
\(143\) −16.0369 −1.34108
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.4317 0.942874
\(148\) 0 0
\(149\) −16.6545 −1.36439 −0.682193 0.731172i \(-0.738974\pi\)
−0.682193 + 0.731172i \(0.738974\pi\)
\(150\) 0 0
\(151\) −2.94227 −0.239438 −0.119719 0.992808i \(-0.538199\pi\)
−0.119719 + 0.992808i \(0.538199\pi\)
\(152\) 0 0
\(153\) −6.25217 −0.505458
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.11380 −0.408126 −0.204063 0.978958i \(-0.565415\pi\)
−0.204063 + 0.978958i \(0.565415\pi\)
\(158\) 0 0
\(159\) 32.0017 2.53790
\(160\) 0 0
\(161\) −10.9262 −0.861103
\(162\) 0 0
\(163\) 13.7096 1.07382 0.536908 0.843641i \(-0.319592\pi\)
0.536908 + 0.843641i \(0.319592\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.46068 −0.345178 −0.172589 0.984994i \(-0.555213\pi\)
−0.172589 + 0.984994i \(0.555213\pi\)
\(168\) 0 0
\(169\) −1.03142 −0.0793399
\(170\) 0 0
\(171\) −23.0499 −1.76267
\(172\) 0 0
\(173\) 0.207939 0.0158093 0.00790464 0.999969i \(-0.497484\pi\)
0.00790464 + 0.999969i \(0.497484\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.4889 −0.788396
\(178\) 0 0
\(179\) −5.65358 −0.422568 −0.211284 0.977425i \(-0.567765\pi\)
−0.211284 + 0.977425i \(0.567765\pi\)
\(180\) 0 0
\(181\) −8.81620 −0.655303 −0.327651 0.944799i \(-0.606257\pi\)
−0.327651 + 0.944799i \(0.606257\pi\)
\(182\) 0 0
\(183\) 7.27673 0.537911
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −6.94022 −0.507519
\(188\) 0 0
\(189\) −5.20740 −0.378782
\(190\) 0 0
\(191\) 2.38062 0.172256 0.0861279 0.996284i \(-0.472551\pi\)
0.0861279 + 0.996284i \(0.472551\pi\)
\(192\) 0 0
\(193\) 5.55935 0.400171 0.200085 0.979778i \(-0.435878\pi\)
0.200085 + 0.979778i \(0.435878\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.66270 −0.545945 −0.272972 0.962022i \(-0.588007\pi\)
−0.272972 + 0.962022i \(0.588007\pi\)
\(198\) 0 0
\(199\) −15.5700 −1.10373 −0.551863 0.833935i \(-0.686083\pi\)
−0.551863 + 0.833935i \(0.686083\pi\)
\(200\) 0 0
\(201\) −19.2079 −1.35482
\(202\) 0 0
\(203\) 1.65303 0.116020
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −27.6023 −1.91849
\(208\) 0 0
\(209\) −25.5866 −1.76986
\(210\) 0 0
\(211\) −13.9899 −0.963101 −0.481551 0.876418i \(-0.659926\pi\)
−0.481551 + 0.876418i \(0.659926\pi\)
\(212\) 0 0
\(213\) −12.8891 −0.883146
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.767411 0.0520952
\(218\) 0 0
\(219\) 9.49926 0.641900
\(220\) 0 0
\(221\) 5.17957 0.348416
\(222\) 0 0
\(223\) 19.6784 1.31777 0.658883 0.752245i \(-0.271029\pi\)
0.658883 + 0.752245i \(0.271029\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.1366 0.871906 0.435953 0.899969i \(-0.356411\pi\)
0.435953 + 0.899969i \(0.356411\pi\)
\(228\) 0 0
\(229\) −25.8328 −1.70708 −0.853539 0.521028i \(-0.825549\pi\)
−0.853539 + 0.521028i \(0.825549\pi\)
\(230\) 0 0
\(231\) −20.5268 −1.35057
\(232\) 0 0
\(233\) 23.3385 1.52895 0.764477 0.644651i \(-0.222997\pi\)
0.764477 + 0.644651i \(0.222997\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.68209 −0.304135
\(238\) 0 0
\(239\) 20.9792 1.35703 0.678516 0.734585i \(-0.262623\pi\)
0.678516 + 0.734585i \(0.262623\pi\)
\(240\) 0 0
\(241\) −13.2652 −0.854484 −0.427242 0.904137i \(-0.640515\pi\)
−0.427242 + 0.904137i \(0.640515\pi\)
\(242\) 0 0
\(243\) 20.4046 1.30896
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.0956 1.21502
\(248\) 0 0
\(249\) −16.7052 −1.05865
\(250\) 0 0
\(251\) 17.8379 1.12592 0.562958 0.826485i \(-0.309663\pi\)
0.562958 + 0.826485i \(0.309663\pi\)
\(252\) 0 0
\(253\) −30.6399 −1.92631
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.8238 1.67323 0.836613 0.547795i \(-0.184533\pi\)
0.836613 + 0.547795i \(0.184533\pi\)
\(258\) 0 0
\(259\) 7.49415 0.465664
\(260\) 0 0
\(261\) 4.17598 0.258486
\(262\) 0 0
\(263\) −5.27700 −0.325394 −0.162697 0.986676i \(-0.552019\pi\)
−0.162697 + 0.986676i \(0.552019\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.14425 0.437221
\(268\) 0 0
\(269\) 12.0629 0.735488 0.367744 0.929927i \(-0.380130\pi\)
0.367744 + 0.929927i \(0.380130\pi\)
\(270\) 0 0
\(271\) −14.5432 −0.883439 −0.441720 0.897153i \(-0.645631\pi\)
−0.441720 + 0.897153i \(0.645631\pi\)
\(272\) 0 0
\(273\) 15.3195 0.927175
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.961419 0.0577661 0.0288830 0.999583i \(-0.490805\pi\)
0.0288830 + 0.999583i \(0.490805\pi\)
\(278\) 0 0
\(279\) 1.93867 0.116065
\(280\) 0 0
\(281\) −28.2563 −1.68563 −0.842813 0.538206i \(-0.819102\pi\)
−0.842813 + 0.538206i \(0.819102\pi\)
\(282\) 0 0
\(283\) −1.94985 −0.115907 −0.0579533 0.998319i \(-0.518457\pi\)
−0.0579533 + 0.998319i \(0.518457\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.2965 0.725842
\(288\) 0 0
\(289\) −14.7585 −0.868145
\(290\) 0 0
\(291\) 39.9732 2.34327
\(292\) 0 0
\(293\) −13.6367 −0.796662 −0.398331 0.917242i \(-0.630410\pi\)
−0.398331 + 0.917242i \(0.630410\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −14.6029 −0.847347
\(298\) 0 0
\(299\) 22.8669 1.32243
\(300\) 0 0
\(301\) 17.5039 1.00891
\(302\) 0 0
\(303\) 41.0566 2.35864
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −9.05118 −0.516578 −0.258289 0.966068i \(-0.583159\pi\)
−0.258289 + 0.966068i \(0.583159\pi\)
\(308\) 0 0
\(309\) 32.8470 1.86860
\(310\) 0 0
\(311\) −6.63427 −0.376195 −0.188097 0.982150i \(-0.560232\pi\)
−0.188097 + 0.982150i \(0.560232\pi\)
\(312\) 0 0
\(313\) −17.0441 −0.963390 −0.481695 0.876339i \(-0.659979\pi\)
−0.481695 + 0.876339i \(0.659979\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.63083 −0.316259 −0.158129 0.987418i \(-0.550546\pi\)
−0.158129 + 0.987418i \(0.550546\pi\)
\(318\) 0 0
\(319\) 4.63554 0.259540
\(320\) 0 0
\(321\) −15.3696 −0.857849
\(322\) 0 0
\(323\) 8.26389 0.459815
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −33.3085 −1.84196
\(328\) 0 0
\(329\) −9.15902 −0.504953
\(330\) 0 0
\(331\) −28.6212 −1.57316 −0.786581 0.617488i \(-0.788151\pi\)
−0.786581 + 0.617488i \(0.788151\pi\)
\(332\) 0 0
\(333\) 18.9321 1.03747
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5.45530 −0.297169 −0.148585 0.988900i \(-0.547472\pi\)
−0.148585 + 0.988900i \(0.547472\pi\)
\(338\) 0 0
\(339\) 21.8328 1.18579
\(340\) 0 0
\(341\) 2.15202 0.116539
\(342\) 0 0
\(343\) −18.6255 −1.00568
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.4174 1.04238 0.521191 0.853440i \(-0.325488\pi\)
0.521191 + 0.853440i \(0.325488\pi\)
\(348\) 0 0
\(349\) −35.4679 −1.89855 −0.949277 0.314442i \(-0.898183\pi\)
−0.949277 + 0.314442i \(0.898183\pi\)
\(350\) 0 0
\(351\) 10.8983 0.581711
\(352\) 0 0
\(353\) 13.1256 0.698603 0.349301 0.937010i \(-0.386419\pi\)
0.349301 + 0.937010i \(0.386419\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.62971 0.350881
\(358\) 0 0
\(359\) −25.1317 −1.32640 −0.663199 0.748443i \(-0.730802\pi\)
−0.663199 + 0.748443i \(0.730802\pi\)
\(360\) 0 0
\(361\) 11.4666 0.603503
\(362\) 0 0
\(363\) −28.0959 −1.47465
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.32437 −0.225730 −0.112865 0.993610i \(-0.536003\pi\)
−0.112865 + 0.993610i \(0.536003\pi\)
\(368\) 0 0
\(369\) 31.0642 1.61714
\(370\) 0 0
\(371\) −19.7476 −1.02524
\(372\) 0 0
\(373\) −21.6506 −1.12103 −0.560513 0.828145i \(-0.689396\pi\)
−0.560513 + 0.828145i \(0.689396\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.45956 −0.178177
\(378\) 0 0
\(379\) −10.2365 −0.525811 −0.262906 0.964822i \(-0.584681\pi\)
−0.262906 + 0.964822i \(0.584681\pi\)
\(380\) 0 0
\(381\) 54.9648 2.81593
\(382\) 0 0
\(383\) −28.6676 −1.46485 −0.732423 0.680850i \(-0.761610\pi\)
−0.732423 + 0.680850i \(0.761610\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 44.2194 2.24780
\(388\) 0 0
\(389\) −26.8661 −1.36217 −0.681084 0.732206i \(-0.738491\pi\)
−0.681084 + 0.732206i \(0.738491\pi\)
\(390\) 0 0
\(391\) 9.89599 0.500462
\(392\) 0 0
\(393\) 30.4318 1.53508
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.4588 0.876232 0.438116 0.898918i \(-0.355646\pi\)
0.438116 + 0.898918i \(0.355646\pi\)
\(398\) 0 0
\(399\) 24.4418 1.22362
\(400\) 0 0
\(401\) 25.7848 1.28763 0.643816 0.765180i \(-0.277350\pi\)
0.643816 + 0.765180i \(0.277350\pi\)
\(402\) 0 0
\(403\) −1.60608 −0.0800046
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.0156 1.04170
\(408\) 0 0
\(409\) −12.4498 −0.615603 −0.307802 0.951451i \(-0.599593\pi\)
−0.307802 + 0.951451i \(0.599593\pi\)
\(410\) 0 0
\(411\) 37.5705 1.85321
\(412\) 0 0
\(413\) 6.47250 0.318491
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −33.3461 −1.63297
\(418\) 0 0
\(419\) 23.0559 1.12635 0.563177 0.826336i \(-0.309579\pi\)
0.563177 + 0.826336i \(0.309579\pi\)
\(420\) 0 0
\(421\) 30.5881 1.49077 0.745385 0.666634i \(-0.232266\pi\)
0.745385 + 0.666634i \(0.232266\pi\)
\(422\) 0 0
\(423\) −23.1380 −1.12501
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.49032 −0.217302
\(428\) 0 0
\(429\) 42.9598 2.07412
\(430\) 0 0
\(431\) −19.5987 −0.944034 −0.472017 0.881589i \(-0.656474\pi\)
−0.472017 + 0.881589i \(0.656474\pi\)
\(432\) 0 0
\(433\) −37.0395 −1.78000 −0.890002 0.455957i \(-0.849297\pi\)
−0.890002 + 0.455957i \(0.849297\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 36.4836 1.74525
\(438\) 0 0
\(439\) −20.2424 −0.966118 −0.483059 0.875588i \(-0.660474\pi\)
−0.483059 + 0.875588i \(0.660474\pi\)
\(440\) 0 0
\(441\) −17.8209 −0.848615
\(442\) 0 0
\(443\) 13.4397 0.638542 0.319271 0.947663i \(-0.396562\pi\)
0.319271 + 0.947663i \(0.396562\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 44.6140 2.11017
\(448\) 0 0
\(449\) 10.8909 0.513974 0.256987 0.966415i \(-0.417270\pi\)
0.256987 + 0.966415i \(0.417270\pi\)
\(450\) 0 0
\(451\) 34.4828 1.62373
\(452\) 0 0
\(453\) 7.88175 0.370317
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31.1051 −1.45503 −0.727517 0.686090i \(-0.759326\pi\)
−0.727517 + 0.686090i \(0.759326\pi\)
\(458\) 0 0
\(459\) 4.71641 0.220143
\(460\) 0 0
\(461\) 10.2781 0.478698 0.239349 0.970934i \(-0.423066\pi\)
0.239349 + 0.970934i \(0.423066\pi\)
\(462\) 0 0
\(463\) 39.6884 1.84448 0.922238 0.386621i \(-0.126358\pi\)
0.922238 + 0.386621i \(0.126358\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.4129 −0.574400 −0.287200 0.957871i \(-0.592724\pi\)
−0.287200 + 0.957871i \(0.592724\pi\)
\(468\) 0 0
\(469\) 11.8528 0.547311
\(470\) 0 0
\(471\) 13.6989 0.631210
\(472\) 0 0
\(473\) 49.0857 2.25696
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −49.8874 −2.28419
\(478\) 0 0
\(479\) −28.1913 −1.28809 −0.644047 0.764986i \(-0.722746\pi\)
−0.644047 + 0.764986i \(0.722746\pi\)
\(480\) 0 0
\(481\) −15.6842 −0.715138
\(482\) 0 0
\(483\) 29.2690 1.33179
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.6127 0.843422 0.421711 0.906730i \(-0.361430\pi\)
0.421711 + 0.906730i \(0.361430\pi\)
\(488\) 0 0
\(489\) −36.7252 −1.66077
\(490\) 0 0
\(491\) −41.5995 −1.87736 −0.938680 0.344788i \(-0.887951\pi\)
−0.938680 + 0.344788i \(0.887951\pi\)
\(492\) 0 0
\(493\) −1.49718 −0.0674294
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.95359 0.356767
\(498\) 0 0
\(499\) −42.4872 −1.90199 −0.950995 0.309206i \(-0.899937\pi\)
−0.950995 + 0.309206i \(0.899937\pi\)
\(500\) 0 0
\(501\) 11.9493 0.533854
\(502\) 0 0
\(503\) −19.1736 −0.854907 −0.427453 0.904037i \(-0.640589\pi\)
−0.427453 + 0.904037i \(0.640589\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.76297 0.122708
\(508\) 0 0
\(509\) 20.8633 0.924751 0.462375 0.886684i \(-0.346997\pi\)
0.462375 + 0.886684i \(0.346997\pi\)
\(510\) 0 0
\(511\) −5.86179 −0.259311
\(512\) 0 0
\(513\) 17.3881 0.767701
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −25.6843 −1.12960
\(518\) 0 0
\(519\) −0.557026 −0.0244507
\(520\) 0 0
\(521\) 37.4133 1.63911 0.819554 0.573003i \(-0.194221\pi\)
0.819554 + 0.573003i \(0.194221\pi\)
\(522\) 0 0
\(523\) −12.4970 −0.546456 −0.273228 0.961949i \(-0.588091\pi\)
−0.273228 + 0.961949i \(0.588091\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.695055 −0.0302771
\(528\) 0 0
\(529\) 20.6891 0.899525
\(530\) 0 0
\(531\) 16.3512 0.709580
\(532\) 0 0
\(533\) −25.7349 −1.11470
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 15.1448 0.653547
\(538\) 0 0
\(539\) −19.7821 −0.852075
\(540\) 0 0
\(541\) 17.6163 0.757382 0.378691 0.925523i \(-0.376374\pi\)
0.378691 + 0.925523i \(0.376374\pi\)
\(542\) 0 0
\(543\) 23.6168 1.01350
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.49542 0.363238 0.181619 0.983369i \(-0.441866\pi\)
0.181619 + 0.983369i \(0.441866\pi\)
\(548\) 0 0
\(549\) −11.3437 −0.484136
\(550\) 0 0
\(551\) −5.51965 −0.235145
\(552\) 0 0
\(553\) 2.88922 0.122862
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.1378 0.556667 0.278334 0.960484i \(-0.410218\pi\)
0.278334 + 0.960484i \(0.410218\pi\)
\(558\) 0 0
\(559\) −36.6333 −1.54942
\(560\) 0 0
\(561\) 18.5915 0.784932
\(562\) 0 0
\(563\) −1.68159 −0.0708705 −0.0354352 0.999372i \(-0.511282\pi\)
−0.0354352 + 0.999372i \(0.511282\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.75950 −0.283872
\(568\) 0 0
\(569\) −7.51373 −0.314992 −0.157496 0.987520i \(-0.550342\pi\)
−0.157496 + 0.987520i \(0.550342\pi\)
\(570\) 0 0
\(571\) 44.4197 1.85891 0.929454 0.368939i \(-0.120279\pi\)
0.929454 + 0.368939i \(0.120279\pi\)
\(572\) 0 0
\(573\) −6.37722 −0.266412
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.5246 −1.06260 −0.531302 0.847182i \(-0.678297\pi\)
−0.531302 + 0.847182i \(0.678297\pi\)
\(578\) 0 0
\(579\) −14.8924 −0.618907
\(580\) 0 0
\(581\) 10.3084 0.427665
\(582\) 0 0
\(583\) −55.3775 −2.29350
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.02728 0.372596 0.186298 0.982493i \(-0.440351\pi\)
0.186298 + 0.982493i \(0.440351\pi\)
\(588\) 0 0
\(589\) −2.56247 −0.105585
\(590\) 0 0
\(591\) 20.5268 0.844362
\(592\) 0 0
\(593\) 13.0080 0.534176 0.267088 0.963672i \(-0.413939\pi\)
0.267088 + 0.963672i \(0.413939\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 41.7089 1.70703
\(598\) 0 0
\(599\) 33.2601 1.35897 0.679485 0.733689i \(-0.262203\pi\)
0.679485 + 0.733689i \(0.262203\pi\)
\(600\) 0 0
\(601\) 18.0444 0.736047 0.368023 0.929817i \(-0.380035\pi\)
0.368023 + 0.929817i \(0.380035\pi\)
\(602\) 0 0
\(603\) 29.9431 1.21938
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.1415 0.573985 0.286992 0.957933i \(-0.407345\pi\)
0.286992 + 0.957933i \(0.407345\pi\)
\(608\) 0 0
\(609\) −4.42815 −0.179438
\(610\) 0 0
\(611\) 19.1685 0.775476
\(612\) 0 0
\(613\) 16.2869 0.657823 0.328912 0.944361i \(-0.393318\pi\)
0.328912 + 0.944361i \(0.393318\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.8943 1.32427 0.662137 0.749383i \(-0.269650\pi\)
0.662137 + 0.749383i \(0.269650\pi\)
\(618\) 0 0
\(619\) −42.1050 −1.69234 −0.846170 0.532912i \(-0.821098\pi\)
−0.846170 + 0.532912i \(0.821098\pi\)
\(620\) 0 0
\(621\) 20.8222 0.835564
\(622\) 0 0
\(623\) −4.40857 −0.176626
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 68.5413 2.73728
\(628\) 0 0
\(629\) −6.78756 −0.270638
\(630\) 0 0
\(631\) 31.2225 1.24295 0.621474 0.783435i \(-0.286534\pi\)
0.621474 + 0.783435i \(0.286534\pi\)
\(632\) 0 0
\(633\) 37.4760 1.48954
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 14.7636 0.584956
\(638\) 0 0
\(639\) 20.0928 0.794858
\(640\) 0 0
\(641\) −34.1293 −1.34803 −0.674014 0.738719i \(-0.735431\pi\)
−0.674014 + 0.738719i \(0.735431\pi\)
\(642\) 0 0
\(643\) 40.1920 1.58502 0.792510 0.609859i \(-0.208774\pi\)
0.792510 + 0.609859i \(0.208774\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.71898 0.224836 0.112418 0.993661i \(-0.464140\pi\)
0.112418 + 0.993661i \(0.464140\pi\)
\(648\) 0 0
\(649\) 18.1506 0.712473
\(650\) 0 0
\(651\) −2.05574 −0.0805708
\(652\) 0 0
\(653\) 6.46401 0.252956 0.126478 0.991969i \(-0.459633\pi\)
0.126478 + 0.991969i \(0.459633\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −14.8084 −0.577730
\(658\) 0 0
\(659\) 44.6819 1.74056 0.870281 0.492556i \(-0.163937\pi\)
0.870281 + 0.492556i \(0.163937\pi\)
\(660\) 0 0
\(661\) 44.3667 1.72566 0.862832 0.505490i \(-0.168688\pi\)
0.862832 + 0.505490i \(0.168688\pi\)
\(662\) 0 0
\(663\) −13.8750 −0.538862
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.60977 −0.255931
\(668\) 0 0
\(669\) −52.7146 −2.03807
\(670\) 0 0
\(671\) −12.5920 −0.486110
\(672\) 0 0
\(673\) −27.8980 −1.07539 −0.537694 0.843140i \(-0.680704\pi\)
−0.537694 + 0.843140i \(0.680704\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.4085 0.745930 0.372965 0.927845i \(-0.378341\pi\)
0.372965 + 0.927845i \(0.378341\pi\)
\(678\) 0 0
\(679\) −24.6666 −0.946617
\(680\) 0 0
\(681\) −35.1903 −1.34850
\(682\) 0 0
\(683\) 17.8605 0.683414 0.341707 0.939807i \(-0.388995\pi\)
0.341707 + 0.939807i \(0.388995\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 69.2009 2.64018
\(688\) 0 0
\(689\) 41.3289 1.57451
\(690\) 0 0
\(691\) −28.1722 −1.07172 −0.535861 0.844306i \(-0.680013\pi\)
−0.535861 + 0.844306i \(0.680013\pi\)
\(692\) 0 0
\(693\) 31.9992 1.21555
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −11.1372 −0.421850
\(698\) 0 0
\(699\) −62.5191 −2.36469
\(700\) 0 0
\(701\) 15.6033 0.589327 0.294664 0.955601i \(-0.404792\pi\)
0.294664 + 0.955601i \(0.404792\pi\)
\(702\) 0 0
\(703\) −25.0238 −0.943790
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −25.3352 −0.952828
\(708\) 0 0
\(709\) 25.2425 0.948001 0.474000 0.880525i \(-0.342810\pi\)
0.474000 + 0.880525i \(0.342810\pi\)
\(710\) 0 0
\(711\) 7.29890 0.273730
\(712\) 0 0
\(713\) −3.06855 −0.114918
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −56.1992 −2.09880
\(718\) 0 0
\(719\) 27.7739 1.03579 0.517897 0.855443i \(-0.326715\pi\)
0.517897 + 0.855443i \(0.326715\pi\)
\(720\) 0 0
\(721\) −20.2692 −0.754865
\(722\) 0 0
\(723\) 35.5347 1.32155
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.59058 0.133167 0.0665835 0.997781i \(-0.478790\pi\)
0.0665835 + 0.997781i \(0.478790\pi\)
\(728\) 0 0
\(729\) −42.3925 −1.57009
\(730\) 0 0
\(731\) −15.8536 −0.586365
\(732\) 0 0
\(733\) 7.94354 0.293401 0.146701 0.989181i \(-0.453135\pi\)
0.146701 + 0.989181i \(0.453135\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.2383 1.22435
\(738\) 0 0
\(739\) −24.2554 −0.892248 −0.446124 0.894971i \(-0.647196\pi\)
−0.446124 + 0.894971i \(0.647196\pi\)
\(740\) 0 0
\(741\) −51.1533 −1.87916
\(742\) 0 0
\(743\) 42.2210 1.54894 0.774469 0.632612i \(-0.218017\pi\)
0.774469 + 0.632612i \(0.218017\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 26.0417 0.952815
\(748\) 0 0
\(749\) 9.48428 0.346548
\(750\) 0 0
\(751\) 26.4938 0.966771 0.483386 0.875408i \(-0.339407\pi\)
0.483386 + 0.875408i \(0.339407\pi\)
\(752\) 0 0
\(753\) −47.7841 −1.74135
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 17.2891 0.628382 0.314191 0.949360i \(-0.398267\pi\)
0.314191 + 0.949360i \(0.398267\pi\)
\(758\) 0 0
\(759\) 82.0781 2.97925
\(760\) 0 0
\(761\) −28.2660 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(762\) 0 0
\(763\) 20.5540 0.744104
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.5460 −0.489119
\(768\) 0 0
\(769\) −24.1214 −0.869842 −0.434921 0.900469i \(-0.643224\pi\)
−0.434921 + 0.900469i \(0.643224\pi\)
\(770\) 0 0
\(771\) −71.8558 −2.58782
\(772\) 0 0
\(773\) −19.5460 −0.703022 −0.351511 0.936184i \(-0.614332\pi\)
−0.351511 + 0.936184i \(0.614332\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −20.0753 −0.720199
\(778\) 0 0
\(779\) −41.0595 −1.47111
\(780\) 0 0
\(781\) 22.3040 0.798099
\(782\) 0 0
\(783\) −3.15021 −0.112579
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −37.2397 −1.32745 −0.663725 0.747976i \(-0.731026\pi\)
−0.663725 + 0.747976i \(0.731026\pi\)
\(788\) 0 0
\(789\) 14.1360 0.503257
\(790\) 0 0
\(791\) −13.4726 −0.479029
\(792\) 0 0
\(793\) 9.39760 0.333719
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.5159 −1.11635 −0.558175 0.829723i \(-0.688498\pi\)
−0.558175 + 0.829723i \(0.688498\pi\)
\(798\) 0 0
\(799\) 8.29546 0.293472
\(800\) 0 0
\(801\) −11.1372 −0.393512
\(802\) 0 0
\(803\) −16.4380 −0.580085
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −32.3141 −1.13751
\(808\) 0 0
\(809\) 11.3607 0.399420 0.199710 0.979855i \(-0.436000\pi\)
0.199710 + 0.979855i \(0.436000\pi\)
\(810\) 0 0
\(811\) −7.60523 −0.267056 −0.133528 0.991045i \(-0.542631\pi\)
−0.133528 + 0.991045i \(0.542631\pi\)
\(812\) 0 0
\(813\) 38.9585 1.36633
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −58.4475 −2.04482
\(818\) 0 0
\(819\) −23.8815 −0.834486
\(820\) 0 0
\(821\) 0.0409341 0.00142861 0.000714304 1.00000i \(-0.499773\pi\)
0.000714304 1.00000i \(0.499773\pi\)
\(822\) 0 0
\(823\) 46.9194 1.63551 0.817754 0.575568i \(-0.195219\pi\)
0.817754 + 0.575568i \(0.195219\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −43.6229 −1.51692 −0.758459 0.651720i \(-0.774048\pi\)
−0.758459 + 0.651720i \(0.774048\pi\)
\(828\) 0 0
\(829\) 44.6055 1.54921 0.774606 0.632444i \(-0.217948\pi\)
0.774606 + 0.632444i \(0.217948\pi\)
\(830\) 0 0
\(831\) −2.57545 −0.0893414
\(832\) 0 0
\(833\) 6.38917 0.221372
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.46247 −0.0505502
\(838\) 0 0
\(839\) −23.8485 −0.823343 −0.411671 0.911332i \(-0.635055\pi\)
−0.411671 + 0.911332i \(0.635055\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 75.6929 2.60700
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 17.3374 0.595720
\(848\) 0 0
\(849\) 5.22326 0.179262
\(850\) 0 0
\(851\) −29.9659 −1.02722
\(852\) 0 0
\(853\) −10.6361 −0.364174 −0.182087 0.983282i \(-0.558285\pi\)
−0.182087 + 0.983282i \(0.558285\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.5645 1.18070 0.590350 0.807147i \(-0.298990\pi\)
0.590350 + 0.807147i \(0.298990\pi\)
\(858\) 0 0
\(859\) −15.3791 −0.524730 −0.262365 0.964969i \(-0.584502\pi\)
−0.262365 + 0.964969i \(0.584502\pi\)
\(860\) 0 0
\(861\) −32.9400 −1.12259
\(862\) 0 0
\(863\) 41.0655 1.39788 0.698942 0.715178i \(-0.253654\pi\)
0.698942 + 0.715178i \(0.253654\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 39.5350 1.34268
\(868\) 0 0
\(869\) 8.10214 0.274846
\(870\) 0 0
\(871\) −24.8062 −0.840526
\(872\) 0 0
\(873\) −62.3140 −2.10901
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.5385 1.33512 0.667560 0.744556i \(-0.267339\pi\)
0.667560 + 0.744556i \(0.267339\pi\)
\(878\) 0 0
\(879\) 36.5299 1.23212
\(880\) 0 0
\(881\) 55.5100 1.87018 0.935090 0.354412i \(-0.115319\pi\)
0.935090 + 0.354412i \(0.115319\pi\)
\(882\) 0 0
\(883\) −11.7459 −0.395282 −0.197641 0.980274i \(-0.563328\pi\)
−0.197641 + 0.980274i \(0.563328\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.39449 0.214706 0.107353 0.994221i \(-0.465763\pi\)
0.107353 + 0.994221i \(0.465763\pi\)
\(888\) 0 0
\(889\) −33.9177 −1.13756
\(890\) 0 0
\(891\) −18.9554 −0.635030
\(892\) 0 0
\(893\) 30.5830 1.02342
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −61.2560 −2.04528
\(898\) 0 0
\(899\) 0.464244 0.0154834
\(900\) 0 0
\(901\) 17.8857 0.595858
\(902\) 0 0
\(903\) −46.8896 −1.56039
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −33.0153 −1.09626 −0.548128 0.836395i \(-0.684659\pi\)
−0.548128 + 0.836395i \(0.684659\pi\)
\(908\) 0 0
\(909\) −64.0031 −2.12285
\(910\) 0 0
\(911\) −33.4462 −1.10812 −0.554061 0.832476i \(-0.686923\pi\)
−0.554061 + 0.832476i \(0.686923\pi\)
\(912\) 0 0
\(913\) 28.9075 0.956700
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.7788 −0.620132
\(918\) 0 0
\(919\) −41.7948 −1.37868 −0.689341 0.724437i \(-0.742100\pi\)
−0.689341 + 0.724437i \(0.742100\pi\)
\(920\) 0 0
\(921\) 24.2463 0.798943
\(922\) 0 0
\(923\) −16.6457 −0.547902
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −51.2051 −1.68180
\(928\) 0 0
\(929\) 11.0440 0.362340 0.181170 0.983452i \(-0.442012\pi\)
0.181170 + 0.983452i \(0.442012\pi\)
\(930\) 0 0
\(931\) 23.5550 0.771985
\(932\) 0 0
\(933\) 17.7719 0.581825
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −36.4185 −1.18974 −0.594870 0.803822i \(-0.702796\pi\)
−0.594870 + 0.803822i \(0.702796\pi\)
\(938\) 0 0
\(939\) 45.6578 1.48999
\(940\) 0 0
\(941\) 46.2476 1.50763 0.753815 0.657087i \(-0.228211\pi\)
0.753815 + 0.657087i \(0.228211\pi\)
\(942\) 0 0
\(943\) −49.1686 −1.60115
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.5456 0.505164 0.252582 0.967575i \(-0.418720\pi\)
0.252582 + 0.967575i \(0.418720\pi\)
\(948\) 0 0
\(949\) 12.2679 0.398233
\(950\) 0 0
\(951\) 15.0839 0.489128
\(952\) 0 0
\(953\) −45.8154 −1.48411 −0.742053 0.670341i \(-0.766148\pi\)
−0.742053 + 0.670341i \(0.766148\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −12.4177 −0.401407
\(958\) 0 0
\(959\) −23.1840 −0.748649
\(960\) 0 0
\(961\) −30.7845 −0.993048
\(962\) 0 0
\(963\) 23.9597 0.772090
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −3.56207 −0.114548 −0.0572741 0.998358i \(-0.518241\pi\)
−0.0572741 + 0.998358i \(0.518241\pi\)
\(968\) 0 0
\(969\) −22.1373 −0.711153
\(970\) 0 0
\(971\) 0.374633 0.0120225 0.00601127 0.999982i \(-0.498087\pi\)
0.00601127 + 0.999982i \(0.498087\pi\)
\(972\) 0 0
\(973\) 20.5772 0.659674
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −51.1721 −1.63714 −0.818570 0.574407i \(-0.805233\pi\)
−0.818570 + 0.574407i \(0.805233\pi\)
\(978\) 0 0
\(979\) −12.3628 −0.395117
\(980\) 0 0
\(981\) 51.9245 1.65782
\(982\) 0 0
\(983\) 13.2021 0.421081 0.210540 0.977585i \(-0.432478\pi\)
0.210540 + 0.977585i \(0.432478\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 24.5352 0.780964
\(988\) 0 0
\(989\) −69.9908 −2.22558
\(990\) 0 0
\(991\) −10.6725 −0.339022 −0.169511 0.985528i \(-0.554219\pi\)
−0.169511 + 0.985528i \(0.554219\pi\)
\(992\) 0 0
\(993\) 76.6704 2.43306
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −41.3114 −1.30835 −0.654173 0.756345i \(-0.726983\pi\)
−0.654173 + 0.756345i \(0.726983\pi\)
\(998\) 0 0
\(999\) −14.2817 −0.451853
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.a.j.1.1 5
5.2 odd 4 2900.2.c.h.349.10 10
5.3 odd 4 2900.2.c.h.349.1 10
5.4 even 2 2900.2.a.l.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2900.2.a.j.1.1 5 1.1 even 1 trivial
2900.2.a.l.1.5 yes 5 5.4 even 2
2900.2.c.h.349.1 10 5.3 odd 4
2900.2.c.h.349.10 10 5.2 odd 4