Properties

Label 2912.2.h.a.2575.19
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.19
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.a.2575.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.788146i q^{3} -0.604005 q^{5} +(2.57195 + 0.620533i) q^{7} +2.37883 q^{9} -5.13402 q^{11} -1.00000 q^{13} +0.476044i q^{15} -5.35639i q^{17} +5.97202i q^{19} +(0.489070 - 2.02707i) q^{21} -1.05537i q^{23} -4.63518 q^{25} -4.23930i q^{27} -7.55238i q^{29} +2.56972 q^{31} +4.04636i q^{33} +(-1.55347 - 0.374805i) q^{35} -7.85789i q^{37} +0.788146i q^{39} -1.72114i q^{41} +6.68005 q^{43} -1.43682 q^{45} -11.8901 q^{47} +(6.22988 + 3.19196i) q^{49} -4.22162 q^{51} -4.72464i q^{53} +3.10097 q^{55} +4.70683 q^{57} -1.93446i q^{59} +13.1193 q^{61} +(6.11823 + 1.47614i) q^{63} +0.604005 q^{65} -7.82402 q^{67} -0.831788 q^{69} -9.20651i q^{71} -16.1420i q^{73} +3.65320i q^{75} +(-13.2045 - 3.18583i) q^{77} -8.46903i q^{79} +3.79529 q^{81} +10.2816i q^{83} +3.23528i q^{85} -5.95238 q^{87} +12.9348i q^{89} +(-2.57195 - 0.620533i) q^{91} -2.02531i q^{93} -3.60713i q^{95} +14.1965i q^{97} -12.2129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} - 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} + 24 q^{45} + 40 q^{51} - 20 q^{63} + 4 q^{67} - 20 q^{77} + 64 q^{81} + 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.788146i 0.455036i −0.973774 0.227518i \(-0.926939\pi\)
0.973774 0.227518i \(-0.0730611\pi\)
\(4\) 0 0
\(5\) −0.604005 −0.270119 −0.135060 0.990837i \(-0.543123\pi\)
−0.135060 + 0.990837i \(0.543123\pi\)
\(6\) 0 0
\(7\) 2.57195 + 0.620533i 0.972107 + 0.234539i
\(8\) 0 0
\(9\) 2.37883 0.792942
\(10\) 0 0
\(11\) −5.13402 −1.54797 −0.773983 0.633206i \(-0.781738\pi\)
−0.773983 + 0.633206i \(0.781738\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0.476044i 0.122914i
\(16\) 0 0
\(17\) 5.35639i 1.29911i −0.760313 0.649557i \(-0.774954\pi\)
0.760313 0.649557i \(-0.225046\pi\)
\(18\) 0 0
\(19\) 5.97202i 1.37008i 0.728507 + 0.685038i \(0.240215\pi\)
−0.728507 + 0.685038i \(0.759785\pi\)
\(20\) 0 0
\(21\) 0.489070 2.02707i 0.106724 0.442344i
\(22\) 0 0
\(23\) 1.05537i 0.220061i −0.993928 0.110030i \(-0.964905\pi\)
0.993928 0.110030i \(-0.0350948\pi\)
\(24\) 0 0
\(25\) −4.63518 −0.927036
\(26\) 0 0
\(27\) 4.23930i 0.815854i
\(28\) 0 0
\(29\) 7.55238i 1.40244i −0.712944 0.701221i \(-0.752639\pi\)
0.712944 0.701221i \(-0.247361\pi\)
\(30\) 0 0
\(31\) 2.56972 0.461535 0.230767 0.973009i \(-0.425876\pi\)
0.230767 + 0.973009i \(0.425876\pi\)
\(32\) 0 0
\(33\) 4.04636i 0.704381i
\(34\) 0 0
\(35\) −1.55347 0.374805i −0.262585 0.0633536i
\(36\) 0 0
\(37\) 7.85789i 1.29183i −0.763410 0.645914i \(-0.776476\pi\)
0.763410 0.645914i \(-0.223524\pi\)
\(38\) 0 0
\(39\) 0.788146i 0.126204i
\(40\) 0 0
\(41\) 1.72114i 0.268797i −0.990927 0.134398i \(-0.957090\pi\)
0.990927 0.134398i \(-0.0429102\pi\)
\(42\) 0 0
\(43\) 6.68005 1.01870 0.509349 0.860560i \(-0.329886\pi\)
0.509349 + 0.860560i \(0.329886\pi\)
\(44\) 0 0
\(45\) −1.43682 −0.214189
\(46\) 0 0
\(47\) −11.8901 −1.73435 −0.867177 0.498000i \(-0.834068\pi\)
−0.867177 + 0.498000i \(0.834068\pi\)
\(48\) 0 0
\(49\) 6.22988 + 3.19196i 0.889983 + 0.455994i
\(50\) 0 0
\(51\) −4.22162 −0.591144
\(52\) 0 0
\(53\) 4.72464i 0.648979i −0.945889 0.324489i \(-0.894808\pi\)
0.945889 0.324489i \(-0.105192\pi\)
\(54\) 0 0
\(55\) 3.10097 0.418135
\(56\) 0 0
\(57\) 4.70683 0.623435
\(58\) 0 0
\(59\) 1.93446i 0.251845i −0.992040 0.125922i \(-0.959811\pi\)
0.992040 0.125922i \(-0.0401890\pi\)
\(60\) 0 0
\(61\) 13.1193 1.67975 0.839877 0.542777i \(-0.182627\pi\)
0.839877 + 0.542777i \(0.182627\pi\)
\(62\) 0 0
\(63\) 6.11823 + 1.47614i 0.770824 + 0.185976i
\(64\) 0 0
\(65\) 0.604005 0.0749176
\(66\) 0 0
\(67\) −7.82402 −0.955856 −0.477928 0.878399i \(-0.658612\pi\)
−0.477928 + 0.878399i \(0.658612\pi\)
\(68\) 0 0
\(69\) −0.831788 −0.100136
\(70\) 0 0
\(71\) 9.20651i 1.09261i −0.837586 0.546306i \(-0.816034\pi\)
0.837586 0.546306i \(-0.183966\pi\)
\(72\) 0 0
\(73\) 16.1420i 1.88927i −0.328119 0.944636i \(-0.606415\pi\)
0.328119 0.944636i \(-0.393585\pi\)
\(74\) 0 0
\(75\) 3.65320i 0.421835i
\(76\) 0 0
\(77\) −13.2045 3.18583i −1.50479 0.363059i
\(78\) 0 0
\(79\) 8.46903i 0.952840i −0.879218 0.476420i \(-0.841934\pi\)
0.879218 0.476420i \(-0.158066\pi\)
\(80\) 0 0
\(81\) 3.79529 0.421699
\(82\) 0 0
\(83\) 10.2816i 1.12856i 0.825585 + 0.564278i \(0.190846\pi\)
−0.825585 + 0.564278i \(0.809154\pi\)
\(84\) 0 0
\(85\) 3.23528i 0.350916i
\(86\) 0 0
\(87\) −5.95238 −0.638162
\(88\) 0 0
\(89\) 12.9348i 1.37109i 0.728031 + 0.685544i \(0.240435\pi\)
−0.728031 + 0.685544i \(0.759565\pi\)
\(90\) 0 0
\(91\) −2.57195 0.620533i −0.269614 0.0650495i
\(92\) 0 0
\(93\) 2.02531i 0.210015i
\(94\) 0 0
\(95\) 3.60713i 0.370084i
\(96\) 0 0
\(97\) 14.1965i 1.44143i 0.693231 + 0.720716i \(0.256187\pi\)
−0.693231 + 0.720716i \(0.743813\pi\)
\(98\) 0 0
\(99\) −12.2129 −1.22745
\(100\) 0 0
\(101\) 1.54943 0.154174 0.0770872 0.997024i \(-0.475438\pi\)
0.0770872 + 0.997024i \(0.475438\pi\)
\(102\) 0 0
\(103\) 6.73825 0.663939 0.331970 0.943290i \(-0.392287\pi\)
0.331970 + 0.943290i \(0.392287\pi\)
\(104\) 0 0
\(105\) −0.295401 + 1.22436i −0.0288282 + 0.119486i
\(106\) 0 0
\(107\) 14.0761 1.36079 0.680396 0.732844i \(-0.261808\pi\)
0.680396 + 0.732844i \(0.261808\pi\)
\(108\) 0 0
\(109\) 8.86808i 0.849408i −0.905332 0.424704i \(-0.860378\pi\)
0.905332 0.424704i \(-0.139622\pi\)
\(110\) 0 0
\(111\) −6.19316 −0.587829
\(112\) 0 0
\(113\) −6.37194 −0.599422 −0.299711 0.954030i \(-0.596890\pi\)
−0.299711 + 0.954030i \(0.596890\pi\)
\(114\) 0 0
\(115\) 0.637451i 0.0594426i
\(116\) 0 0
\(117\) −2.37883 −0.219923
\(118\) 0 0
\(119\) 3.32381 13.7764i 0.304693 1.26288i
\(120\) 0 0
\(121\) 15.3582 1.39620
\(122\) 0 0
\(123\) −1.35651 −0.122312
\(124\) 0 0
\(125\) 5.81970 0.520529
\(126\) 0 0
\(127\) 4.16676i 0.369740i −0.982763 0.184870i \(-0.940814\pi\)
0.982763 0.184870i \(-0.0591864\pi\)
\(128\) 0 0
\(129\) 5.26485i 0.463545i
\(130\) 0 0
\(131\) 11.7402i 1.02575i −0.858464 0.512874i \(-0.828581\pi\)
0.858464 0.512874i \(-0.171419\pi\)
\(132\) 0 0
\(133\) −3.70584 + 15.3598i −0.321337 + 1.33186i
\(134\) 0 0
\(135\) 2.56056i 0.220378i
\(136\) 0 0
\(137\) −12.7548 −1.08972 −0.544859 0.838527i \(-0.683417\pi\)
−0.544859 + 0.838527i \(0.683417\pi\)
\(138\) 0 0
\(139\) 10.8552i 0.920729i −0.887730 0.460364i \(-0.847719\pi\)
0.887730 0.460364i \(-0.152281\pi\)
\(140\) 0 0
\(141\) 9.37116i 0.789194i
\(142\) 0 0
\(143\) 5.13402 0.429329
\(144\) 0 0
\(145\) 4.56167i 0.378826i
\(146\) 0 0
\(147\) 2.51573 4.91005i 0.207494 0.404974i
\(148\) 0 0
\(149\) 10.1922i 0.834976i −0.908682 0.417488i \(-0.862910\pi\)
0.908682 0.417488i \(-0.137090\pi\)
\(150\) 0 0
\(151\) 5.82290i 0.473861i −0.971527 0.236931i \(-0.923859\pi\)
0.971527 0.236931i \(-0.0761414\pi\)
\(152\) 0 0
\(153\) 12.7419i 1.03012i
\(154\) 0 0
\(155\) −1.55212 −0.124669
\(156\) 0 0
\(157\) −17.2526 −1.37691 −0.688455 0.725279i \(-0.741711\pi\)
−0.688455 + 0.725279i \(0.741711\pi\)
\(158\) 0 0
\(159\) −3.72370 −0.295309
\(160\) 0 0
\(161\) 0.654894 2.71437i 0.0516128 0.213922i
\(162\) 0 0
\(163\) −9.26702 −0.725849 −0.362924 0.931819i \(-0.618222\pi\)
−0.362924 + 0.931819i \(0.618222\pi\)
\(164\) 0 0
\(165\) 2.44402i 0.190267i
\(166\) 0 0
\(167\) −8.08007 −0.625255 −0.312627 0.949876i \(-0.601209\pi\)
−0.312627 + 0.949876i \(0.601209\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 14.2064i 1.08639i
\(172\) 0 0
\(173\) 1.96960 0.149746 0.0748730 0.997193i \(-0.476145\pi\)
0.0748730 + 0.997193i \(0.476145\pi\)
\(174\) 0 0
\(175\) −11.9215 2.87628i −0.901177 0.217426i
\(176\) 0 0
\(177\) −1.52463 −0.114599
\(178\) 0 0
\(179\) 6.88265 0.514434 0.257217 0.966354i \(-0.417195\pi\)
0.257217 + 0.966354i \(0.417195\pi\)
\(180\) 0 0
\(181\) 5.06451 0.376442 0.188221 0.982127i \(-0.439728\pi\)
0.188221 + 0.982127i \(0.439728\pi\)
\(182\) 0 0
\(183\) 10.3399i 0.764349i
\(184\) 0 0
\(185\) 4.74620i 0.348948i
\(186\) 0 0
\(187\) 27.4998i 2.01099i
\(188\) 0 0
\(189\) 2.63062 10.9033i 0.191350 0.793097i
\(190\) 0 0
\(191\) 3.97407i 0.287554i 0.989610 + 0.143777i \(0.0459248\pi\)
−0.989610 + 0.143777i \(0.954075\pi\)
\(192\) 0 0
\(193\) 12.6351 0.909495 0.454748 0.890620i \(-0.349729\pi\)
0.454748 + 0.890620i \(0.349729\pi\)
\(194\) 0 0
\(195\) 0.476044i 0.0340902i
\(196\) 0 0
\(197\) 24.3796i 1.73697i −0.495711 0.868487i \(-0.665093\pi\)
0.495711 0.868487i \(-0.334907\pi\)
\(198\) 0 0
\(199\) 7.03688 0.498831 0.249416 0.968397i \(-0.419761\pi\)
0.249416 + 0.968397i \(0.419761\pi\)
\(200\) 0 0
\(201\) 6.16647i 0.434949i
\(202\) 0 0
\(203\) 4.68650 19.4244i 0.328928 1.36332i
\(204\) 0 0
\(205\) 1.03958i 0.0726072i
\(206\) 0 0
\(207\) 2.51055i 0.174495i
\(208\) 0 0
\(209\) 30.6605i 2.12083i
\(210\) 0 0
\(211\) −19.1341 −1.31725 −0.658623 0.752473i \(-0.728861\pi\)
−0.658623 + 0.752473i \(0.728861\pi\)
\(212\) 0 0
\(213\) −7.25607 −0.497178
\(214\) 0 0
\(215\) −4.03478 −0.275170
\(216\) 0 0
\(217\) 6.60919 + 1.59459i 0.448661 + 0.108248i
\(218\) 0 0
\(219\) −12.7222 −0.859688
\(220\) 0 0
\(221\) 5.35639i 0.360310i
\(222\) 0 0
\(223\) −27.2121 −1.82226 −0.911130 0.412120i \(-0.864789\pi\)
−0.911130 + 0.412120i \(0.864789\pi\)
\(224\) 0 0
\(225\) −11.0263 −0.735085
\(226\) 0 0
\(227\) 7.73995i 0.513718i −0.966449 0.256859i \(-0.917312\pi\)
0.966449 0.256859i \(-0.0826876\pi\)
\(228\) 0 0
\(229\) 4.25200 0.280980 0.140490 0.990082i \(-0.455132\pi\)
0.140490 + 0.990082i \(0.455132\pi\)
\(230\) 0 0
\(231\) −2.51090 + 10.4070i −0.165205 + 0.684733i
\(232\) 0 0
\(233\) −24.4234 −1.60003 −0.800016 0.599979i \(-0.795176\pi\)
−0.800016 + 0.599979i \(0.795176\pi\)
\(234\) 0 0
\(235\) 7.18170 0.468482
\(236\) 0 0
\(237\) −6.67483 −0.433577
\(238\) 0 0
\(239\) 14.0846i 0.911058i −0.890221 0.455529i \(-0.849450\pi\)
0.890221 0.455529i \(-0.150550\pi\)
\(240\) 0 0
\(241\) 3.77081i 0.242899i −0.992598 0.121449i \(-0.961246\pi\)
0.992598 0.121449i \(-0.0387542\pi\)
\(242\) 0 0
\(243\) 15.7091i 1.00774i
\(244\) 0 0
\(245\) −3.76288 1.92796i −0.240401 0.123173i
\(246\) 0 0
\(247\) 5.97202i 0.379991i
\(248\) 0 0
\(249\) 8.10344 0.513534
\(250\) 0 0
\(251\) 12.0792i 0.762432i 0.924486 + 0.381216i \(0.124495\pi\)
−0.924486 + 0.381216i \(0.875505\pi\)
\(252\) 0 0
\(253\) 5.41831i 0.340646i
\(254\) 0 0
\(255\) 2.54988 0.159679
\(256\) 0 0
\(257\) 5.97005i 0.372402i 0.982512 + 0.186201i \(0.0596175\pi\)
−0.982512 + 0.186201i \(0.940382\pi\)
\(258\) 0 0
\(259\) 4.87607 20.2101i 0.302984 1.25580i
\(260\) 0 0
\(261\) 17.9658i 1.11205i
\(262\) 0 0
\(263\) 24.4407i 1.50708i −0.657403 0.753540i \(-0.728345\pi\)
0.657403 0.753540i \(-0.271655\pi\)
\(264\) 0 0
\(265\) 2.85370i 0.175302i
\(266\) 0 0
\(267\) 10.1945 0.623895
\(268\) 0 0
\(269\) −15.0253 −0.916107 −0.458054 0.888925i \(-0.651453\pi\)
−0.458054 + 0.888925i \(0.651453\pi\)
\(270\) 0 0
\(271\) −2.88011 −0.174954 −0.0874772 0.996167i \(-0.527880\pi\)
−0.0874772 + 0.996167i \(0.527880\pi\)
\(272\) 0 0
\(273\) −0.489070 + 2.02707i −0.0295999 + 0.122684i
\(274\) 0 0
\(275\) 23.7971 1.43502
\(276\) 0 0
\(277\) 26.4457i 1.58897i 0.607285 + 0.794484i \(0.292258\pi\)
−0.607285 + 0.794484i \(0.707742\pi\)
\(278\) 0 0
\(279\) 6.11291 0.365970
\(280\) 0 0
\(281\) −16.6213 −0.991544 −0.495772 0.868453i \(-0.665115\pi\)
−0.495772 + 0.868453i \(0.665115\pi\)
\(282\) 0 0
\(283\) 24.7211i 1.46952i 0.678328 + 0.734760i \(0.262705\pi\)
−0.678328 + 0.734760i \(0.737295\pi\)
\(284\) 0 0
\(285\) −2.84295 −0.168402
\(286\) 0 0
\(287\) 1.06802 4.42669i 0.0630434 0.261299i
\(288\) 0 0
\(289\) −11.6909 −0.687699
\(290\) 0 0
\(291\) 11.1889 0.655904
\(292\) 0 0
\(293\) 24.8485 1.45166 0.725831 0.687873i \(-0.241455\pi\)
0.725831 + 0.687873i \(0.241455\pi\)
\(294\) 0 0
\(295\) 1.16842i 0.0680281i
\(296\) 0 0
\(297\) 21.7647i 1.26291i
\(298\) 0 0
\(299\) 1.05537i 0.0610338i
\(300\) 0 0
\(301\) 17.1808 + 4.14519i 0.990283 + 0.238925i
\(302\) 0 0
\(303\) 1.22118i 0.0701550i
\(304\) 0 0
\(305\) −7.92412 −0.453734
\(306\) 0 0
\(307\) 6.93218i 0.395640i 0.980238 + 0.197820i \(0.0633862\pi\)
−0.980238 + 0.197820i \(0.936614\pi\)
\(308\) 0 0
\(309\) 5.31072i 0.302116i
\(310\) 0 0
\(311\) 25.0732 1.42177 0.710884 0.703309i \(-0.248295\pi\)
0.710884 + 0.703309i \(0.248295\pi\)
\(312\) 0 0
\(313\) 10.5548i 0.596594i 0.954473 + 0.298297i \(0.0964187\pi\)
−0.954473 + 0.298297i \(0.903581\pi\)
\(314\) 0 0
\(315\) −3.69544 0.891595i −0.208214 0.0502357i
\(316\) 0 0
\(317\) 10.3502i 0.581327i 0.956825 + 0.290663i \(0.0938760\pi\)
−0.956825 + 0.290663i \(0.906124\pi\)
\(318\) 0 0
\(319\) 38.7741i 2.17093i
\(320\) 0 0
\(321\) 11.0941i 0.619210i
\(322\) 0 0
\(323\) 31.9885 1.77989
\(324\) 0 0
\(325\) 4.63518 0.257113
\(326\) 0 0
\(327\) −6.98935 −0.386512
\(328\) 0 0
\(329\) −30.5808 7.37821i −1.68598 0.406774i
\(330\) 0 0
\(331\) −0.259825 −0.0142813 −0.00714063 0.999975i \(-0.502273\pi\)
−0.00714063 + 0.999975i \(0.502273\pi\)
\(332\) 0 0
\(333\) 18.6925i 1.02435i
\(334\) 0 0
\(335\) 4.72575 0.258195
\(336\) 0 0
\(337\) 15.7576 0.858373 0.429186 0.903216i \(-0.358800\pi\)
0.429186 + 0.903216i \(0.358800\pi\)
\(338\) 0 0
\(339\) 5.02202i 0.272759i
\(340\) 0 0
\(341\) −13.1930 −0.714440
\(342\) 0 0
\(343\) 14.0422 + 12.0754i 0.758210 + 0.652011i
\(344\) 0 0
\(345\) 0.502404 0.0270485
\(346\) 0 0
\(347\) 5.05895 0.271579 0.135789 0.990738i \(-0.456643\pi\)
0.135789 + 0.990738i \(0.456643\pi\)
\(348\) 0 0
\(349\) −11.5491 −0.618207 −0.309104 0.951028i \(-0.600029\pi\)
−0.309104 + 0.951028i \(0.600029\pi\)
\(350\) 0 0
\(351\) 4.23930i 0.226277i
\(352\) 0 0
\(353\) 19.9048i 1.05943i 0.848177 + 0.529713i \(0.177700\pi\)
−0.848177 + 0.529713i \(0.822300\pi\)
\(354\) 0 0
\(355\) 5.56078i 0.295135i
\(356\) 0 0
\(357\) −10.8578 2.61965i −0.574655 0.138647i
\(358\) 0 0
\(359\) 13.0862i 0.690662i 0.938481 + 0.345331i \(0.112233\pi\)
−0.938481 + 0.345331i \(0.887767\pi\)
\(360\) 0 0
\(361\) −16.6651 −0.877109
\(362\) 0 0
\(363\) 12.1045i 0.635321i
\(364\) 0 0
\(365\) 9.74982i 0.510329i
\(366\) 0 0
\(367\) 22.9170 1.19626 0.598128 0.801401i \(-0.295911\pi\)
0.598128 + 0.801401i \(0.295911\pi\)
\(368\) 0 0
\(369\) 4.09429i 0.213140i
\(370\) 0 0
\(371\) 2.93179 12.1515i 0.152211 0.630877i
\(372\) 0 0
\(373\) 30.1413i 1.56066i 0.625369 + 0.780329i \(0.284948\pi\)
−0.625369 + 0.780329i \(0.715052\pi\)
\(374\) 0 0
\(375\) 4.58677i 0.236860i
\(376\) 0 0
\(377\) 7.55238i 0.388967i
\(378\) 0 0
\(379\) −5.38785 −0.276755 −0.138378 0.990380i \(-0.544189\pi\)
−0.138378 + 0.990380i \(0.544189\pi\)
\(380\) 0 0
\(381\) −3.28401 −0.168245
\(382\) 0 0
\(383\) −1.92001 −0.0981080 −0.0490540 0.998796i \(-0.515621\pi\)
−0.0490540 + 0.998796i \(0.515621\pi\)
\(384\) 0 0
\(385\) 7.97556 + 1.92426i 0.406472 + 0.0980692i
\(386\) 0 0
\(387\) 15.8907 0.807768
\(388\) 0 0
\(389\) 1.39413i 0.0706852i 0.999375 + 0.0353426i \(0.0112522\pi\)
−0.999375 + 0.0353426i \(0.988748\pi\)
\(390\) 0 0
\(391\) −5.65299 −0.285884
\(392\) 0 0
\(393\) −9.25301 −0.466753
\(394\) 0 0
\(395\) 5.11533i 0.257380i
\(396\) 0 0
\(397\) 16.7676 0.841540 0.420770 0.907167i \(-0.361760\pi\)
0.420770 + 0.907167i \(0.361760\pi\)
\(398\) 0 0
\(399\) 12.1057 + 2.92074i 0.606045 + 0.146220i
\(400\) 0 0
\(401\) 28.1223 1.40436 0.702179 0.712000i \(-0.252211\pi\)
0.702179 + 0.712000i \(0.252211\pi\)
\(402\) 0 0
\(403\) −2.56972 −0.128007
\(404\) 0 0
\(405\) −2.29237 −0.113909
\(406\) 0 0
\(407\) 40.3426i 1.99971i
\(408\) 0 0
\(409\) 11.4027i 0.563825i 0.959440 + 0.281912i \(0.0909688\pi\)
−0.959440 + 0.281912i \(0.909031\pi\)
\(410\) 0 0
\(411\) 10.0527i 0.495862i
\(412\) 0 0
\(413\) 1.20039 4.97533i 0.0590675 0.244820i
\(414\) 0 0
\(415\) 6.21016i 0.304845i
\(416\) 0 0
\(417\) −8.55551 −0.418965
\(418\) 0 0
\(419\) 17.5806i 0.858870i −0.903098 0.429435i \(-0.858713\pi\)
0.903098 0.429435i \(-0.141287\pi\)
\(420\) 0 0
\(421\) 9.28914i 0.452725i 0.974043 + 0.226363i \(0.0726834\pi\)
−0.974043 + 0.226363i \(0.927317\pi\)
\(422\) 0 0
\(423\) −28.2845 −1.37524
\(424\) 0 0
\(425\) 24.8278i 1.20433i
\(426\) 0 0
\(427\) 33.7422 + 8.14095i 1.63290 + 0.393968i
\(428\) 0 0
\(429\) 4.04636i 0.195360i
\(430\) 0 0
\(431\) 28.3363i 1.36491i 0.730928 + 0.682455i \(0.239088\pi\)
−0.730928 + 0.682455i \(0.760912\pi\)
\(432\) 0 0
\(433\) 27.0957i 1.30213i −0.759020 0.651067i \(-0.774322\pi\)
0.759020 0.651067i \(-0.225678\pi\)
\(434\) 0 0
\(435\) 3.59527 0.172380
\(436\) 0 0
\(437\) 6.30272 0.301500
\(438\) 0 0
\(439\) −28.2082 −1.34630 −0.673152 0.739504i \(-0.735060\pi\)
−0.673152 + 0.739504i \(0.735060\pi\)
\(440\) 0 0
\(441\) 14.8198 + 7.59312i 0.705705 + 0.361577i
\(442\) 0 0
\(443\) −3.44165 −0.163518 −0.0817589 0.996652i \(-0.526054\pi\)
−0.0817589 + 0.996652i \(0.526054\pi\)
\(444\) 0 0
\(445\) 7.81269i 0.370357i
\(446\) 0 0
\(447\) −8.03293 −0.379945
\(448\) 0 0
\(449\) 24.1129 1.13796 0.568980 0.822352i \(-0.307338\pi\)
0.568980 + 0.822352i \(0.307338\pi\)
\(450\) 0 0
\(451\) 8.83637i 0.416088i
\(452\) 0 0
\(453\) −4.58930 −0.215624
\(454\) 0 0
\(455\) 1.55347 + 0.374805i 0.0728279 + 0.0175711i
\(456\) 0 0
\(457\) −28.6440 −1.33991 −0.669954 0.742403i \(-0.733686\pi\)
−0.669954 + 0.742403i \(0.733686\pi\)
\(458\) 0 0
\(459\) −22.7073 −1.05989
\(460\) 0 0
\(461\) 33.8682 1.57740 0.788699 0.614779i \(-0.210755\pi\)
0.788699 + 0.614779i \(0.210755\pi\)
\(462\) 0 0
\(463\) 8.87772i 0.412582i 0.978491 + 0.206291i \(0.0661394\pi\)
−0.978491 + 0.206291i \(0.933861\pi\)
\(464\) 0 0
\(465\) 1.22330i 0.0567291i
\(466\) 0 0
\(467\) 13.3956i 0.619875i 0.950757 + 0.309937i \(0.100308\pi\)
−0.950757 + 0.309937i \(0.899692\pi\)
\(468\) 0 0
\(469\) −20.1230 4.85506i −0.929194 0.224186i
\(470\) 0 0
\(471\) 13.5976i 0.626544i
\(472\) 0 0
\(473\) −34.2955 −1.57691
\(474\) 0 0
\(475\) 27.6814i 1.27011i
\(476\) 0 0
\(477\) 11.2391i 0.514603i
\(478\) 0 0
\(479\) 40.5532 1.85292 0.926462 0.376387i \(-0.122834\pi\)
0.926462 + 0.376387i \(0.122834\pi\)
\(480\) 0 0
\(481\) 7.85789i 0.358289i
\(482\) 0 0
\(483\) −2.13932 0.516152i −0.0973425 0.0234857i
\(484\) 0 0
\(485\) 8.57473i 0.389358i
\(486\) 0 0
\(487\) 11.2722i 0.510790i −0.966837 0.255395i \(-0.917794\pi\)
0.966837 0.255395i \(-0.0822055\pi\)
\(488\) 0 0
\(489\) 7.30376i 0.330288i
\(490\) 0 0
\(491\) −9.12152 −0.411649 −0.205824 0.978589i \(-0.565988\pi\)
−0.205824 + 0.978589i \(0.565988\pi\)
\(492\) 0 0
\(493\) −40.4535 −1.82193
\(494\) 0 0
\(495\) 7.37668 0.331557
\(496\) 0 0
\(497\) 5.71294 23.6787i 0.256260 1.06213i
\(498\) 0 0
\(499\) −7.93384 −0.355168 −0.177584 0.984106i \(-0.556828\pi\)
−0.177584 + 0.984106i \(0.556828\pi\)
\(500\) 0 0
\(501\) 6.36828i 0.284514i
\(502\) 0 0
\(503\) −12.2543 −0.546393 −0.273197 0.961958i \(-0.588081\pi\)
−0.273197 + 0.961958i \(0.588081\pi\)
\(504\) 0 0
\(505\) −0.935866 −0.0416455
\(506\) 0 0
\(507\) 0.788146i 0.0350028i
\(508\) 0 0
\(509\) 17.4470 0.773326 0.386663 0.922221i \(-0.373628\pi\)
0.386663 + 0.922221i \(0.373628\pi\)
\(510\) 0 0
\(511\) 10.0166 41.5163i 0.443109 1.83657i
\(512\) 0 0
\(513\) 25.3172 1.11778
\(514\) 0 0
\(515\) −4.06993 −0.179343
\(516\) 0 0
\(517\) 61.0442 2.68472
\(518\) 0 0
\(519\) 1.55233i 0.0681399i
\(520\) 0 0
\(521\) 20.8509i 0.913496i −0.889596 0.456748i \(-0.849014\pi\)
0.889596 0.456748i \(-0.150986\pi\)
\(522\) 0 0
\(523\) 12.5142i 0.547206i −0.961843 0.273603i \(-0.911785\pi\)
0.961843 0.273603i \(-0.0882154\pi\)
\(524\) 0 0
\(525\) −2.26693 + 9.39585i −0.0989368 + 0.410068i
\(526\) 0 0
\(527\) 13.7644i 0.599587i
\(528\) 0 0
\(529\) 21.8862 0.951573
\(530\) 0 0
\(531\) 4.60173i 0.199698i
\(532\) 0 0
\(533\) 1.72114i 0.0745508i
\(534\) 0 0
\(535\) −8.50206 −0.367576
\(536\) 0 0
\(537\) 5.42454i 0.234086i
\(538\) 0 0
\(539\) −31.9843 16.3876i −1.37766 0.705864i
\(540\) 0 0
\(541\) 25.7050i 1.10514i 0.833465 + 0.552572i \(0.186353\pi\)
−0.833465 + 0.552572i \(0.813647\pi\)
\(542\) 0 0
\(543\) 3.99158i 0.171295i
\(544\) 0 0
\(545\) 5.35637i 0.229442i
\(546\) 0 0
\(547\) −5.61543 −0.240099 −0.120049 0.992768i \(-0.538305\pi\)
−0.120049 + 0.992768i \(0.538305\pi\)
\(548\) 0 0
\(549\) 31.2085 1.33195
\(550\) 0 0
\(551\) 45.1030 1.92145
\(552\) 0 0
\(553\) 5.25531 21.7819i 0.223478 0.926262i
\(554\) 0 0
\(555\) 3.74070 0.158784
\(556\) 0 0
\(557\) 9.65380i 0.409045i −0.978862 0.204522i \(-0.934436\pi\)
0.978862 0.204522i \(-0.0655641\pi\)
\(558\) 0 0
\(559\) −6.68005 −0.282536
\(560\) 0 0
\(561\) 21.6739 0.915072
\(562\) 0 0
\(563\) 19.3230i 0.814368i 0.913346 + 0.407184i \(0.133489\pi\)
−0.913346 + 0.407184i \(0.866511\pi\)
\(564\) 0 0
\(565\) 3.84868 0.161915
\(566\) 0 0
\(567\) 9.76131 + 2.35510i 0.409936 + 0.0989049i
\(568\) 0 0
\(569\) 5.19422 0.217753 0.108876 0.994055i \(-0.465275\pi\)
0.108876 + 0.994055i \(0.465275\pi\)
\(570\) 0 0
\(571\) −9.89370 −0.414038 −0.207019 0.978337i \(-0.566376\pi\)
−0.207019 + 0.978337i \(0.566376\pi\)
\(572\) 0 0
\(573\) 3.13215 0.130847
\(574\) 0 0
\(575\) 4.89184i 0.204004i
\(576\) 0 0
\(577\) 3.62103i 0.150745i 0.997155 + 0.0753726i \(0.0240146\pi\)
−0.997155 + 0.0753726i \(0.975985\pi\)
\(578\) 0 0
\(579\) 9.95831i 0.413853i
\(580\) 0 0
\(581\) −6.38009 + 26.4439i −0.264691 + 1.09708i
\(582\) 0 0
\(583\) 24.2564i 1.00460i
\(584\) 0 0
\(585\) 1.43682 0.0594053
\(586\) 0 0
\(587\) 3.04130i 0.125528i 0.998028 + 0.0627640i \(0.0199915\pi\)
−0.998028 + 0.0627640i \(0.980008\pi\)
\(588\) 0 0
\(589\) 15.3464i 0.632338i
\(590\) 0 0
\(591\) −19.2147 −0.790387
\(592\) 0 0
\(593\) 32.2710i 1.32521i 0.748969 + 0.662606i \(0.230549\pi\)
−0.748969 + 0.662606i \(0.769451\pi\)
\(594\) 0 0
\(595\) −2.00760 + 8.32100i −0.0823036 + 0.341128i
\(596\) 0 0
\(597\) 5.54609i 0.226986i
\(598\) 0 0
\(599\) 13.7558i 0.562047i 0.959701 + 0.281023i \(0.0906739\pi\)
−0.959701 + 0.281023i \(0.909326\pi\)
\(600\) 0 0
\(601\) 46.7682i 1.90771i −0.300260 0.953857i \(-0.597073\pi\)
0.300260 0.953857i \(-0.402927\pi\)
\(602\) 0 0
\(603\) −18.6120 −0.757939
\(604\) 0 0
\(605\) −9.27642 −0.377140
\(606\) 0 0
\(607\) 41.2226 1.67317 0.836587 0.547835i \(-0.184548\pi\)
0.836587 + 0.547835i \(0.184548\pi\)
\(608\) 0 0
\(609\) −15.3092 3.69364i −0.620361 0.149674i
\(610\) 0 0
\(611\) 11.8901 0.481023
\(612\) 0 0
\(613\) 11.7561i 0.474825i 0.971409 + 0.237412i \(0.0762992\pi\)
−0.971409 + 0.237412i \(0.923701\pi\)
\(614\) 0 0
\(615\) 0.819338 0.0330389
\(616\) 0 0
\(617\) −33.8298 −1.36194 −0.680969 0.732312i \(-0.738441\pi\)
−0.680969 + 0.732312i \(0.738441\pi\)
\(618\) 0 0
\(619\) 24.2768i 0.975768i 0.872909 + 0.487884i \(0.162231\pi\)
−0.872909 + 0.487884i \(0.837769\pi\)
\(620\) 0 0
\(621\) −4.47405 −0.179537
\(622\) 0 0
\(623\) −8.02647 + 33.2677i −0.321574 + 1.33284i
\(624\) 0 0
\(625\) 19.6608 0.786431
\(626\) 0 0
\(627\) −24.1650 −0.965055
\(628\) 0 0
\(629\) −42.0899 −1.67823
\(630\) 0 0
\(631\) 10.6353i 0.423385i −0.977336 0.211693i \(-0.932102\pi\)
0.977336 0.211693i \(-0.0678976\pi\)
\(632\) 0 0
\(633\) 15.0805i 0.599395i
\(634\) 0 0
\(635\) 2.51674i 0.0998738i
\(636\) 0 0
\(637\) −6.22988 3.19196i −0.246837 0.126470i
\(638\) 0 0
\(639\) 21.9007i 0.866378i
\(640\) 0 0
\(641\) 15.9566 0.630247 0.315124 0.949051i \(-0.397954\pi\)
0.315124 + 0.949051i \(0.397954\pi\)
\(642\) 0 0
\(643\) 44.0339i 1.73653i −0.496103 0.868264i \(-0.665236\pi\)
0.496103 0.868264i \(-0.334764\pi\)
\(644\) 0 0
\(645\) 3.18000i 0.125212i
\(646\) 0 0
\(647\) −16.6254 −0.653611 −0.326805 0.945092i \(-0.605972\pi\)
−0.326805 + 0.945092i \(0.605972\pi\)
\(648\) 0 0
\(649\) 9.93154i 0.389847i
\(650\) 0 0
\(651\) 1.25677 5.20901i 0.0492568 0.204157i
\(652\) 0 0
\(653\) 20.1847i 0.789889i 0.918705 + 0.394944i \(0.129236\pi\)
−0.918705 + 0.394944i \(0.870764\pi\)
\(654\) 0 0
\(655\) 7.09116i 0.277074i
\(656\) 0 0
\(657\) 38.3989i 1.49808i
\(658\) 0 0
\(659\) 10.9591 0.426906 0.213453 0.976953i \(-0.431529\pi\)
0.213453 + 0.976953i \(0.431529\pi\)
\(660\) 0 0
\(661\) 32.7400 1.27344 0.636718 0.771096i \(-0.280291\pi\)
0.636718 + 0.771096i \(0.280291\pi\)
\(662\) 0 0
\(663\) 4.22162 0.163954
\(664\) 0 0
\(665\) 2.23834 9.27737i 0.0867992 0.359761i
\(666\) 0 0
\(667\) −7.97058 −0.308622
\(668\) 0 0
\(669\) 21.4471i 0.829194i
\(670\) 0 0
\(671\) −67.3548 −2.60020
\(672\) 0 0
\(673\) 21.9038 0.844329 0.422165 0.906519i \(-0.361270\pi\)
0.422165 + 0.906519i \(0.361270\pi\)
\(674\) 0 0
\(675\) 19.6499i 0.756325i
\(676\) 0 0
\(677\) −1.86436 −0.0716533 −0.0358267 0.999358i \(-0.511406\pi\)
−0.0358267 + 0.999358i \(0.511406\pi\)
\(678\) 0 0
\(679\) −8.80936 + 36.5126i −0.338072 + 1.40122i
\(680\) 0 0
\(681\) −6.10021 −0.233760
\(682\) 0 0
\(683\) −21.5663 −0.825211 −0.412605 0.910910i \(-0.635381\pi\)
−0.412605 + 0.910910i \(0.635381\pi\)
\(684\) 0 0
\(685\) 7.70398 0.294354
\(686\) 0 0
\(687\) 3.35119i 0.127856i
\(688\) 0 0
\(689\) 4.72464i 0.179994i
\(690\) 0 0
\(691\) 20.4851i 0.779289i 0.920965 + 0.389645i \(0.127402\pi\)
−0.920965 + 0.389645i \(0.872598\pi\)
\(692\) 0 0
\(693\) −31.4111 7.57853i −1.19321 0.287885i
\(694\) 0 0
\(695\) 6.55661i 0.248707i
\(696\) 0 0
\(697\) −9.21909 −0.349198
\(698\) 0 0
\(699\) 19.2492i 0.728072i
\(700\) 0 0
\(701\) 24.2801i 0.917048i 0.888682 + 0.458524i \(0.151622\pi\)
−0.888682 + 0.458524i \(0.848378\pi\)
\(702\) 0 0
\(703\) 46.9275 1.76990
\(704\) 0 0
\(705\) 5.66023i 0.213176i
\(706\) 0 0
\(707\) 3.98507 + 0.961474i 0.149874 + 0.0361600i
\(708\) 0 0
\(709\) 10.2080i 0.383368i 0.981457 + 0.191684i \(0.0613949\pi\)
−0.981457 + 0.191684i \(0.938605\pi\)
\(710\) 0 0
\(711\) 20.1463i 0.755547i
\(712\) 0 0
\(713\) 2.71201i 0.101566i
\(714\) 0 0
\(715\) −3.10097 −0.115970
\(716\) 0 0
\(717\) −11.1007 −0.414564
\(718\) 0 0
\(719\) 0.929036 0.0346472 0.0173236 0.999850i \(-0.494485\pi\)
0.0173236 + 0.999850i \(0.494485\pi\)
\(720\) 0 0
\(721\) 17.3304 + 4.18130i 0.645420 + 0.155720i
\(722\) 0 0
\(723\) −2.97195 −0.110528
\(724\) 0 0
\(725\) 35.0066i 1.30011i
\(726\) 0 0
\(727\) 24.9639 0.925859 0.462930 0.886395i \(-0.346798\pi\)
0.462930 + 0.886395i \(0.346798\pi\)
\(728\) 0 0
\(729\) −0.995229 −0.0368603
\(730\) 0 0
\(731\) 35.7809i 1.32341i
\(732\) 0 0
\(733\) 3.77004 0.139250 0.0696249 0.997573i \(-0.477820\pi\)
0.0696249 + 0.997573i \(0.477820\pi\)
\(734\) 0 0
\(735\) −1.51951 + 2.96570i −0.0560481 + 0.109391i
\(736\) 0 0
\(737\) 40.1687 1.47963
\(738\) 0 0
\(739\) −0.387742 −0.0142633 −0.00713166 0.999975i \(-0.502270\pi\)
−0.00713166 + 0.999975i \(0.502270\pi\)
\(740\) 0 0
\(741\) −4.70683 −0.172910
\(742\) 0 0
\(743\) 13.3639i 0.490274i −0.969488 0.245137i \(-0.921167\pi\)
0.969488 0.245137i \(-0.0788330\pi\)
\(744\) 0 0
\(745\) 6.15613i 0.225543i
\(746\) 0 0
\(747\) 24.4582i 0.894880i
\(748\) 0 0
\(749\) 36.2032 + 8.73471i 1.32284 + 0.319159i
\(750\) 0 0
\(751\) 31.4243i 1.14669i 0.819314 + 0.573345i \(0.194354\pi\)
−0.819314 + 0.573345i \(0.805646\pi\)
\(752\) 0 0
\(753\) 9.52017 0.346934
\(754\) 0 0
\(755\) 3.51706i 0.127999i
\(756\) 0 0
\(757\) 15.2414i 0.553958i −0.960876 0.276979i \(-0.910667\pi\)
0.960876 0.276979i \(-0.0893333\pi\)
\(758\) 0 0
\(759\) 4.27042 0.155006
\(760\) 0 0
\(761\) 17.4267i 0.631717i −0.948806 0.315858i \(-0.897708\pi\)
0.948806 0.315858i \(-0.102292\pi\)
\(762\) 0 0
\(763\) 5.50293 22.8083i 0.199220 0.825716i
\(764\) 0 0
\(765\) 7.69618i 0.278256i
\(766\) 0 0
\(767\) 1.93446i 0.0698492i
\(768\) 0 0
\(769\) 2.05841i 0.0742280i −0.999311 0.0371140i \(-0.988184\pi\)
0.999311 0.0371140i \(-0.0118165\pi\)
\(770\) 0 0
\(771\) 4.70527 0.169456
\(772\) 0 0
\(773\) −19.4738 −0.700424 −0.350212 0.936671i \(-0.613890\pi\)
−0.350212 + 0.936671i \(0.613890\pi\)
\(774\) 0 0
\(775\) −11.9111 −0.427859
\(776\) 0 0
\(777\) −15.9285 3.84306i −0.571432 0.137869i
\(778\) 0 0
\(779\) 10.2787 0.368272
\(780\) 0 0
\(781\) 47.2664i 1.69133i
\(782\) 0 0
\(783\) −32.0168 −1.14419
\(784\) 0 0
\(785\) 10.4207 0.371930
\(786\) 0 0
\(787\) 52.1659i 1.85951i −0.368174 0.929757i \(-0.620017\pi\)
0.368174 0.929757i \(-0.379983\pi\)
\(788\) 0 0
\(789\) −19.2629 −0.685776
\(790\) 0 0
\(791\) −16.3883 3.95400i −0.582702 0.140588i
\(792\) 0 0
\(793\) −13.1193 −0.465880
\(794\) 0 0
\(795\) 2.24914 0.0797686
\(796\) 0 0
\(797\) 30.1064 1.06642 0.533212 0.845982i \(-0.320985\pi\)
0.533212 + 0.845982i \(0.320985\pi\)
\(798\) 0 0
\(799\) 63.6881i 2.25312i
\(800\) 0 0
\(801\) 30.7697i 1.08719i
\(802\) 0 0
\(803\) 82.8732i 2.92453i
\(804\) 0 0
\(805\) −0.395559 + 1.63949i −0.0139416 + 0.0577845i
\(806\) 0 0
\(807\) 11.8421i 0.416862i
\(808\) 0 0
\(809\) 8.47468 0.297954 0.148977 0.988841i \(-0.452402\pi\)
0.148977 + 0.988841i \(0.452402\pi\)
\(810\) 0 0
\(811\) 13.2805i 0.466340i −0.972436 0.233170i \(-0.925090\pi\)
0.972436 0.233170i \(-0.0749099\pi\)
\(812\) 0 0
\(813\) 2.26995i 0.0796106i
\(814\) 0 0
\(815\) 5.59732 0.196066
\(816\) 0 0
\(817\) 39.8934i 1.39569i
\(818\) 0 0
\(819\) −6.11823 1.47614i −0.213788 0.0515805i
\(820\) 0 0
\(821\) 4.19157i 0.146287i 0.997321 + 0.0731434i \(0.0233031\pi\)
−0.997321 + 0.0731434i \(0.976697\pi\)
\(822\) 0 0
\(823\) 38.0868i 1.32762i 0.747900 + 0.663812i \(0.231062\pi\)
−0.747900 + 0.663812i \(0.768938\pi\)
\(824\) 0 0
\(825\) 18.7556i 0.652986i
\(826\) 0 0
\(827\) 19.5284 0.679069 0.339534 0.940594i \(-0.389731\pi\)
0.339534 + 0.940594i \(0.389731\pi\)
\(828\) 0 0
\(829\) 32.1858 1.11786 0.558930 0.829215i \(-0.311212\pi\)
0.558930 + 0.829215i \(0.311212\pi\)
\(830\) 0 0
\(831\) 20.8431 0.723038
\(832\) 0 0
\(833\) 17.0974 33.3696i 0.592389 1.15619i
\(834\) 0 0
\(835\) 4.88040 0.168893
\(836\) 0 0
\(837\) 10.8938i 0.376545i
\(838\) 0 0
\(839\) −5.30188 −0.183041 −0.0915206 0.995803i \(-0.529173\pi\)
−0.0915206 + 0.995803i \(0.529173\pi\)
\(840\) 0 0
\(841\) −28.0384 −0.966842
\(842\) 0 0
\(843\) 13.1000i 0.451188i
\(844\) 0 0
\(845\) −0.604005 −0.0207784
\(846\) 0 0
\(847\) 39.5005 + 9.53025i 1.35725 + 0.327463i
\(848\) 0 0
\(849\) 19.4839 0.668685
\(850\) 0 0
\(851\) −8.29301 −0.284281
\(852\) 0 0
\(853\) 26.8385 0.918934 0.459467 0.888195i \(-0.348040\pi\)
0.459467 + 0.888195i \(0.348040\pi\)
\(854\) 0 0
\(855\) 8.58074i 0.293455i
\(856\) 0 0
\(857\) 28.6223i 0.977718i 0.872363 + 0.488859i \(0.162587\pi\)
−0.872363 + 0.488859i \(0.837413\pi\)
\(858\) 0 0
\(859\) 21.8562i 0.745726i 0.927886 + 0.372863i \(0.121624\pi\)
−0.927886 + 0.372863i \(0.878376\pi\)
\(860\) 0 0
\(861\) −3.48888 0.841758i −0.118901 0.0286870i
\(862\) 0 0
\(863\) 40.7632i 1.38760i −0.720170 0.693798i \(-0.755936\pi\)
0.720170 0.693798i \(-0.244064\pi\)
\(864\) 0 0
\(865\) −1.18965 −0.0404493
\(866\) 0 0
\(867\) 9.21413i 0.312928i
\(868\) 0 0
\(869\) 43.4802i 1.47496i
\(870\) 0 0
\(871\) 7.82402 0.265107
\(872\) 0 0
\(873\) 33.7709i 1.14297i
\(874\) 0 0
\(875\) 14.9680 + 3.61131i 0.506010 + 0.122085i
\(876\) 0 0
\(877\) 10.3771i 0.350408i 0.984532 + 0.175204i \(0.0560586\pi\)
−0.984532 + 0.175204i \(0.943941\pi\)
\(878\) 0 0
\(879\) 19.5842i 0.660559i
\(880\) 0 0
\(881\) 36.0522i 1.21463i 0.794461 + 0.607316i \(0.207754\pi\)
−0.794461 + 0.607316i \(0.792246\pi\)
\(882\) 0 0
\(883\) −44.0134 −1.48117 −0.740585 0.671963i \(-0.765451\pi\)
−0.740585 + 0.671963i \(0.765451\pi\)
\(884\) 0 0
\(885\) 0.920886 0.0309553
\(886\) 0 0
\(887\) −24.5694 −0.824960 −0.412480 0.910967i \(-0.635337\pi\)
−0.412480 + 0.910967i \(0.635337\pi\)
\(888\) 0 0
\(889\) 2.58561 10.7167i 0.0867185 0.359427i
\(890\) 0 0
\(891\) −19.4851 −0.652776
\(892\) 0 0
\(893\) 71.0082i 2.37620i
\(894\) 0 0
\(895\) −4.15716 −0.138958
\(896\) 0 0
\(897\) 0.831788 0.0277726
\(898\) 0 0
\(899\) 19.4075i 0.647275i
\(900\) 0 0
\(901\) −25.3070 −0.843098
\(902\) 0 0
\(903\) 3.26701 13.5410i 0.108719 0.450615i
\(904\) 0 0
\(905\) −3.05899 −0.101684
\(906\) 0 0
\(907\) 24.3438 0.808322 0.404161 0.914688i \(-0.367564\pi\)
0.404161 + 0.914688i \(0.367564\pi\)
\(908\) 0 0
\(909\) 3.68583 0.122251
\(910\) 0 0
\(911\) 6.47030i 0.214371i −0.994239 0.107185i \(-0.965816\pi\)
0.994239 0.107185i \(-0.0341838\pi\)
\(912\) 0 0
\(913\) 52.7862i 1.74697i
\(914\) 0 0
\(915\) 6.24537i 0.206465i
\(916\) 0 0
\(917\) 7.28519 30.1953i 0.240578 0.997137i
\(918\) 0 0
\(919\) 2.05771i 0.0678775i −0.999424 0.0339388i \(-0.989195\pi\)
0.999424 0.0339388i \(-0.0108051\pi\)
\(920\) 0 0
\(921\) 5.46357 0.180031
\(922\) 0 0
\(923\) 9.20651i 0.303036i
\(924\) 0 0
\(925\) 36.4227i 1.19757i
\(926\) 0 0
\(927\) 16.0291 0.526465
\(928\) 0 0
\(929\) 20.0057i 0.656367i −0.944614 0.328184i \(-0.893564\pi\)
0.944614 0.328184i \(-0.106436\pi\)
\(930\) 0 0
\(931\) −19.0625 + 37.2050i −0.624747 + 1.21934i
\(932\) 0 0
\(933\) 19.7613i 0.646956i
\(934\) 0 0
\(935\) 16.6100i 0.543206i
\(936\) 0 0
\(937\) 19.3261i 0.631355i 0.948867 + 0.315677i \(0.102232\pi\)
−0.948867 + 0.315677i \(0.897768\pi\)
\(938\) 0 0
\(939\) 8.31875 0.271472
\(940\) 0 0
\(941\) −54.5495 −1.77826 −0.889132 0.457651i \(-0.848691\pi\)
−0.889132 + 0.457651i \(0.848691\pi\)
\(942\) 0 0
\(943\) −1.81645 −0.0591516
\(944\) 0 0
\(945\) −1.58891 + 6.58563i −0.0516872 + 0.214231i
\(946\) 0 0
\(947\) −41.5250 −1.34938 −0.674691 0.738100i \(-0.735723\pi\)
−0.674691 + 0.738100i \(0.735723\pi\)
\(948\) 0 0
\(949\) 16.1420i 0.523990i
\(950\) 0 0
\(951\) 8.15749 0.264525
\(952\) 0 0
\(953\) 8.36225 0.270880 0.135440 0.990786i \(-0.456755\pi\)
0.135440 + 0.990786i \(0.456755\pi\)
\(954\) 0 0
\(955\) 2.40036i 0.0776738i
\(956\) 0 0
\(957\) 30.5596 0.987853
\(958\) 0 0
\(959\) −32.8048 7.91479i −1.05932 0.255582i
\(960\) 0 0
\(961\) −24.3966 −0.786986
\(962\) 0 0
\(963\) 33.4847 1.07903
\(964\) 0 0
\(965\) −7.63167 −0.245672
\(966\) 0 0
\(967\) 52.3203i 1.68251i 0.540639 + 0.841254i \(0.318182\pi\)
−0.540639 + 0.841254i \(0.681818\pi\)
\(968\) 0 0
\(969\) 25.2116i 0.809913i
\(970\) 0 0
\(971\) 41.0903i 1.31865i 0.751857 + 0.659326i \(0.229158\pi\)
−0.751857 + 0.659326i \(0.770842\pi\)
\(972\) 0 0
\(973\) 6.73602 27.9191i 0.215947 0.895047i
\(974\) 0 0
\(975\) 3.65320i 0.116996i
\(976\) 0 0
\(977\) 4.44196 0.142111 0.0710555 0.997472i \(-0.477363\pi\)
0.0710555 + 0.997472i \(0.477363\pi\)
\(978\) 0 0
\(979\) 66.4076i 2.12240i
\(980\) 0 0
\(981\) 21.0956i 0.673532i
\(982\) 0 0
\(983\) −3.41333 −0.108868 −0.0544342 0.998517i \(-0.517336\pi\)
−0.0544342 + 0.998517i \(0.517336\pi\)
\(984\) 0 0
\(985\) 14.7254i 0.469190i
\(986\) 0 0
\(987\) −5.81511 + 24.1022i −0.185097 + 0.767181i
\(988\) 0 0
\(989\) 7.04995i 0.224175i
\(990\) 0 0
\(991\) 46.3067i 1.47098i −0.677535 0.735490i \(-0.736952\pi\)
0.677535 0.735490i \(-0.263048\pi\)
\(992\) 0 0
\(993\) 0.204780i 0.00649849i
\(994\) 0 0
\(995\) −4.25031 −0.134744
\(996\) 0 0
\(997\) −38.1823 −1.20924 −0.604622 0.796512i \(-0.706676\pi\)
−0.604622 + 0.796512i \(0.706676\pi\)
\(998\) 0 0
\(999\) −33.3119 −1.05394
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.a.2575.19 48
4.3 odd 2 728.2.h.a.27.25 48
7.6 odd 2 2912.2.h.b.2575.30 48
8.3 odd 2 2912.2.h.b.2575.19 48
8.5 even 2 728.2.h.b.27.26 yes 48
28.27 even 2 728.2.h.b.27.25 yes 48
56.13 odd 2 728.2.h.a.27.26 yes 48
56.27 even 2 inner 2912.2.h.a.2575.30 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.25 48 4.3 odd 2
728.2.h.a.27.26 yes 48 56.13 odd 2
728.2.h.b.27.25 yes 48 28.27 even 2
728.2.h.b.27.26 yes 48 8.5 even 2
2912.2.h.a.2575.19 48 1.1 even 1 trivial
2912.2.h.a.2575.30 48 56.27 even 2 inner
2912.2.h.b.2575.19 48 8.3 odd 2
2912.2.h.b.2575.30 48 7.6 odd 2