Properties

Label 2912.2.a.u.1.3
Level $2912$
Weight $2$
Character 2912.1
Self dual yes
Analytic conductor $23.252$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.153499364.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 18x^{3} + 19x^{2} - 25x - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.37463\) of defining polynomial
Character \(\chi\) \(=\) 2912.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.735766 q^{3} +0.856892 q^{5} -1.00000 q^{7} -2.45865 q^{9} -5.29340 q^{11} -1.00000 q^{13} -0.630472 q^{15} +7.13529 q^{17} -1.14311 q^{19} +0.735766 q^{21} -6.17311 q^{23} -4.26574 q^{25} +4.01629 q^{27} +1.21376 q^{29} +4.77441 q^{31} +3.89471 q^{33} -0.856892 q^{35} -4.32888 q^{37} +0.735766 q^{39} +8.47515 q^{41} +8.59628 q^{43} -2.10680 q^{45} +5.97869 q^{47} +1.00000 q^{49} -5.24990 q^{51} +10.8069 q^{53} -4.53588 q^{55} +0.841060 q^{57} +5.83536 q^{59} -2.83558 q^{61} +2.45865 q^{63} -0.856892 q^{65} -10.0391 q^{67} +4.54196 q^{69} -6.12899 q^{71} +10.0079 q^{73} +3.13858 q^{75} +5.29340 q^{77} +8.70793 q^{79} +4.42090 q^{81} -9.26469 q^{83} +6.11417 q^{85} -0.893040 q^{87} +7.67959 q^{89} +1.00000 q^{91} -3.51285 q^{93} -0.979520 q^{95} -2.46070 q^{97} +13.0146 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 3 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} - 6 q^{13} + 2 q^{15} - 2 q^{17} - 9 q^{19} + 4 q^{21} + 11 q^{23} + 21 q^{25} - 22 q^{27} + 7 q^{29} - q^{31} + 18 q^{33} - 3 q^{35} + 16 q^{37}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.735766 −0.424795 −0.212397 0.977183i \(-0.568127\pi\)
−0.212397 + 0.977183i \(0.568127\pi\)
\(4\) 0 0
\(5\) 0.856892 0.383214 0.191607 0.981472i \(-0.438630\pi\)
0.191607 + 0.981472i \(0.438630\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.45865 −0.819550
\(10\) 0 0
\(11\) −5.29340 −1.59602 −0.798011 0.602643i \(-0.794114\pi\)
−0.798011 + 0.602643i \(0.794114\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −0.630472 −0.162787
\(16\) 0 0
\(17\) 7.13529 1.73056 0.865281 0.501287i \(-0.167140\pi\)
0.865281 + 0.501287i \(0.167140\pi\)
\(18\) 0 0
\(19\) −1.14311 −0.262247 −0.131123 0.991366i \(-0.541858\pi\)
−0.131123 + 0.991366i \(0.541858\pi\)
\(20\) 0 0
\(21\) 0.735766 0.160557
\(22\) 0 0
\(23\) −6.17311 −1.28718 −0.643591 0.765370i \(-0.722556\pi\)
−0.643591 + 0.765370i \(0.722556\pi\)
\(24\) 0 0
\(25\) −4.26574 −0.853147
\(26\) 0 0
\(27\) 4.01629 0.772935
\(28\) 0 0
\(29\) 1.21376 0.225389 0.112694 0.993630i \(-0.464052\pi\)
0.112694 + 0.993630i \(0.464052\pi\)
\(30\) 0 0
\(31\) 4.77441 0.857509 0.428754 0.903421i \(-0.358953\pi\)
0.428754 + 0.903421i \(0.358953\pi\)
\(32\) 0 0
\(33\) 3.89471 0.677981
\(34\) 0 0
\(35\) −0.856892 −0.144841
\(36\) 0 0
\(37\) −4.32888 −0.711663 −0.355832 0.934550i \(-0.615802\pi\)
−0.355832 + 0.934550i \(0.615802\pi\)
\(38\) 0 0
\(39\) 0.735766 0.117817
\(40\) 0 0
\(41\) 8.47515 1.32360 0.661798 0.749682i \(-0.269793\pi\)
0.661798 + 0.749682i \(0.269793\pi\)
\(42\) 0 0
\(43\) 8.59628 1.31092 0.655460 0.755230i \(-0.272475\pi\)
0.655460 + 0.755230i \(0.272475\pi\)
\(44\) 0 0
\(45\) −2.10680 −0.314063
\(46\) 0 0
\(47\) 5.97869 0.872082 0.436041 0.899927i \(-0.356380\pi\)
0.436041 + 0.899927i \(0.356380\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −5.24990 −0.735134
\(52\) 0 0
\(53\) 10.8069 1.48444 0.742219 0.670158i \(-0.233774\pi\)
0.742219 + 0.670158i \(0.233774\pi\)
\(54\) 0 0
\(55\) −4.53588 −0.611617
\(56\) 0 0
\(57\) 0.841060 0.111401
\(58\) 0 0
\(59\) 5.83536 0.759700 0.379850 0.925048i \(-0.375976\pi\)
0.379850 + 0.925048i \(0.375976\pi\)
\(60\) 0 0
\(61\) −2.83558 −0.363059 −0.181530 0.983385i \(-0.558105\pi\)
−0.181530 + 0.983385i \(0.558105\pi\)
\(62\) 0 0
\(63\) 2.45865 0.309761
\(64\) 0 0
\(65\) −0.856892 −0.106284
\(66\) 0 0
\(67\) −10.0391 −1.22647 −0.613235 0.789900i \(-0.710132\pi\)
−0.613235 + 0.789900i \(0.710132\pi\)
\(68\) 0 0
\(69\) 4.54196 0.546788
\(70\) 0 0
\(71\) −6.12899 −0.727377 −0.363689 0.931521i \(-0.618483\pi\)
−0.363689 + 0.931521i \(0.618483\pi\)
\(72\) 0 0
\(73\) 10.0079 1.17133 0.585666 0.810553i \(-0.300833\pi\)
0.585666 + 0.810553i \(0.300833\pi\)
\(74\) 0 0
\(75\) 3.13858 0.362412
\(76\) 0 0
\(77\) 5.29340 0.603239
\(78\) 0 0
\(79\) 8.70793 0.979719 0.489860 0.871801i \(-0.337048\pi\)
0.489860 + 0.871801i \(0.337048\pi\)
\(80\) 0 0
\(81\) 4.42090 0.491211
\(82\) 0 0
\(83\) −9.26469 −1.01693 −0.508466 0.861082i \(-0.669787\pi\)
−0.508466 + 0.861082i \(0.669787\pi\)
\(84\) 0 0
\(85\) 6.11417 0.663175
\(86\) 0 0
\(87\) −0.893040 −0.0957440
\(88\) 0 0
\(89\) 7.67959 0.814035 0.407018 0.913420i \(-0.366569\pi\)
0.407018 + 0.913420i \(0.366569\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −3.51285 −0.364265
\(94\) 0 0
\(95\) −0.979520 −0.100497
\(96\) 0 0
\(97\) −2.46070 −0.249846 −0.124923 0.992166i \(-0.539868\pi\)
−0.124923 + 0.992166i \(0.539868\pi\)
\(98\) 0 0
\(99\) 13.0146 1.30802
\(100\) 0 0
\(101\) 11.4150 1.13583 0.567917 0.823086i \(-0.307750\pi\)
0.567917 + 0.823086i \(0.307750\pi\)
\(102\) 0 0
\(103\) 6.90045 0.679921 0.339961 0.940440i \(-0.389586\pi\)
0.339961 + 0.940440i \(0.389586\pi\)
\(104\) 0 0
\(105\) 0.630472 0.0615277
\(106\) 0 0
\(107\) −9.93632 −0.960580 −0.480290 0.877110i \(-0.659469\pi\)
−0.480290 + 0.877110i \(0.659469\pi\)
\(108\) 0 0
\(109\) 15.1873 1.45468 0.727338 0.686279i \(-0.240757\pi\)
0.727338 + 0.686279i \(0.240757\pi\)
\(110\) 0 0
\(111\) 3.18504 0.302311
\(112\) 0 0
\(113\) −13.1196 −1.23419 −0.617093 0.786890i \(-0.711690\pi\)
−0.617093 + 0.786890i \(0.711690\pi\)
\(114\) 0 0
\(115\) −5.28968 −0.493266
\(116\) 0 0
\(117\) 2.45865 0.227302
\(118\) 0 0
\(119\) −7.13529 −0.654091
\(120\) 0 0
\(121\) 17.0201 1.54728
\(122\) 0 0
\(123\) −6.23573 −0.562257
\(124\) 0 0
\(125\) −7.93973 −0.710151
\(126\) 0 0
\(127\) 8.70939 0.772833 0.386417 0.922324i \(-0.373713\pi\)
0.386417 + 0.922324i \(0.373713\pi\)
\(128\) 0 0
\(129\) −6.32485 −0.556872
\(130\) 0 0
\(131\) −7.01266 −0.612699 −0.306350 0.951919i \(-0.599108\pi\)
−0.306350 + 0.951919i \(0.599108\pi\)
\(132\) 0 0
\(133\) 1.14311 0.0991200
\(134\) 0 0
\(135\) 3.44152 0.296199
\(136\) 0 0
\(137\) −2.86804 −0.245034 −0.122517 0.992466i \(-0.539097\pi\)
−0.122517 + 0.992466i \(0.539097\pi\)
\(138\) 0 0
\(139\) 0.509801 0.0432407 0.0216204 0.999766i \(-0.493117\pi\)
0.0216204 + 0.999766i \(0.493117\pi\)
\(140\) 0 0
\(141\) −4.39892 −0.370456
\(142\) 0 0
\(143\) 5.29340 0.442657
\(144\) 0 0
\(145\) 1.04006 0.0863721
\(146\) 0 0
\(147\) −0.735766 −0.0606849
\(148\) 0 0
\(149\) −6.30355 −0.516407 −0.258203 0.966091i \(-0.583130\pi\)
−0.258203 + 0.966091i \(0.583130\pi\)
\(150\) 0 0
\(151\) 0.942016 0.0766602 0.0383301 0.999265i \(-0.487796\pi\)
0.0383301 + 0.999265i \(0.487796\pi\)
\(152\) 0 0
\(153\) −17.5432 −1.41828
\(154\) 0 0
\(155\) 4.09115 0.328609
\(156\) 0 0
\(157\) −2.84255 −0.226860 −0.113430 0.993546i \(-0.536184\pi\)
−0.113430 + 0.993546i \(0.536184\pi\)
\(158\) 0 0
\(159\) −7.95132 −0.630581
\(160\) 0 0
\(161\) 6.17311 0.486509
\(162\) 0 0
\(163\) −3.34315 −0.261856 −0.130928 0.991392i \(-0.541796\pi\)
−0.130928 + 0.991392i \(0.541796\pi\)
\(164\) 0 0
\(165\) 3.33734 0.259812
\(166\) 0 0
\(167\) −0.639968 −0.0495222 −0.0247611 0.999693i \(-0.507883\pi\)
−0.0247611 + 0.999693i \(0.507883\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 2.81050 0.214924
\(172\) 0 0
\(173\) 10.0070 0.760816 0.380408 0.924819i \(-0.375784\pi\)
0.380408 + 0.924819i \(0.375784\pi\)
\(174\) 0 0
\(175\) 4.26574 0.322459
\(176\) 0 0
\(177\) −4.29346 −0.322716
\(178\) 0 0
\(179\) −4.63890 −0.346727 −0.173364 0.984858i \(-0.555464\pi\)
−0.173364 + 0.984858i \(0.555464\pi\)
\(180\) 0 0
\(181\) 0.228760 0.0170036 0.00850179 0.999964i \(-0.497294\pi\)
0.00850179 + 0.999964i \(0.497294\pi\)
\(182\) 0 0
\(183\) 2.08633 0.154226
\(184\) 0 0
\(185\) −3.70938 −0.272719
\(186\) 0 0
\(187\) −37.7700 −2.76201
\(188\) 0 0
\(189\) −4.01629 −0.292142
\(190\) 0 0
\(191\) 24.4939 1.77231 0.886157 0.463385i \(-0.153365\pi\)
0.886157 + 0.463385i \(0.153365\pi\)
\(192\) 0 0
\(193\) 11.9131 0.857525 0.428762 0.903417i \(-0.358950\pi\)
0.428762 + 0.903417i \(0.358950\pi\)
\(194\) 0 0
\(195\) 0.630472 0.0451490
\(196\) 0 0
\(197\) −6.01070 −0.428244 −0.214122 0.976807i \(-0.568689\pi\)
−0.214122 + 0.976807i \(0.568689\pi\)
\(198\) 0 0
\(199\) 12.5626 0.890536 0.445268 0.895397i \(-0.353108\pi\)
0.445268 + 0.895397i \(0.353108\pi\)
\(200\) 0 0
\(201\) 7.38642 0.520998
\(202\) 0 0
\(203\) −1.21376 −0.0851890
\(204\) 0 0
\(205\) 7.26229 0.507220
\(206\) 0 0
\(207\) 15.1775 1.05491
\(208\) 0 0
\(209\) 6.05093 0.418552
\(210\) 0 0
\(211\) −14.4316 −0.993515 −0.496758 0.867889i \(-0.665476\pi\)
−0.496758 + 0.867889i \(0.665476\pi\)
\(212\) 0 0
\(213\) 4.50950 0.308986
\(214\) 0 0
\(215\) 7.36608 0.502363
\(216\) 0 0
\(217\) −4.77441 −0.324108
\(218\) 0 0
\(219\) −7.36344 −0.497575
\(220\) 0 0
\(221\) −7.13529 −0.479972
\(222\) 0 0
\(223\) 6.98634 0.467840 0.233920 0.972256i \(-0.424845\pi\)
0.233920 + 0.972256i \(0.424845\pi\)
\(224\) 0 0
\(225\) 10.4879 0.699196
\(226\) 0 0
\(227\) 4.82482 0.320234 0.160117 0.987098i \(-0.448813\pi\)
0.160117 + 0.987098i \(0.448813\pi\)
\(228\) 0 0
\(229\) −22.8424 −1.50947 −0.754733 0.656032i \(-0.772233\pi\)
−0.754733 + 0.656032i \(0.772233\pi\)
\(230\) 0 0
\(231\) −3.89471 −0.256253
\(232\) 0 0
\(233\) 22.9996 1.50676 0.753379 0.657587i \(-0.228423\pi\)
0.753379 + 0.657587i \(0.228423\pi\)
\(234\) 0 0
\(235\) 5.12309 0.334194
\(236\) 0 0
\(237\) −6.40700 −0.416179
\(238\) 0 0
\(239\) 19.1909 1.24136 0.620678 0.784065i \(-0.286857\pi\)
0.620678 + 0.784065i \(0.286857\pi\)
\(240\) 0 0
\(241\) 24.8655 1.60173 0.800863 0.598847i \(-0.204374\pi\)
0.800863 + 0.598847i \(0.204374\pi\)
\(242\) 0 0
\(243\) −15.3016 −0.981599
\(244\) 0 0
\(245\) 0.856892 0.0547448
\(246\) 0 0
\(247\) 1.14311 0.0727342
\(248\) 0 0
\(249\) 6.81664 0.431987
\(250\) 0 0
\(251\) −8.42422 −0.531732 −0.265866 0.964010i \(-0.585658\pi\)
−0.265866 + 0.964010i \(0.585658\pi\)
\(252\) 0 0
\(253\) 32.6767 2.05437
\(254\) 0 0
\(255\) −4.49860 −0.281713
\(256\) 0 0
\(257\) −12.0509 −0.751717 −0.375858 0.926677i \(-0.622652\pi\)
−0.375858 + 0.926677i \(0.622652\pi\)
\(258\) 0 0
\(259\) 4.32888 0.268983
\(260\) 0 0
\(261\) −2.98420 −0.184717
\(262\) 0 0
\(263\) 26.7973 1.65239 0.826195 0.563384i \(-0.190501\pi\)
0.826195 + 0.563384i \(0.190501\pi\)
\(264\) 0 0
\(265\) 9.26032 0.568857
\(266\) 0 0
\(267\) −5.65038 −0.345798
\(268\) 0 0
\(269\) 16.0222 0.976894 0.488447 0.872594i \(-0.337564\pi\)
0.488447 + 0.872594i \(0.337564\pi\)
\(270\) 0 0
\(271\) −11.2249 −0.681861 −0.340931 0.940088i \(-0.610742\pi\)
−0.340931 + 0.940088i \(0.610742\pi\)
\(272\) 0 0
\(273\) −0.735766 −0.0445306
\(274\) 0 0
\(275\) 22.5803 1.36164
\(276\) 0 0
\(277\) 0.683940 0.0410940 0.0205470 0.999789i \(-0.493459\pi\)
0.0205470 + 0.999789i \(0.493459\pi\)
\(278\) 0 0
\(279\) −11.7386 −0.702771
\(280\) 0 0
\(281\) −3.34389 −0.199480 −0.0997399 0.995014i \(-0.531801\pi\)
−0.0997399 + 0.995014i \(0.531801\pi\)
\(282\) 0 0
\(283\) 21.6803 1.28876 0.644381 0.764705i \(-0.277115\pi\)
0.644381 + 0.764705i \(0.277115\pi\)
\(284\) 0 0
\(285\) 0.720697 0.0426904
\(286\) 0 0
\(287\) −8.47515 −0.500273
\(288\) 0 0
\(289\) 33.9124 1.99485
\(290\) 0 0
\(291\) 1.81050 0.106133
\(292\) 0 0
\(293\) 21.0101 1.22743 0.613713 0.789529i \(-0.289675\pi\)
0.613713 + 0.789529i \(0.289675\pi\)
\(294\) 0 0
\(295\) 5.00028 0.291127
\(296\) 0 0
\(297\) −21.2598 −1.23362
\(298\) 0 0
\(299\) 6.17311 0.357000
\(300\) 0 0
\(301\) −8.59628 −0.495481
\(302\) 0 0
\(303\) −8.39876 −0.482496
\(304\) 0 0
\(305\) −2.42979 −0.139129
\(306\) 0 0
\(307\) 18.0255 1.02877 0.514385 0.857560i \(-0.328020\pi\)
0.514385 + 0.857560i \(0.328020\pi\)
\(308\) 0 0
\(309\) −5.07711 −0.288827
\(310\) 0 0
\(311\) 26.5642 1.50632 0.753159 0.657839i \(-0.228529\pi\)
0.753159 + 0.657839i \(0.228529\pi\)
\(312\) 0 0
\(313\) 2.20952 0.124889 0.0624446 0.998048i \(-0.480110\pi\)
0.0624446 + 0.998048i \(0.480110\pi\)
\(314\) 0 0
\(315\) 2.10680 0.118705
\(316\) 0 0
\(317\) −21.2159 −1.19160 −0.595801 0.803132i \(-0.703165\pi\)
−0.595801 + 0.803132i \(0.703165\pi\)
\(318\) 0 0
\(319\) −6.42490 −0.359725
\(320\) 0 0
\(321\) 7.31081 0.408049
\(322\) 0 0
\(323\) −8.15641 −0.453835
\(324\) 0 0
\(325\) 4.26574 0.236620
\(326\) 0 0
\(327\) −11.1743 −0.617939
\(328\) 0 0
\(329\) −5.97869 −0.329616
\(330\) 0 0
\(331\) −3.72122 −0.204537 −0.102268 0.994757i \(-0.532610\pi\)
−0.102268 + 0.994757i \(0.532610\pi\)
\(332\) 0 0
\(333\) 10.6432 0.583243
\(334\) 0 0
\(335\) −8.60242 −0.470000
\(336\) 0 0
\(337\) −13.8460 −0.754241 −0.377120 0.926164i \(-0.623086\pi\)
−0.377120 + 0.926164i \(0.623086\pi\)
\(338\) 0 0
\(339\) 9.65293 0.524275
\(340\) 0 0
\(341\) −25.2729 −1.36860
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 3.89197 0.209537
\(346\) 0 0
\(347\) −4.34530 −0.233268 −0.116634 0.993175i \(-0.537210\pi\)
−0.116634 + 0.993175i \(0.537210\pi\)
\(348\) 0 0
\(349\) −15.4939 −0.829370 −0.414685 0.909965i \(-0.636108\pi\)
−0.414685 + 0.909965i \(0.636108\pi\)
\(350\) 0 0
\(351\) −4.01629 −0.214374
\(352\) 0 0
\(353\) −32.3836 −1.72360 −0.861802 0.507246i \(-0.830664\pi\)
−0.861802 + 0.507246i \(0.830664\pi\)
\(354\) 0 0
\(355\) −5.25188 −0.278741
\(356\) 0 0
\(357\) 5.24990 0.277854
\(358\) 0 0
\(359\) −24.2941 −1.28219 −0.641096 0.767461i \(-0.721520\pi\)
−0.641096 + 0.767461i \(0.721520\pi\)
\(360\) 0 0
\(361\) −17.6933 −0.931227
\(362\) 0 0
\(363\) −12.5228 −0.657278
\(364\) 0 0
\(365\) 8.57566 0.448870
\(366\) 0 0
\(367\) 12.3079 0.642467 0.321233 0.947000i \(-0.395903\pi\)
0.321233 + 0.947000i \(0.395903\pi\)
\(368\) 0 0
\(369\) −20.8374 −1.08475
\(370\) 0 0
\(371\) −10.8069 −0.561065
\(372\) 0 0
\(373\) 14.8051 0.766579 0.383290 0.923628i \(-0.374791\pi\)
0.383290 + 0.923628i \(0.374791\pi\)
\(374\) 0 0
\(375\) 5.84179 0.301668
\(376\) 0 0
\(377\) −1.21376 −0.0625116
\(378\) 0 0
\(379\) 23.0467 1.18383 0.591915 0.806000i \(-0.298372\pi\)
0.591915 + 0.806000i \(0.298372\pi\)
\(380\) 0 0
\(381\) −6.40807 −0.328295
\(382\) 0 0
\(383\) −9.68193 −0.494724 −0.247362 0.968923i \(-0.579564\pi\)
−0.247362 + 0.968923i \(0.579564\pi\)
\(384\) 0 0
\(385\) 4.53588 0.231170
\(386\) 0 0
\(387\) −21.1352 −1.07436
\(388\) 0 0
\(389\) −8.72433 −0.442341 −0.221171 0.975235i \(-0.570988\pi\)
−0.221171 + 0.975235i \(0.570988\pi\)
\(390\) 0 0
\(391\) −44.0469 −2.22755
\(392\) 0 0
\(393\) 5.15968 0.260271
\(394\) 0 0
\(395\) 7.46176 0.375442
\(396\) 0 0
\(397\) 34.1651 1.71470 0.857350 0.514735i \(-0.172110\pi\)
0.857350 + 0.514735i \(0.172110\pi\)
\(398\) 0 0
\(399\) −0.841060 −0.0421057
\(400\) 0 0
\(401\) 5.31326 0.265331 0.132666 0.991161i \(-0.457646\pi\)
0.132666 + 0.991161i \(0.457646\pi\)
\(402\) 0 0
\(403\) −4.77441 −0.237830
\(404\) 0 0
\(405\) 3.78823 0.188239
\(406\) 0 0
\(407\) 22.9145 1.13583
\(408\) 0 0
\(409\) −24.4383 −1.20840 −0.604198 0.796834i \(-0.706506\pi\)
−0.604198 + 0.796834i \(0.706506\pi\)
\(410\) 0 0
\(411\) 2.11021 0.104089
\(412\) 0 0
\(413\) −5.83536 −0.287140
\(414\) 0 0
\(415\) −7.93884 −0.389702
\(416\) 0 0
\(417\) −0.375094 −0.0183684
\(418\) 0 0
\(419\) −37.5863 −1.83621 −0.918106 0.396334i \(-0.870282\pi\)
−0.918106 + 0.396334i \(0.870282\pi\)
\(420\) 0 0
\(421\) −35.6890 −1.73937 −0.869687 0.493603i \(-0.835679\pi\)
−0.869687 + 0.493603i \(0.835679\pi\)
\(422\) 0 0
\(423\) −14.6995 −0.714714
\(424\) 0 0
\(425\) −30.4373 −1.47642
\(426\) 0 0
\(427\) 2.83558 0.137224
\(428\) 0 0
\(429\) −3.89471 −0.188038
\(430\) 0 0
\(431\) 4.65716 0.224327 0.112164 0.993690i \(-0.464222\pi\)
0.112164 + 0.993690i \(0.464222\pi\)
\(432\) 0 0
\(433\) 6.76438 0.325076 0.162538 0.986702i \(-0.448032\pi\)
0.162538 + 0.986702i \(0.448032\pi\)
\(434\) 0 0
\(435\) −0.765239 −0.0366904
\(436\) 0 0
\(437\) 7.05653 0.337560
\(438\) 0 0
\(439\) 12.4235 0.592941 0.296471 0.955042i \(-0.404190\pi\)
0.296471 + 0.955042i \(0.404190\pi\)
\(440\) 0 0
\(441\) −2.45865 −0.117079
\(442\) 0 0
\(443\) −38.8193 −1.84436 −0.922181 0.386758i \(-0.873595\pi\)
−0.922181 + 0.386758i \(0.873595\pi\)
\(444\) 0 0
\(445\) 6.58058 0.311949
\(446\) 0 0
\(447\) 4.63794 0.219367
\(448\) 0 0
\(449\) 4.51542 0.213096 0.106548 0.994308i \(-0.466020\pi\)
0.106548 + 0.994308i \(0.466020\pi\)
\(450\) 0 0
\(451\) −44.8624 −2.11249
\(452\) 0 0
\(453\) −0.693103 −0.0325648
\(454\) 0 0
\(455\) 0.856892 0.0401717
\(456\) 0 0
\(457\) −13.9847 −0.654175 −0.327088 0.944994i \(-0.606067\pi\)
−0.327088 + 0.944994i \(0.606067\pi\)
\(458\) 0 0
\(459\) 28.6574 1.33761
\(460\) 0 0
\(461\) 42.4929 1.97909 0.989545 0.144222i \(-0.0460678\pi\)
0.989545 + 0.144222i \(0.0460678\pi\)
\(462\) 0 0
\(463\) 22.1367 1.02878 0.514389 0.857557i \(-0.328019\pi\)
0.514389 + 0.857557i \(0.328019\pi\)
\(464\) 0 0
\(465\) −3.01013 −0.139591
\(466\) 0 0
\(467\) 6.08560 0.281608 0.140804 0.990037i \(-0.455031\pi\)
0.140804 + 0.990037i \(0.455031\pi\)
\(468\) 0 0
\(469\) 10.0391 0.463562
\(470\) 0 0
\(471\) 2.09145 0.0963691
\(472\) 0 0
\(473\) −45.5036 −2.09226
\(474\) 0 0
\(475\) 4.87620 0.223735
\(476\) 0 0
\(477\) −26.5703 −1.21657
\(478\) 0 0
\(479\) 24.0642 1.09952 0.549760 0.835323i \(-0.314719\pi\)
0.549760 + 0.835323i \(0.314719\pi\)
\(480\) 0 0
\(481\) 4.32888 0.197380
\(482\) 0 0
\(483\) −4.54196 −0.206666
\(484\) 0 0
\(485\) −2.10856 −0.0957446
\(486\) 0 0
\(487\) 21.9199 0.993286 0.496643 0.867955i \(-0.334566\pi\)
0.496643 + 0.867955i \(0.334566\pi\)
\(488\) 0 0
\(489\) 2.45978 0.111235
\(490\) 0 0
\(491\) −1.92360 −0.0868109 −0.0434055 0.999058i \(-0.513821\pi\)
−0.0434055 + 0.999058i \(0.513821\pi\)
\(492\) 0 0
\(493\) 8.66050 0.390049
\(494\) 0 0
\(495\) 11.1521 0.501251
\(496\) 0 0
\(497\) 6.12899 0.274923
\(498\) 0 0
\(499\) 28.8472 1.29138 0.645690 0.763600i \(-0.276570\pi\)
0.645690 + 0.763600i \(0.276570\pi\)
\(500\) 0 0
\(501\) 0.470867 0.0210368
\(502\) 0 0
\(503\) 20.5272 0.915263 0.457632 0.889142i \(-0.348698\pi\)
0.457632 + 0.889142i \(0.348698\pi\)
\(504\) 0 0
\(505\) 9.78141 0.435267
\(506\) 0 0
\(507\) −0.735766 −0.0326765
\(508\) 0 0
\(509\) −19.0544 −0.844572 −0.422286 0.906463i \(-0.638772\pi\)
−0.422286 + 0.906463i \(0.638772\pi\)
\(510\) 0 0
\(511\) −10.0079 −0.442722
\(512\) 0 0
\(513\) −4.59105 −0.202700
\(514\) 0 0
\(515\) 5.91294 0.260555
\(516\) 0 0
\(517\) −31.6476 −1.39186
\(518\) 0 0
\(519\) −7.36279 −0.323190
\(520\) 0 0
\(521\) −24.9647 −1.09372 −0.546861 0.837223i \(-0.684178\pi\)
−0.546861 + 0.837223i \(0.684178\pi\)
\(522\) 0 0
\(523\) 11.2523 0.492027 0.246013 0.969266i \(-0.420879\pi\)
0.246013 + 0.969266i \(0.420879\pi\)
\(524\) 0 0
\(525\) −3.13858 −0.136979
\(526\) 0 0
\(527\) 34.0668 1.48397
\(528\) 0 0
\(529\) 15.1072 0.656837
\(530\) 0 0
\(531\) −14.3471 −0.622612
\(532\) 0 0
\(533\) −8.47515 −0.367100
\(534\) 0 0
\(535\) −8.51435 −0.368108
\(536\) 0 0
\(537\) 3.41314 0.147288
\(538\) 0 0
\(539\) −5.29340 −0.228003
\(540\) 0 0
\(541\) 20.5501 0.883517 0.441759 0.897134i \(-0.354355\pi\)
0.441759 + 0.897134i \(0.354355\pi\)
\(542\) 0 0
\(543\) −0.168314 −0.00722303
\(544\) 0 0
\(545\) 13.0139 0.557452
\(546\) 0 0
\(547\) 23.3560 0.998629 0.499314 0.866421i \(-0.333585\pi\)
0.499314 + 0.866421i \(0.333585\pi\)
\(548\) 0 0
\(549\) 6.97170 0.297545
\(550\) 0 0
\(551\) −1.38745 −0.0591075
\(552\) 0 0
\(553\) −8.70793 −0.370299
\(554\) 0 0
\(555\) 2.72924 0.115850
\(556\) 0 0
\(557\) −26.7694 −1.13426 −0.567128 0.823630i \(-0.691946\pi\)
−0.567128 + 0.823630i \(0.691946\pi\)
\(558\) 0 0
\(559\) −8.59628 −0.363584
\(560\) 0 0
\(561\) 27.7899 1.17329
\(562\) 0 0
\(563\) −36.3128 −1.53040 −0.765200 0.643793i \(-0.777360\pi\)
−0.765200 + 0.643793i \(0.777360\pi\)
\(564\) 0 0
\(565\) −11.2421 −0.472957
\(566\) 0 0
\(567\) −4.42090 −0.185660
\(568\) 0 0
\(569\) −26.7239 −1.12033 −0.560163 0.828382i \(-0.689262\pi\)
−0.560163 + 0.828382i \(0.689262\pi\)
\(570\) 0 0
\(571\) 15.1208 0.632787 0.316394 0.948628i \(-0.397528\pi\)
0.316394 + 0.948628i \(0.397528\pi\)
\(572\) 0 0
\(573\) −18.0218 −0.752869
\(574\) 0 0
\(575\) 26.3328 1.09816
\(576\) 0 0
\(577\) −19.0625 −0.793583 −0.396792 0.917909i \(-0.629876\pi\)
−0.396792 + 0.917909i \(0.629876\pi\)
\(578\) 0 0
\(579\) −8.76526 −0.364272
\(580\) 0 0
\(581\) 9.26469 0.384364
\(582\) 0 0
\(583\) −57.2051 −2.36919
\(584\) 0 0
\(585\) 2.10680 0.0871053
\(586\) 0 0
\(587\) −17.1581 −0.708189 −0.354094 0.935210i \(-0.615211\pi\)
−0.354094 + 0.935210i \(0.615211\pi\)
\(588\) 0 0
\(589\) −5.45766 −0.224879
\(590\) 0 0
\(591\) 4.42247 0.181916
\(592\) 0 0
\(593\) −47.5299 −1.95182 −0.975910 0.218172i \(-0.929991\pi\)
−0.975910 + 0.218172i \(0.929991\pi\)
\(594\) 0 0
\(595\) −6.11417 −0.250657
\(596\) 0 0
\(597\) −9.24310 −0.378295
\(598\) 0 0
\(599\) −45.2109 −1.84727 −0.923633 0.383279i \(-0.874795\pi\)
−0.923633 + 0.383279i \(0.874795\pi\)
\(600\) 0 0
\(601\) 6.47616 0.264168 0.132084 0.991239i \(-0.457833\pi\)
0.132084 + 0.991239i \(0.457833\pi\)
\(602\) 0 0
\(603\) 24.6826 1.00515
\(604\) 0 0
\(605\) 14.5844 0.592941
\(606\) 0 0
\(607\) −24.5572 −0.996746 −0.498373 0.866963i \(-0.666069\pi\)
−0.498373 + 0.866963i \(0.666069\pi\)
\(608\) 0 0
\(609\) 0.893040 0.0361878
\(610\) 0 0
\(611\) −5.97869 −0.241872
\(612\) 0 0
\(613\) −15.8984 −0.642128 −0.321064 0.947057i \(-0.604041\pi\)
−0.321064 + 0.947057i \(0.604041\pi\)
\(614\) 0 0
\(615\) −5.34335 −0.215464
\(616\) 0 0
\(617\) −1.87974 −0.0756756 −0.0378378 0.999284i \(-0.512047\pi\)
−0.0378378 + 0.999284i \(0.512047\pi\)
\(618\) 0 0
\(619\) −32.1905 −1.29385 −0.646923 0.762555i \(-0.723944\pi\)
−0.646923 + 0.762555i \(0.723944\pi\)
\(620\) 0 0
\(621\) −24.7930 −0.994908
\(622\) 0 0
\(623\) −7.67959 −0.307676
\(624\) 0 0
\(625\) 14.5252 0.581007
\(626\) 0 0
\(627\) −4.45207 −0.177799
\(628\) 0 0
\(629\) −30.8878 −1.23158
\(630\) 0 0
\(631\) 21.0326 0.837296 0.418648 0.908149i \(-0.362504\pi\)
0.418648 + 0.908149i \(0.362504\pi\)
\(632\) 0 0
\(633\) 10.6183 0.422040
\(634\) 0 0
\(635\) 7.46301 0.296160
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 15.0690 0.596122
\(640\) 0 0
\(641\) −48.3515 −1.90977 −0.954885 0.296976i \(-0.904022\pi\)
−0.954885 + 0.296976i \(0.904022\pi\)
\(642\) 0 0
\(643\) 17.9445 0.707661 0.353830 0.935310i \(-0.384879\pi\)
0.353830 + 0.935310i \(0.384879\pi\)
\(644\) 0 0
\(645\) −5.41971 −0.213401
\(646\) 0 0
\(647\) 38.3527 1.50780 0.753901 0.656988i \(-0.228170\pi\)
0.753901 + 0.656988i \(0.228170\pi\)
\(648\) 0 0
\(649\) −30.8889 −1.21250
\(650\) 0 0
\(651\) 3.51285 0.137679
\(652\) 0 0
\(653\) 4.72534 0.184917 0.0924585 0.995717i \(-0.470527\pi\)
0.0924585 + 0.995717i \(0.470527\pi\)
\(654\) 0 0
\(655\) −6.00910 −0.234795
\(656\) 0 0
\(657\) −24.6058 −0.959964
\(658\) 0 0
\(659\) 34.9188 1.36025 0.680123 0.733098i \(-0.261927\pi\)
0.680123 + 0.733098i \(0.261927\pi\)
\(660\) 0 0
\(661\) 23.5880 0.917467 0.458733 0.888574i \(-0.348303\pi\)
0.458733 + 0.888574i \(0.348303\pi\)
\(662\) 0 0
\(663\) 5.24990 0.203889
\(664\) 0 0
\(665\) 0.979520 0.0379842
\(666\) 0 0
\(667\) −7.49264 −0.290116
\(668\) 0 0
\(669\) −5.14031 −0.198736
\(670\) 0 0
\(671\) 15.0099 0.579450
\(672\) 0 0
\(673\) −0.165769 −0.00638993 −0.00319496 0.999995i \(-0.501017\pi\)
−0.00319496 + 0.999995i \(0.501017\pi\)
\(674\) 0 0
\(675\) −17.1324 −0.659427
\(676\) 0 0
\(677\) 29.6955 1.14129 0.570646 0.821196i \(-0.306693\pi\)
0.570646 + 0.821196i \(0.306693\pi\)
\(678\) 0 0
\(679\) 2.46070 0.0944331
\(680\) 0 0
\(681\) −3.54994 −0.136034
\(682\) 0 0
\(683\) 25.2448 0.965966 0.482983 0.875630i \(-0.339553\pi\)
0.482983 + 0.875630i \(0.339553\pi\)
\(684\) 0 0
\(685\) −2.45760 −0.0939002
\(686\) 0 0
\(687\) 16.8066 0.641213
\(688\) 0 0
\(689\) −10.8069 −0.411709
\(690\) 0 0
\(691\) −21.8769 −0.832238 −0.416119 0.909310i \(-0.636610\pi\)
−0.416119 + 0.909310i \(0.636610\pi\)
\(692\) 0 0
\(693\) −13.0146 −0.494385
\(694\) 0 0
\(695\) 0.436844 0.0165704
\(696\) 0 0
\(697\) 60.4727 2.29057
\(698\) 0 0
\(699\) −16.9224 −0.640062
\(700\) 0 0
\(701\) −7.84464 −0.296288 −0.148144 0.988966i \(-0.547330\pi\)
−0.148144 + 0.988966i \(0.547330\pi\)
\(702\) 0 0
\(703\) 4.94838 0.186632
\(704\) 0 0
\(705\) −3.76940 −0.141964
\(706\) 0 0
\(707\) −11.4150 −0.429305
\(708\) 0 0
\(709\) −26.6225 −0.999827 −0.499914 0.866075i \(-0.666635\pi\)
−0.499914 + 0.866075i \(0.666635\pi\)
\(710\) 0 0
\(711\) −21.4098 −0.802928
\(712\) 0 0
\(713\) −29.4729 −1.10377
\(714\) 0 0
\(715\) 4.53588 0.169632
\(716\) 0 0
\(717\) −14.1200 −0.527322
\(718\) 0 0
\(719\) −7.77031 −0.289784 −0.144892 0.989448i \(-0.546283\pi\)
−0.144892 + 0.989448i \(0.546283\pi\)
\(720\) 0 0
\(721\) −6.90045 −0.256986
\(722\) 0 0
\(723\) −18.2952 −0.680405
\(724\) 0 0
\(725\) −5.17756 −0.192290
\(726\) 0 0
\(727\) −32.0853 −1.18998 −0.594989 0.803734i \(-0.702844\pi\)
−0.594989 + 0.803734i \(0.702844\pi\)
\(728\) 0 0
\(729\) −2.00430 −0.0742332
\(730\) 0 0
\(731\) 61.3370 2.26863
\(732\) 0 0
\(733\) 46.7875 1.72814 0.864068 0.503375i \(-0.167909\pi\)
0.864068 + 0.503375i \(0.167909\pi\)
\(734\) 0 0
\(735\) −0.630472 −0.0232553
\(736\) 0 0
\(737\) 53.1410 1.95747
\(738\) 0 0
\(739\) 40.5225 1.49064 0.745322 0.666705i \(-0.232296\pi\)
0.745322 + 0.666705i \(0.232296\pi\)
\(740\) 0 0
\(741\) −0.841060 −0.0308971
\(742\) 0 0
\(743\) −44.5100 −1.63292 −0.816458 0.577406i \(-0.804065\pi\)
−0.816458 + 0.577406i \(0.804065\pi\)
\(744\) 0 0
\(745\) −5.40146 −0.197894
\(746\) 0 0
\(747\) 22.7786 0.833426
\(748\) 0 0
\(749\) 9.93632 0.363065
\(750\) 0 0
\(751\) −24.6523 −0.899574 −0.449787 0.893136i \(-0.648500\pi\)
−0.449787 + 0.893136i \(0.648500\pi\)
\(752\) 0 0
\(753\) 6.19825 0.225877
\(754\) 0 0
\(755\) 0.807206 0.0293772
\(756\) 0 0
\(757\) −1.58543 −0.0576233 −0.0288116 0.999585i \(-0.509172\pi\)
−0.0288116 + 0.999585i \(0.509172\pi\)
\(758\) 0 0
\(759\) −24.0424 −0.872685
\(760\) 0 0
\(761\) 45.0122 1.63169 0.815845 0.578271i \(-0.196272\pi\)
0.815845 + 0.578271i \(0.196272\pi\)
\(762\) 0 0
\(763\) −15.1873 −0.549816
\(764\) 0 0
\(765\) −15.0326 −0.543505
\(766\) 0 0
\(767\) −5.83536 −0.210703
\(768\) 0 0
\(769\) −10.1507 −0.366042 −0.183021 0.983109i \(-0.558588\pi\)
−0.183021 + 0.983109i \(0.558588\pi\)
\(770\) 0 0
\(771\) 8.86666 0.319325
\(772\) 0 0
\(773\) −4.37831 −0.157477 −0.0787385 0.996895i \(-0.525089\pi\)
−0.0787385 + 0.996895i \(0.525089\pi\)
\(774\) 0 0
\(775\) −20.3664 −0.731581
\(776\) 0 0
\(777\) −3.18504 −0.114263
\(778\) 0 0
\(779\) −9.68802 −0.347109
\(780\) 0 0
\(781\) 32.4432 1.16091
\(782\) 0 0
\(783\) 4.87479 0.174211
\(784\) 0 0
\(785\) −2.43576 −0.0869360
\(786\) 0 0
\(787\) 4.88913 0.174279 0.0871394 0.996196i \(-0.472227\pi\)
0.0871394 + 0.996196i \(0.472227\pi\)
\(788\) 0 0
\(789\) −19.7165 −0.701926
\(790\) 0 0
\(791\) 13.1196 0.466478
\(792\) 0 0
\(793\) 2.83558 0.100695
\(794\) 0 0
\(795\) −6.81343 −0.241647
\(796\) 0 0
\(797\) −7.29371 −0.258356 −0.129178 0.991621i \(-0.541234\pi\)
−0.129178 + 0.991621i \(0.541234\pi\)
\(798\) 0 0
\(799\) 42.6597 1.50919
\(800\) 0 0
\(801\) −18.8814 −0.667142
\(802\) 0 0
\(803\) −52.9757 −1.86947
\(804\) 0 0
\(805\) 5.28968 0.186437
\(806\) 0 0
\(807\) −11.7886 −0.414979
\(808\) 0 0
\(809\) 40.6990 1.43090 0.715451 0.698663i \(-0.246221\pi\)
0.715451 + 0.698663i \(0.246221\pi\)
\(810\) 0 0
\(811\) 31.3590 1.10116 0.550581 0.834782i \(-0.314406\pi\)
0.550581 + 0.834782i \(0.314406\pi\)
\(812\) 0 0
\(813\) 8.25886 0.289651
\(814\) 0 0
\(815\) −2.86472 −0.100347
\(816\) 0 0
\(817\) −9.82648 −0.343785
\(818\) 0 0
\(819\) −2.45865 −0.0859121
\(820\) 0 0
\(821\) −29.0879 −1.01517 −0.507587 0.861601i \(-0.669462\pi\)
−0.507587 + 0.861601i \(0.669462\pi\)
\(822\) 0 0
\(823\) −13.9004 −0.484538 −0.242269 0.970209i \(-0.577892\pi\)
−0.242269 + 0.970209i \(0.577892\pi\)
\(824\) 0 0
\(825\) −16.6138 −0.578418
\(826\) 0 0
\(827\) 17.2293 0.599121 0.299560 0.954077i \(-0.403160\pi\)
0.299560 + 0.954077i \(0.403160\pi\)
\(828\) 0 0
\(829\) −48.7780 −1.69413 −0.847065 0.531489i \(-0.821633\pi\)
−0.847065 + 0.531489i \(0.821633\pi\)
\(830\) 0 0
\(831\) −0.503220 −0.0174565
\(832\) 0 0
\(833\) 7.13529 0.247223
\(834\) 0 0
\(835\) −0.548383 −0.0189776
\(836\) 0 0
\(837\) 19.1754 0.662799
\(838\) 0 0
\(839\) 3.73303 0.128878 0.0644392 0.997922i \(-0.479474\pi\)
0.0644392 + 0.997922i \(0.479474\pi\)
\(840\) 0 0
\(841\) −27.5268 −0.949200
\(842\) 0 0
\(843\) 2.46032 0.0847380
\(844\) 0 0
\(845\) 0.856892 0.0294780
\(846\) 0 0
\(847\) −17.0201 −0.584819
\(848\) 0 0
\(849\) −15.9516 −0.547459
\(850\) 0 0
\(851\) 26.7226 0.916040
\(852\) 0 0
\(853\) −29.9665 −1.02603 −0.513017 0.858379i \(-0.671472\pi\)
−0.513017 + 0.858379i \(0.671472\pi\)
\(854\) 0 0
\(855\) 2.40830 0.0823620
\(856\) 0 0
\(857\) 43.3076 1.47936 0.739679 0.672960i \(-0.234977\pi\)
0.739679 + 0.672960i \(0.234977\pi\)
\(858\) 0 0
\(859\) 25.6969 0.876766 0.438383 0.898788i \(-0.355551\pi\)
0.438383 + 0.898788i \(0.355551\pi\)
\(860\) 0 0
\(861\) 6.23573 0.212513
\(862\) 0 0
\(863\) 27.4190 0.933354 0.466677 0.884428i \(-0.345451\pi\)
0.466677 + 0.884428i \(0.345451\pi\)
\(864\) 0 0
\(865\) 8.57489 0.291555
\(866\) 0 0
\(867\) −24.9516 −0.847400
\(868\) 0 0
\(869\) −46.0946 −1.56365
\(870\) 0 0
\(871\) 10.0391 0.340162
\(872\) 0 0
\(873\) 6.05000 0.204762
\(874\) 0 0
\(875\) 7.93973 0.268412
\(876\) 0 0
\(877\) −57.7993 −1.95174 −0.975871 0.218346i \(-0.929934\pi\)
−0.975871 + 0.218346i \(0.929934\pi\)
\(878\) 0 0
\(879\) −15.4585 −0.521404
\(880\) 0 0
\(881\) 26.2663 0.884935 0.442467 0.896785i \(-0.354103\pi\)
0.442467 + 0.896785i \(0.354103\pi\)
\(882\) 0 0
\(883\) 53.4865 1.79996 0.899982 0.435928i \(-0.143580\pi\)
0.899982 + 0.435928i \(0.143580\pi\)
\(884\) 0 0
\(885\) −3.67903 −0.123669
\(886\) 0 0
\(887\) 6.48554 0.217763 0.108882 0.994055i \(-0.465273\pi\)
0.108882 + 0.994055i \(0.465273\pi\)
\(888\) 0 0
\(889\) −8.70939 −0.292104
\(890\) 0 0
\(891\) −23.4016 −0.783983
\(892\) 0 0
\(893\) −6.83429 −0.228701
\(894\) 0 0
\(895\) −3.97503 −0.132871
\(896\) 0 0
\(897\) −4.54196 −0.151652
\(898\) 0 0
\(899\) 5.79497 0.193273
\(900\) 0 0
\(901\) 77.1102 2.56891
\(902\) 0 0
\(903\) 6.32485 0.210478
\(904\) 0 0
\(905\) 0.196022 0.00651601
\(906\) 0 0
\(907\) 9.58107 0.318134 0.159067 0.987268i \(-0.449151\pi\)
0.159067 + 0.987268i \(0.449151\pi\)
\(908\) 0 0
\(909\) −28.0654 −0.930872
\(910\) 0 0
\(911\) −23.4620 −0.777330 −0.388665 0.921379i \(-0.627064\pi\)
−0.388665 + 0.921379i \(0.627064\pi\)
\(912\) 0 0
\(913\) 49.0417 1.62304
\(914\) 0 0
\(915\) 1.78776 0.0591014
\(916\) 0 0
\(917\) 7.01266 0.231579
\(918\) 0 0
\(919\) 29.3286 0.967462 0.483731 0.875217i \(-0.339281\pi\)
0.483731 + 0.875217i \(0.339281\pi\)
\(920\) 0 0
\(921\) −13.2625 −0.437016
\(922\) 0 0
\(923\) 6.12899 0.201738
\(924\) 0 0
\(925\) 18.4659 0.607154
\(926\) 0 0
\(927\) −16.9658 −0.557229
\(928\) 0 0
\(929\) 6.74246 0.221213 0.110606 0.993864i \(-0.464721\pi\)
0.110606 + 0.993864i \(0.464721\pi\)
\(930\) 0 0
\(931\) −1.14311 −0.0374639
\(932\) 0 0
\(933\) −19.5450 −0.639876
\(934\) 0 0
\(935\) −32.3648 −1.05844
\(936\) 0 0
\(937\) 54.6764 1.78620 0.893100 0.449858i \(-0.148525\pi\)
0.893100 + 0.449858i \(0.148525\pi\)
\(938\) 0 0
\(939\) −1.62569 −0.0530523
\(940\) 0 0
\(941\) 4.37208 0.142526 0.0712629 0.997458i \(-0.477297\pi\)
0.0712629 + 0.997458i \(0.477297\pi\)
\(942\) 0 0
\(943\) −52.3180 −1.70371
\(944\) 0 0
\(945\) −3.44152 −0.111953
\(946\) 0 0
\(947\) −40.2296 −1.30729 −0.653644 0.756803i \(-0.726760\pi\)
−0.653644 + 0.756803i \(0.726760\pi\)
\(948\) 0 0
\(949\) −10.0079 −0.324869
\(950\) 0 0
\(951\) 15.6099 0.506186
\(952\) 0 0
\(953\) 50.2547 1.62791 0.813954 0.580929i \(-0.197311\pi\)
0.813954 + 0.580929i \(0.197311\pi\)
\(954\) 0 0
\(955\) 20.9886 0.679175
\(956\) 0 0
\(957\) 4.72722 0.152809
\(958\) 0 0
\(959\) 2.86804 0.0926140
\(960\) 0 0
\(961\) −8.20503 −0.264678
\(962\) 0 0
\(963\) 24.4299 0.787243
\(964\) 0 0
\(965\) 10.2082 0.328615
\(966\) 0 0
\(967\) 36.4126 1.17095 0.585475 0.810690i \(-0.300908\pi\)
0.585475 + 0.810690i \(0.300908\pi\)
\(968\) 0 0
\(969\) 6.00121 0.192787
\(970\) 0 0
\(971\) 6.09161 0.195489 0.0977445 0.995212i \(-0.468837\pi\)
0.0977445 + 0.995212i \(0.468837\pi\)
\(972\) 0 0
\(973\) −0.509801 −0.0163435
\(974\) 0 0
\(975\) −3.13858 −0.100515
\(976\) 0 0
\(977\) −45.7294 −1.46301 −0.731506 0.681835i \(-0.761182\pi\)
−0.731506 + 0.681835i \(0.761182\pi\)
\(978\) 0 0
\(979\) −40.6512 −1.29922
\(980\) 0 0
\(981\) −37.3402 −1.19218
\(982\) 0 0
\(983\) 43.9546 1.40193 0.700966 0.713194i \(-0.252752\pi\)
0.700966 + 0.713194i \(0.252752\pi\)
\(984\) 0 0
\(985\) −5.15052 −0.164109
\(986\) 0 0
\(987\) 4.39892 0.140019
\(988\) 0 0
\(989\) −53.0658 −1.68739
\(990\) 0 0
\(991\) 33.6773 1.06979 0.534897 0.844917i \(-0.320350\pi\)
0.534897 + 0.844917i \(0.320350\pi\)
\(992\) 0 0
\(993\) 2.73794 0.0868860
\(994\) 0 0
\(995\) 10.7647 0.341265
\(996\) 0 0
\(997\) 41.4863 1.31389 0.656943 0.753941i \(-0.271849\pi\)
0.656943 + 0.753941i \(0.271849\pi\)
\(998\) 0 0
\(999\) −17.3860 −0.550069
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.a.u.1.3 6
4.3 odd 2 2912.2.a.v.1.4 yes 6
8.3 odd 2 5824.2.a.cm.1.3 6
8.5 even 2 5824.2.a.cn.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.u.1.3 6 1.1 even 1 trivial
2912.2.a.v.1.4 yes 6 4.3 odd 2
5824.2.a.cm.1.3 6 8.3 odd 2
5824.2.a.cn.1.4 6 8.5 even 2