Properties

Label 2900.2.a.m.1.10
Level $2900$
Weight $2$
Character 2900.1
Self dual yes
Analytic conductor $23.157$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2900,2,Mod(1,2900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 22x^{8} + 149x^{6} - 324x^{4} + 252x^{2} - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(3.27452\) of defining polynomial
Character \(\chi\) \(=\) 2900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.27452 q^{3} +1.44995 q^{7} +7.72245 q^{9} -1.39969 q^{11} +5.03427 q^{13} -3.10695 q^{17} -0.911344 q^{19} +4.74787 q^{21} -1.53426 q^{23} +15.4637 q^{27} +1.00000 q^{29} -7.29734 q^{31} -4.58329 q^{33} +9.65598 q^{37} +16.4848 q^{39} +11.0240 q^{41} +3.72549 q^{43} -6.34304 q^{47} -4.89766 q^{49} -10.1738 q^{51} +4.13231 q^{53} -2.98421 q^{57} -7.54724 q^{59} +4.92518 q^{61} +11.1971 q^{63} +10.5322 q^{67} -5.02397 q^{69} -10.5197 q^{71} +3.19127 q^{73} -2.02947 q^{77} -8.37216 q^{79} +27.4689 q^{81} -11.0675 q^{83} +3.27452 q^{87} -11.0989 q^{89} +7.29942 q^{91} -23.8953 q^{93} -18.7382 q^{97} -10.8090 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 14 q^{9} + 4 q^{19} + 24 q^{21} + 10 q^{29} + 16 q^{31} + 4 q^{39} + 28 q^{41} + 26 q^{49} + 32 q^{51} - 24 q^{59} + 52 q^{61} + 32 q^{69} + 24 q^{71} + 8 q^{79} + 66 q^{81} + 20 q^{89} + 16 q^{91}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.27452 1.89054 0.945271 0.326286i \(-0.105797\pi\)
0.945271 + 0.326286i \(0.105797\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.44995 0.548028 0.274014 0.961726i \(-0.411648\pi\)
0.274014 + 0.961726i \(0.411648\pi\)
\(8\) 0 0
\(9\) 7.72245 2.57415
\(10\) 0 0
\(11\) −1.39969 −0.422021 −0.211011 0.977484i \(-0.567675\pi\)
−0.211011 + 0.977484i \(0.567675\pi\)
\(12\) 0 0
\(13\) 5.03427 1.39625 0.698127 0.715974i \(-0.254017\pi\)
0.698127 + 0.715974i \(0.254017\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.10695 −0.753546 −0.376773 0.926306i \(-0.622966\pi\)
−0.376773 + 0.926306i \(0.622966\pi\)
\(18\) 0 0
\(19\) −0.911344 −0.209077 −0.104538 0.994521i \(-0.533337\pi\)
−0.104538 + 0.994521i \(0.533337\pi\)
\(20\) 0 0
\(21\) 4.74787 1.03607
\(22\) 0 0
\(23\) −1.53426 −0.319916 −0.159958 0.987124i \(-0.551136\pi\)
−0.159958 + 0.987124i \(0.551136\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 15.4637 2.97600
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −7.29734 −1.31064 −0.655321 0.755351i \(-0.727466\pi\)
−0.655321 + 0.755351i \(0.727466\pi\)
\(32\) 0 0
\(33\) −4.58329 −0.797849
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.65598 1.58743 0.793717 0.608288i \(-0.208143\pi\)
0.793717 + 0.608288i \(0.208143\pi\)
\(38\) 0 0
\(39\) 16.4848 2.63968
\(40\) 0 0
\(41\) 11.0240 1.72166 0.860828 0.508897i \(-0.169946\pi\)
0.860828 + 0.508897i \(0.169946\pi\)
\(42\) 0 0
\(43\) 3.72549 0.568132 0.284066 0.958805i \(-0.408316\pi\)
0.284066 + 0.958805i \(0.408316\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.34304 −0.925228 −0.462614 0.886560i \(-0.653088\pi\)
−0.462614 + 0.886560i \(0.653088\pi\)
\(48\) 0 0
\(49\) −4.89766 −0.699665
\(50\) 0 0
\(51\) −10.1738 −1.42461
\(52\) 0 0
\(53\) 4.13231 0.567617 0.283809 0.958881i \(-0.408402\pi\)
0.283809 + 0.958881i \(0.408402\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.98421 −0.395268
\(58\) 0 0
\(59\) −7.54724 −0.982567 −0.491284 0.871000i \(-0.663472\pi\)
−0.491284 + 0.871000i \(0.663472\pi\)
\(60\) 0 0
\(61\) 4.92518 0.630605 0.315303 0.948991i \(-0.397894\pi\)
0.315303 + 0.948991i \(0.397894\pi\)
\(62\) 0 0
\(63\) 11.1971 1.41071
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.5322 1.28671 0.643357 0.765566i \(-0.277541\pi\)
0.643357 + 0.765566i \(0.277541\pi\)
\(68\) 0 0
\(69\) −5.02397 −0.604815
\(70\) 0 0
\(71\) −10.5197 −1.24846 −0.624230 0.781240i \(-0.714587\pi\)
−0.624230 + 0.781240i \(0.714587\pi\)
\(72\) 0 0
\(73\) 3.19127 0.373510 0.186755 0.982407i \(-0.440203\pi\)
0.186755 + 0.982407i \(0.440203\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.02947 −0.231279
\(78\) 0 0
\(79\) −8.37216 −0.941941 −0.470971 0.882149i \(-0.656096\pi\)
−0.470971 + 0.882149i \(0.656096\pi\)
\(80\) 0 0
\(81\) 27.4689 3.05210
\(82\) 0 0
\(83\) −11.0675 −1.21482 −0.607408 0.794390i \(-0.707791\pi\)
−0.607408 + 0.794390i \(0.707791\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.27452 0.351065
\(88\) 0 0
\(89\) −11.0989 −1.17649 −0.588243 0.808685i \(-0.700180\pi\)
−0.588243 + 0.808685i \(0.700180\pi\)
\(90\) 0 0
\(91\) 7.29942 0.765187
\(92\) 0 0
\(93\) −23.8953 −2.47782
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.7382 −1.90258 −0.951290 0.308297i \(-0.900241\pi\)
−0.951290 + 0.308297i \(0.900241\pi\)
\(98\) 0 0
\(99\) −10.8090 −1.08635
\(100\) 0 0
\(101\) 13.9492 1.38799 0.693996 0.719978i \(-0.255848\pi\)
0.693996 + 0.719978i \(0.255848\pi\)
\(102\) 0 0
\(103\) −4.22866 −0.416662 −0.208331 0.978058i \(-0.566803\pi\)
−0.208331 + 0.978058i \(0.566803\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.547993 −0.0529765 −0.0264882 0.999649i \(-0.508432\pi\)
−0.0264882 + 0.999649i \(0.508432\pi\)
\(108\) 0 0
\(109\) 14.1992 1.36003 0.680017 0.733196i \(-0.261972\pi\)
0.680017 + 0.733196i \(0.261972\pi\)
\(110\) 0 0
\(111\) 31.6187 3.00111
\(112\) 0 0
\(113\) −0.908845 −0.0854970 −0.0427485 0.999086i \(-0.513611\pi\)
−0.0427485 + 0.999086i \(0.513611\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 38.8769 3.59417
\(118\) 0 0
\(119\) −4.50491 −0.412965
\(120\) 0 0
\(121\) −9.04088 −0.821898
\(122\) 0 0
\(123\) 36.0982 3.25486
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −22.0523 −1.95682 −0.978411 0.206671i \(-0.933737\pi\)
−0.978411 + 0.206671i \(0.933737\pi\)
\(128\) 0 0
\(129\) 12.1992 1.07408
\(130\) 0 0
\(131\) 4.91134 0.429106 0.214553 0.976712i \(-0.431171\pi\)
0.214553 + 0.976712i \(0.431171\pi\)
\(132\) 0 0
\(133\) −1.32140 −0.114580
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.44208 −0.294077 −0.147038 0.989131i \(-0.546974\pi\)
−0.147038 + 0.989131i \(0.546974\pi\)
\(138\) 0 0
\(139\) 13.4449 1.14038 0.570191 0.821512i \(-0.306869\pi\)
0.570191 + 0.821512i \(0.306869\pi\)
\(140\) 0 0
\(141\) −20.7704 −1.74918
\(142\) 0 0
\(143\) −7.04639 −0.589249
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −16.0374 −1.32275
\(148\) 0 0
\(149\) −8.26969 −0.677480 −0.338740 0.940880i \(-0.610001\pi\)
−0.338740 + 0.940880i \(0.610001\pi\)
\(150\) 0 0
\(151\) 8.74787 0.711892 0.355946 0.934507i \(-0.384159\pi\)
0.355946 + 0.934507i \(0.384159\pi\)
\(152\) 0 0
\(153\) −23.9933 −1.93974
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.64018 0.450136 0.225068 0.974343i \(-0.427740\pi\)
0.225068 + 0.974343i \(0.427740\pi\)
\(158\) 0 0
\(159\) 13.5313 1.07310
\(160\) 0 0
\(161\) −2.22460 −0.175323
\(162\) 0 0
\(163\) 9.48842 0.743190 0.371595 0.928395i \(-0.378811\pi\)
0.371595 + 0.928395i \(0.378811\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.5955 1.12943 0.564715 0.825286i \(-0.308986\pi\)
0.564715 + 0.825286i \(0.308986\pi\)
\(168\) 0 0
\(169\) 12.3439 0.949527
\(170\) 0 0
\(171\) −7.03781 −0.538195
\(172\) 0 0
\(173\) −19.7314 −1.50015 −0.750076 0.661352i \(-0.769983\pi\)
−0.750076 + 0.661352i \(0.769983\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −24.7136 −1.85758
\(178\) 0 0
\(179\) −22.5947 −1.68881 −0.844403 0.535709i \(-0.820045\pi\)
−0.844403 + 0.535709i \(0.820045\pi\)
\(180\) 0 0
\(181\) 19.6949 1.46391 0.731956 0.681352i \(-0.238608\pi\)
0.731956 + 0.681352i \(0.238608\pi\)
\(182\) 0 0
\(183\) 16.1276 1.19219
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.34875 0.318012
\(188\) 0 0
\(189\) 22.4216 1.63093
\(190\) 0 0
\(191\) 24.8846 1.80059 0.900294 0.435282i \(-0.143351\pi\)
0.900294 + 0.435282i \(0.143351\pi\)
\(192\) 0 0
\(193\) −0.168053 −0.0120967 −0.00604836 0.999982i \(-0.501925\pi\)
−0.00604836 + 0.999982i \(0.501925\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.86831 −0.631841 −0.315921 0.948786i \(-0.602313\pi\)
−0.315921 + 0.948786i \(0.602313\pi\)
\(198\) 0 0
\(199\) 19.1504 1.35754 0.678769 0.734352i \(-0.262514\pi\)
0.678769 + 0.734352i \(0.262514\pi\)
\(200\) 0 0
\(201\) 34.4879 2.43259
\(202\) 0 0
\(203\) 1.44995 0.101766
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −11.8483 −0.823512
\(208\) 0 0
\(209\) 1.27560 0.0882348
\(210\) 0 0
\(211\) −0.0770445 −0.00530396 −0.00265198 0.999996i \(-0.500844\pi\)
−0.00265198 + 0.999996i \(0.500844\pi\)
\(212\) 0 0
\(213\) −34.4470 −2.36027
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.5808 −0.718268
\(218\) 0 0
\(219\) 10.4499 0.706136
\(220\) 0 0
\(221\) −15.6412 −1.05214
\(222\) 0 0
\(223\) −12.1834 −0.815861 −0.407931 0.913013i \(-0.633750\pi\)
−0.407931 + 0.913013i \(0.633750\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.81454 −0.253180 −0.126590 0.991955i \(-0.540403\pi\)
−0.126590 + 0.991955i \(0.540403\pi\)
\(228\) 0 0
\(229\) 20.9216 1.38254 0.691270 0.722597i \(-0.257052\pi\)
0.691270 + 0.722597i \(0.257052\pi\)
\(230\) 0 0
\(231\) −6.64553 −0.437244
\(232\) 0 0
\(233\) −21.6603 −1.41901 −0.709506 0.704699i \(-0.751082\pi\)
−0.709506 + 0.704699i \(0.751082\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −27.4148 −1.78078
\(238\) 0 0
\(239\) 5.04299 0.326204 0.163102 0.986609i \(-0.447850\pi\)
0.163102 + 0.986609i \(0.447850\pi\)
\(240\) 0 0
\(241\) −19.8729 −1.28013 −0.640063 0.768323i \(-0.721092\pi\)
−0.640063 + 0.768323i \(0.721092\pi\)
\(242\) 0 0
\(243\) 43.5560 2.79412
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.58795 −0.291924
\(248\) 0 0
\(249\) −36.2407 −2.29666
\(250\) 0 0
\(251\) 9.34884 0.590094 0.295047 0.955483i \(-0.404665\pi\)
0.295047 + 0.955483i \(0.404665\pi\)
\(252\) 0 0
\(253\) 2.14749 0.135011
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.753905 −0.0470273 −0.0235137 0.999724i \(-0.507485\pi\)
−0.0235137 + 0.999724i \(0.507485\pi\)
\(258\) 0 0
\(259\) 14.0007 0.869958
\(260\) 0 0
\(261\) 7.72245 0.478008
\(262\) 0 0
\(263\) −7.20599 −0.444341 −0.222170 0.975008i \(-0.571314\pi\)
−0.222170 + 0.975008i \(0.571314\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −36.3436 −2.22419
\(268\) 0 0
\(269\) 1.57907 0.0962779 0.0481389 0.998841i \(-0.484671\pi\)
0.0481389 + 0.998841i \(0.484671\pi\)
\(270\) 0 0
\(271\) −4.02620 −0.244574 −0.122287 0.992495i \(-0.539023\pi\)
−0.122287 + 0.992495i \(0.539023\pi\)
\(272\) 0 0
\(273\) 23.9021 1.44662
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.38787 0.383810 0.191905 0.981414i \(-0.438533\pi\)
0.191905 + 0.981414i \(0.438533\pi\)
\(278\) 0 0
\(279\) −56.3533 −3.37379
\(280\) 0 0
\(281\) −21.1907 −1.26413 −0.632065 0.774916i \(-0.717792\pi\)
−0.632065 + 0.774916i \(0.717792\pi\)
\(282\) 0 0
\(283\) −19.0285 −1.13113 −0.565565 0.824704i \(-0.691342\pi\)
−0.565565 + 0.824704i \(0.691342\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.9842 0.943516
\(288\) 0 0
\(289\) −7.34686 −0.432168
\(290\) 0 0
\(291\) −61.3587 −3.59691
\(292\) 0 0
\(293\) −27.1050 −1.58349 −0.791745 0.610852i \(-0.790827\pi\)
−0.791745 + 0.610852i \(0.790827\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −21.6444 −1.25593
\(298\) 0 0
\(299\) −7.72390 −0.446685
\(300\) 0 0
\(301\) 5.40176 0.311352
\(302\) 0 0
\(303\) 45.6767 2.62406
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −22.0587 −1.25895 −0.629477 0.777019i \(-0.716731\pi\)
−0.629477 + 0.777019i \(0.716731\pi\)
\(308\) 0 0
\(309\) −13.8468 −0.787718
\(310\) 0 0
\(311\) 11.9028 0.674948 0.337474 0.941335i \(-0.390428\pi\)
0.337474 + 0.941335i \(0.390428\pi\)
\(312\) 0 0
\(313\) 4.26195 0.240899 0.120450 0.992719i \(-0.461566\pi\)
0.120450 + 0.992719i \(0.461566\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.59479 0.201903 0.100952 0.994891i \(-0.467811\pi\)
0.100952 + 0.994891i \(0.467811\pi\)
\(318\) 0 0
\(319\) −1.39969 −0.0783673
\(320\) 0 0
\(321\) −1.79441 −0.100154
\(322\) 0 0
\(323\) 2.83150 0.157549
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 46.4954 2.57120
\(328\) 0 0
\(329\) −9.19707 −0.507051
\(330\) 0 0
\(331\) −33.6912 −1.85184 −0.925919 0.377722i \(-0.876708\pi\)
−0.925919 + 0.377722i \(0.876708\pi\)
\(332\) 0 0
\(333\) 74.5678 4.08629
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.19655 0.119653 0.0598267 0.998209i \(-0.480945\pi\)
0.0598267 + 0.998209i \(0.480945\pi\)
\(338\) 0 0
\(339\) −2.97603 −0.161636
\(340\) 0 0
\(341\) 10.2140 0.553118
\(342\) 0 0
\(343\) −17.2510 −0.931464
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.0306 0.592156 0.296078 0.955164i \(-0.404321\pi\)
0.296078 + 0.955164i \(0.404321\pi\)
\(348\) 0 0
\(349\) −7.76964 −0.415899 −0.207950 0.978140i \(-0.566679\pi\)
−0.207950 + 0.978140i \(0.566679\pi\)
\(350\) 0 0
\(351\) 77.8486 4.15525
\(352\) 0 0
\(353\) 35.9748 1.91475 0.957374 0.288852i \(-0.0932735\pi\)
0.957374 + 0.288852i \(0.0932735\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −14.7514 −0.780727
\(358\) 0 0
\(359\) 20.4194 1.07770 0.538849 0.842403i \(-0.318859\pi\)
0.538849 + 0.842403i \(0.318859\pi\)
\(360\) 0 0
\(361\) −18.1695 −0.956287
\(362\) 0 0
\(363\) −29.6045 −1.55383
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 15.1703 0.791881 0.395941 0.918276i \(-0.370419\pi\)
0.395941 + 0.918276i \(0.370419\pi\)
\(368\) 0 0
\(369\) 85.1321 4.43180
\(370\) 0 0
\(371\) 5.99163 0.311070
\(372\) 0 0
\(373\) −23.0617 −1.19409 −0.597045 0.802208i \(-0.703658\pi\)
−0.597045 + 0.802208i \(0.703658\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.03427 0.259278
\(378\) 0 0
\(379\) −6.68674 −0.343475 −0.171737 0.985143i \(-0.554938\pi\)
−0.171737 + 0.985143i \(0.554938\pi\)
\(380\) 0 0
\(381\) −72.2104 −3.69945
\(382\) 0 0
\(383\) −5.18873 −0.265132 −0.132566 0.991174i \(-0.542322\pi\)
−0.132566 + 0.991174i \(0.542322\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 28.7699 1.46246
\(388\) 0 0
\(389\) 22.9413 1.16317 0.581585 0.813486i \(-0.302433\pi\)
0.581585 + 0.813486i \(0.302433\pi\)
\(390\) 0 0
\(391\) 4.76688 0.241072
\(392\) 0 0
\(393\) 16.0823 0.811243
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.14810 0.0576217 0.0288108 0.999585i \(-0.490828\pi\)
0.0288108 + 0.999585i \(0.490828\pi\)
\(398\) 0 0
\(399\) −4.32695 −0.216618
\(400\) 0 0
\(401\) 1.24993 0.0624184 0.0312092 0.999513i \(-0.490064\pi\)
0.0312092 + 0.999513i \(0.490064\pi\)
\(402\) 0 0
\(403\) −36.7368 −1.82999
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.5153 −0.669930
\(408\) 0 0
\(409\) 2.50360 0.123795 0.0618976 0.998083i \(-0.480285\pi\)
0.0618976 + 0.998083i \(0.480285\pi\)
\(410\) 0 0
\(411\) −11.2711 −0.555964
\(412\) 0 0
\(413\) −10.9431 −0.538475
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 44.0255 2.15594
\(418\) 0 0
\(419\) −38.3903 −1.87549 −0.937746 0.347323i \(-0.887091\pi\)
−0.937746 + 0.347323i \(0.887091\pi\)
\(420\) 0 0
\(421\) 10.7479 0.523819 0.261910 0.965092i \(-0.415648\pi\)
0.261910 + 0.965092i \(0.415648\pi\)
\(422\) 0 0
\(423\) −48.9838 −2.38168
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.14125 0.345589
\(428\) 0 0
\(429\) −23.0735 −1.11400
\(430\) 0 0
\(431\) −31.4175 −1.51333 −0.756664 0.653804i \(-0.773172\pi\)
−0.756664 + 0.653804i \(0.773172\pi\)
\(432\) 0 0
\(433\) 2.77182 0.133205 0.0666026 0.997780i \(-0.478784\pi\)
0.0666026 + 0.997780i \(0.478784\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.39824 0.0668871
\(438\) 0 0
\(439\) 13.6216 0.650121 0.325061 0.945693i \(-0.394615\pi\)
0.325061 + 0.945693i \(0.394615\pi\)
\(440\) 0 0
\(441\) −37.8219 −1.80104
\(442\) 0 0
\(443\) −13.8288 −0.657026 −0.328513 0.944499i \(-0.606547\pi\)
−0.328513 + 0.944499i \(0.606547\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −27.0792 −1.28080
\(448\) 0 0
\(449\) −2.29891 −0.108492 −0.0542462 0.998528i \(-0.517276\pi\)
−0.0542462 + 0.998528i \(0.517276\pi\)
\(450\) 0 0
\(451\) −15.4301 −0.726575
\(452\) 0 0
\(453\) 28.6450 1.34586
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 36.3121 1.69861 0.849305 0.527903i \(-0.177022\pi\)
0.849305 + 0.527903i \(0.177022\pi\)
\(458\) 0 0
\(459\) −48.0450 −2.24255
\(460\) 0 0
\(461\) −8.14963 −0.379566 −0.189783 0.981826i \(-0.560779\pi\)
−0.189783 + 0.981826i \(0.560779\pi\)
\(462\) 0 0
\(463\) −19.5048 −0.906463 −0.453232 0.891393i \(-0.649729\pi\)
−0.453232 + 0.891393i \(0.649729\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.4295 0.575168 0.287584 0.957755i \(-0.407148\pi\)
0.287584 + 0.957755i \(0.407148\pi\)
\(468\) 0 0
\(469\) 15.2711 0.705156
\(470\) 0 0
\(471\) 18.4689 0.851001
\(472\) 0 0
\(473\) −5.21452 −0.239764
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 31.9116 1.46113
\(478\) 0 0
\(479\) 17.6249 0.805304 0.402652 0.915353i \(-0.368088\pi\)
0.402652 + 0.915353i \(0.368088\pi\)
\(480\) 0 0
\(481\) 48.6108 2.21646
\(482\) 0 0
\(483\) −7.28449 −0.331456
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.53432 0.114841 0.0574205 0.998350i \(-0.481712\pi\)
0.0574205 + 0.998350i \(0.481712\pi\)
\(488\) 0 0
\(489\) 31.0700 1.40503
\(490\) 0 0
\(491\) 41.5387 1.87462 0.937308 0.348502i \(-0.113310\pi\)
0.937308 + 0.348502i \(0.113310\pi\)
\(492\) 0 0
\(493\) −3.10695 −0.139930
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.2530 −0.684192
\(498\) 0 0
\(499\) 27.4928 1.23075 0.615374 0.788235i \(-0.289005\pi\)
0.615374 + 0.788235i \(0.289005\pi\)
\(500\) 0 0
\(501\) 47.7931 2.13524
\(502\) 0 0
\(503\) −4.88671 −0.217888 −0.108944 0.994048i \(-0.534747\pi\)
−0.108944 + 0.994048i \(0.534747\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 40.4201 1.79512
\(508\) 0 0
\(509\) −11.0452 −0.489569 −0.244785 0.969577i \(-0.578717\pi\)
−0.244785 + 0.969577i \(0.578717\pi\)
\(510\) 0 0
\(511\) 4.62717 0.204694
\(512\) 0 0
\(513\) −14.0928 −0.622212
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.87827 0.390466
\(518\) 0 0
\(519\) −64.6108 −2.83610
\(520\) 0 0
\(521\) −0.497193 −0.0217824 −0.0108912 0.999941i \(-0.503467\pi\)
−0.0108912 + 0.999941i \(0.503467\pi\)
\(522\) 0 0
\(523\) 29.5250 1.29104 0.645518 0.763745i \(-0.276641\pi\)
0.645518 + 0.763745i \(0.276641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.6725 0.987629
\(528\) 0 0
\(529\) −20.6460 −0.897654
\(530\) 0 0
\(531\) −58.2832 −2.52928
\(532\) 0 0
\(533\) 55.4976 2.40387
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −73.9866 −3.19276
\(538\) 0 0
\(539\) 6.85518 0.295273
\(540\) 0 0
\(541\) −10.8650 −0.467124 −0.233562 0.972342i \(-0.575038\pi\)
−0.233562 + 0.972342i \(0.575038\pi\)
\(542\) 0 0
\(543\) 64.4913 2.76759
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −20.5933 −0.880505 −0.440252 0.897874i \(-0.645111\pi\)
−0.440252 + 0.897874i \(0.645111\pi\)
\(548\) 0 0
\(549\) 38.0345 1.62327
\(550\) 0 0
\(551\) −0.911344 −0.0388246
\(552\) 0 0
\(553\) −12.1392 −0.516210
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.2467 1.40871 0.704355 0.709848i \(-0.251236\pi\)
0.704355 + 0.709848i \(0.251236\pi\)
\(558\) 0 0
\(559\) 18.7551 0.793257
\(560\) 0 0
\(561\) 14.2401 0.601216
\(562\) 0 0
\(563\) −22.7530 −0.958923 −0.479462 0.877563i \(-0.659168\pi\)
−0.479462 + 0.877563i \(0.659168\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 39.8284 1.67264
\(568\) 0 0
\(569\) −15.9253 −0.667625 −0.333812 0.942640i \(-0.608335\pi\)
−0.333812 + 0.942640i \(0.608335\pi\)
\(570\) 0 0
\(571\) −6.72820 −0.281567 −0.140783 0.990040i \(-0.544962\pi\)
−0.140783 + 0.990040i \(0.544962\pi\)
\(572\) 0 0
\(573\) 81.4851 3.40409
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.3167 0.554383 0.277191 0.960815i \(-0.410596\pi\)
0.277191 + 0.960815i \(0.410596\pi\)
\(578\) 0 0
\(579\) −0.550292 −0.0228693
\(580\) 0 0
\(581\) −16.0473 −0.665754
\(582\) 0 0
\(583\) −5.78394 −0.239546
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.8990 −1.15152 −0.575758 0.817620i \(-0.695293\pi\)
−0.575758 + 0.817620i \(0.695293\pi\)
\(588\) 0 0
\(589\) 6.65039 0.274025
\(590\) 0 0
\(591\) −29.0394 −1.19452
\(592\) 0 0
\(593\) −29.8796 −1.22701 −0.613504 0.789692i \(-0.710241\pi\)
−0.613504 + 0.789692i \(0.710241\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 62.7084 2.56648
\(598\) 0 0
\(599\) −8.39983 −0.343208 −0.171604 0.985166i \(-0.554895\pi\)
−0.171604 + 0.985166i \(0.554895\pi\)
\(600\) 0 0
\(601\) 27.8658 1.13667 0.568335 0.822797i \(-0.307588\pi\)
0.568335 + 0.822797i \(0.307588\pi\)
\(602\) 0 0
\(603\) 81.3345 3.31220
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −42.5340 −1.72640 −0.863200 0.504861i \(-0.831544\pi\)
−0.863200 + 0.504861i \(0.831544\pi\)
\(608\) 0 0
\(609\) 4.74787 0.192393
\(610\) 0 0
\(611\) −31.9326 −1.29185
\(612\) 0 0
\(613\) −28.4792 −1.15026 −0.575132 0.818060i \(-0.695049\pi\)
−0.575132 + 0.818060i \(0.695049\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.6087 −0.829675 −0.414837 0.909896i \(-0.636162\pi\)
−0.414837 + 0.909896i \(0.636162\pi\)
\(618\) 0 0
\(619\) −27.5889 −1.10889 −0.554446 0.832220i \(-0.687070\pi\)
−0.554446 + 0.832220i \(0.687070\pi\)
\(620\) 0 0
\(621\) −23.7255 −0.952070
\(622\) 0 0
\(623\) −16.0929 −0.644747
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4.17696 0.166812
\(628\) 0 0
\(629\) −30.0007 −1.19620
\(630\) 0 0
\(631\) 22.6977 0.903580 0.451790 0.892124i \(-0.350786\pi\)
0.451790 + 0.892124i \(0.350786\pi\)
\(632\) 0 0
\(633\) −0.252283 −0.0100274
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −24.6561 −0.976911
\(638\) 0 0
\(639\) −81.2380 −3.21372
\(640\) 0 0
\(641\) 2.06630 0.0816141 0.0408070 0.999167i \(-0.487007\pi\)
0.0408070 + 0.999167i \(0.487007\pi\)
\(642\) 0 0
\(643\) −1.19914 −0.0472893 −0.0236446 0.999720i \(-0.507527\pi\)
−0.0236446 + 0.999720i \(0.507527\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.08530 0.199924 0.0999619 0.994991i \(-0.468128\pi\)
0.0999619 + 0.994991i \(0.468128\pi\)
\(648\) 0 0
\(649\) 10.5638 0.414664
\(650\) 0 0
\(651\) −34.6468 −1.35792
\(652\) 0 0
\(653\) −11.2713 −0.441081 −0.220541 0.975378i \(-0.570782\pi\)
−0.220541 + 0.975378i \(0.570782\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 24.6444 0.961470
\(658\) 0 0
\(659\) −26.5968 −1.03606 −0.518031 0.855362i \(-0.673335\pi\)
−0.518031 + 0.855362i \(0.673335\pi\)
\(660\) 0 0
\(661\) 23.0951 0.898297 0.449148 0.893457i \(-0.351727\pi\)
0.449148 + 0.893457i \(0.351727\pi\)
\(662\) 0 0
\(663\) −51.2174 −1.98912
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.53426 −0.0594070
\(668\) 0 0
\(669\) −39.8948 −1.54242
\(670\) 0 0
\(671\) −6.89371 −0.266129
\(672\) 0 0
\(673\) −33.5053 −1.29154 −0.645768 0.763534i \(-0.723463\pi\)
−0.645768 + 0.763534i \(0.723463\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.1851 0.622044 0.311022 0.950403i \(-0.399329\pi\)
0.311022 + 0.950403i \(0.399329\pi\)
\(678\) 0 0
\(679\) −27.1695 −1.04267
\(680\) 0 0
\(681\) −12.4908 −0.478648
\(682\) 0 0
\(683\) −0.270984 −0.0103689 −0.00518446 0.999987i \(-0.501650\pi\)
−0.00518446 + 0.999987i \(0.501650\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 68.5082 2.61375
\(688\) 0 0
\(689\) 20.8032 0.792538
\(690\) 0 0
\(691\) 21.9182 0.833808 0.416904 0.908950i \(-0.363115\pi\)
0.416904 + 0.908950i \(0.363115\pi\)
\(692\) 0 0
\(693\) −15.6725 −0.595348
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −34.2509 −1.29735
\(698\) 0 0
\(699\) −70.9269 −2.68270
\(700\) 0 0
\(701\) 10.5175 0.397239 0.198620 0.980077i \(-0.436354\pi\)
0.198620 + 0.980077i \(0.436354\pi\)
\(702\) 0 0
\(703\) −8.79992 −0.331895
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.2255 0.760659
\(708\) 0 0
\(709\) 15.6045 0.586039 0.293020 0.956106i \(-0.405340\pi\)
0.293020 + 0.956106i \(0.405340\pi\)
\(710\) 0 0
\(711\) −64.6536 −2.42470
\(712\) 0 0
\(713\) 11.1961 0.419295
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.5133 0.616702
\(718\) 0 0
\(719\) −1.45261 −0.0541732 −0.0270866 0.999633i \(-0.508623\pi\)
−0.0270866 + 0.999633i \(0.508623\pi\)
\(720\) 0 0
\(721\) −6.13133 −0.228343
\(722\) 0 0
\(723\) −65.0741 −2.42013
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.22294 0.230796 0.115398 0.993319i \(-0.463186\pi\)
0.115398 + 0.993319i \(0.463186\pi\)
\(728\) 0 0
\(729\) 60.2183 2.23031
\(730\) 0 0
\(731\) −11.5749 −0.428114
\(732\) 0 0
\(733\) 17.3653 0.641400 0.320700 0.947181i \(-0.396082\pi\)
0.320700 + 0.947181i \(0.396082\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.7418 −0.543021
\(738\) 0 0
\(739\) 35.9486 1.32239 0.661196 0.750213i \(-0.270049\pi\)
0.661196 + 0.750213i \(0.270049\pi\)
\(740\) 0 0
\(741\) −15.0233 −0.551895
\(742\) 0 0
\(743\) −16.5717 −0.607956 −0.303978 0.952679i \(-0.598315\pi\)
−0.303978 + 0.952679i \(0.598315\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −85.4682 −3.12712
\(748\) 0 0
\(749\) −0.794560 −0.0290326
\(750\) 0 0
\(751\) −33.7738 −1.23242 −0.616211 0.787581i \(-0.711333\pi\)
−0.616211 + 0.787581i \(0.711333\pi\)
\(752\) 0 0
\(753\) 30.6129 1.11560
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.4033 1.06868 0.534341 0.845269i \(-0.320560\pi\)
0.534341 + 0.845269i \(0.320560\pi\)
\(758\) 0 0
\(759\) 7.03198 0.255245
\(760\) 0 0
\(761\) −28.8518 −1.04588 −0.522938 0.852371i \(-0.675164\pi\)
−0.522938 + 0.852371i \(0.675164\pi\)
\(762\) 0 0
\(763\) 20.5880 0.745337
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37.9948 −1.37191
\(768\) 0 0
\(769\) 11.6814 0.421243 0.210621 0.977568i \(-0.432451\pi\)
0.210621 + 0.977568i \(0.432451\pi\)
\(770\) 0 0
\(771\) −2.46867 −0.0889071
\(772\) 0 0
\(773\) 51.1567 1.83998 0.919990 0.391943i \(-0.128197\pi\)
0.919990 + 0.391943i \(0.128197\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 45.8454 1.64469
\(778\) 0 0
\(779\) −10.0466 −0.359958
\(780\) 0 0
\(781\) 14.7243 0.526877
\(782\) 0 0
\(783\) 15.4637 0.552629
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.61117 −0.342601 −0.171301 0.985219i \(-0.554797\pi\)
−0.171301 + 0.985219i \(0.554797\pi\)
\(788\) 0 0
\(789\) −23.5961 −0.840045
\(790\) 0 0
\(791\) −1.31778 −0.0468548
\(792\) 0 0
\(793\) 24.7947 0.880485
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.7046 0.697973 0.348986 0.937128i \(-0.386526\pi\)
0.348986 + 0.937128i \(0.386526\pi\)
\(798\) 0 0
\(799\) 19.7075 0.697202
\(800\) 0 0
\(801\) −85.7110 −3.02845
\(802\) 0 0
\(803\) −4.46677 −0.157629
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.17070 0.182017
\(808\) 0 0
\(809\) 34.6616 1.21864 0.609319 0.792925i \(-0.291443\pi\)
0.609319 + 0.792925i \(0.291443\pi\)
\(810\) 0 0
\(811\) −46.6192 −1.63702 −0.818510 0.574492i \(-0.805200\pi\)
−0.818510 + 0.574492i \(0.805200\pi\)
\(812\) 0 0
\(813\) −13.1839 −0.462378
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.39521 −0.118783
\(818\) 0 0
\(819\) 56.3694 1.96971
\(820\) 0 0
\(821\) −6.13288 −0.214039 −0.107019 0.994257i \(-0.534131\pi\)
−0.107019 + 0.994257i \(0.534131\pi\)
\(822\) 0 0
\(823\) 14.0997 0.491484 0.245742 0.969335i \(-0.420968\pi\)
0.245742 + 0.969335i \(0.420968\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.9237 −0.727587 −0.363794 0.931480i \(-0.618519\pi\)
−0.363794 + 0.931480i \(0.618519\pi\)
\(828\) 0 0
\(829\) 29.9646 1.04071 0.520357 0.853949i \(-0.325799\pi\)
0.520357 + 0.853949i \(0.325799\pi\)
\(830\) 0 0
\(831\) 20.9172 0.725609
\(832\) 0 0
\(833\) 15.2168 0.527230
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −112.844 −3.90046
\(838\) 0 0
\(839\) 6.87642 0.237400 0.118700 0.992930i \(-0.462127\pi\)
0.118700 + 0.992930i \(0.462127\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −69.3891 −2.38989
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13.1088 −0.450423
\(848\) 0 0
\(849\) −62.3092 −2.13845
\(850\) 0 0
\(851\) −14.8148 −0.507846
\(852\) 0 0
\(853\) −25.7698 −0.882341 −0.441170 0.897423i \(-0.645437\pi\)
−0.441170 + 0.897423i \(0.645437\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.2927 −1.20557 −0.602787 0.797902i \(-0.705943\pi\)
−0.602787 + 0.797902i \(0.705943\pi\)
\(858\) 0 0
\(859\) 39.2111 1.33787 0.668933 0.743323i \(-0.266751\pi\)
0.668933 + 0.743323i \(0.266751\pi\)
\(860\) 0 0
\(861\) 52.3404 1.78376
\(862\) 0 0
\(863\) 26.1150 0.888966 0.444483 0.895787i \(-0.353387\pi\)
0.444483 + 0.895787i \(0.353387\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −24.0574 −0.817032
\(868\) 0 0
\(869\) 11.7184 0.397519
\(870\) 0 0
\(871\) 53.0220 1.79658
\(872\) 0 0
\(873\) −144.705 −4.89753
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −30.8669 −1.04230 −0.521150 0.853465i \(-0.674497\pi\)
−0.521150 + 0.853465i \(0.674497\pi\)
\(878\) 0 0
\(879\) −88.7556 −2.99365
\(880\) 0 0
\(881\) −23.8713 −0.804244 −0.402122 0.915586i \(-0.631727\pi\)
−0.402122 + 0.915586i \(0.631727\pi\)
\(882\) 0 0
\(883\) 42.0486 1.41505 0.707524 0.706690i \(-0.249812\pi\)
0.707524 + 0.706690i \(0.249812\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −55.1261 −1.85095 −0.925477 0.378803i \(-0.876336\pi\)
−0.925477 + 0.378803i \(0.876336\pi\)
\(888\) 0 0
\(889\) −31.9746 −1.07239
\(890\) 0 0
\(891\) −38.4478 −1.28805
\(892\) 0 0
\(893\) 5.78070 0.193444
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −25.2920 −0.844476
\(898\) 0 0
\(899\) −7.29734 −0.243380
\(900\) 0 0
\(901\) −12.8389 −0.427726
\(902\) 0 0
\(903\) 17.6882 0.588625
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.81301 −0.226222 −0.113111 0.993582i \(-0.536082\pi\)
−0.113111 + 0.993582i \(0.536082\pi\)
\(908\) 0 0
\(909\) 107.722 3.57290
\(910\) 0 0
\(911\) 33.4675 1.10883 0.554415 0.832241i \(-0.312942\pi\)
0.554415 + 0.832241i \(0.312942\pi\)
\(912\) 0 0
\(913\) 15.4910 0.512678
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.12119 0.235162
\(918\) 0 0
\(919\) −7.97743 −0.263151 −0.131576 0.991306i \(-0.542004\pi\)
−0.131576 + 0.991306i \(0.542004\pi\)
\(920\) 0 0
\(921\) −72.2314 −2.38011
\(922\) 0 0
\(923\) −52.9591 −1.74317
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −32.6556 −1.07255
\(928\) 0 0
\(929\) 0.440593 0.0144554 0.00722769 0.999974i \(-0.497699\pi\)
0.00722769 + 0.999974i \(0.497699\pi\)
\(930\) 0 0
\(931\) 4.46345 0.146284
\(932\) 0 0
\(933\) 38.9760 1.27602
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.69858 −0.218833 −0.109417 0.993996i \(-0.534898\pi\)
−0.109417 + 0.993996i \(0.534898\pi\)
\(938\) 0 0
\(939\) 13.9558 0.455431
\(940\) 0 0
\(941\) 3.14308 0.102461 0.0512307 0.998687i \(-0.483686\pi\)
0.0512307 + 0.998687i \(0.483686\pi\)
\(942\) 0 0
\(943\) −16.9137 −0.550786
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.7151 −1.19308 −0.596541 0.802583i \(-0.703459\pi\)
−0.596541 + 0.802583i \(0.703459\pi\)
\(948\) 0 0
\(949\) 16.0657 0.521515
\(950\) 0 0
\(951\) 11.7712 0.381707
\(952\) 0 0
\(953\) 6.34286 0.205465 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4.58329 −0.148157
\(958\) 0 0
\(959\) −4.99083 −0.161162
\(960\) 0 0
\(961\) 22.2512 0.717780
\(962\) 0 0
\(963\) −4.23185 −0.136369
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −14.9669 −0.481302 −0.240651 0.970612i \(-0.577361\pi\)
−0.240651 + 0.970612i \(0.577361\pi\)
\(968\) 0 0
\(969\) 9.27180 0.297853
\(970\) 0 0
\(971\) 25.0440 0.803699 0.401849 0.915706i \(-0.368368\pi\)
0.401849 + 0.915706i \(0.368368\pi\)
\(972\) 0 0
\(973\) 19.4944 0.624961
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.8796 −1.40383 −0.701917 0.712259i \(-0.747672\pi\)
−0.701917 + 0.712259i \(0.747672\pi\)
\(978\) 0 0
\(979\) 15.5350 0.496502
\(980\) 0 0
\(981\) 109.652 3.50093
\(982\) 0 0
\(983\) 7.18506 0.229168 0.114584 0.993414i \(-0.463447\pi\)
0.114584 + 0.993414i \(0.463447\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −30.1160 −0.958602
\(988\) 0 0
\(989\) −5.71589 −0.181755
\(990\) 0 0
\(991\) 0.349514 0.0111027 0.00555133 0.999985i \(-0.498233\pi\)
0.00555133 + 0.999985i \(0.498233\pi\)
\(992\) 0 0
\(993\) −110.322 −3.50098
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 55.7521 1.76569 0.882844 0.469666i \(-0.155626\pi\)
0.882844 + 0.469666i \(0.155626\pi\)
\(998\) 0 0
\(999\) 149.317 4.72420
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.a.m.1.10 10
5.2 odd 4 580.2.c.b.349.1 10
5.3 odd 4 580.2.c.b.349.10 yes 10
5.4 even 2 inner 2900.2.a.m.1.1 10
15.2 even 4 5220.2.g.d.2089.2 10
15.8 even 4 5220.2.g.d.2089.1 10
20.3 even 4 2320.2.d.i.929.1 10
20.7 even 4 2320.2.d.i.929.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.c.b.349.1 10 5.2 odd 4
580.2.c.b.349.10 yes 10 5.3 odd 4
2320.2.d.i.929.1 10 20.3 even 4
2320.2.d.i.929.10 10 20.7 even 4
2900.2.a.m.1.1 10 5.4 even 2 inner
2900.2.a.m.1.10 10 1.1 even 1 trivial
5220.2.g.d.2089.1 10 15.8 even 4
5220.2.g.d.2089.2 10 15.2 even 4