Properties

Label 2912.2.h.a.2575.42
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.42
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.a.2575.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44281i q^{3} +3.85137 q^{5} +(-2.49284 - 0.886436i) q^{7} -2.96733 q^{9} +1.81225 q^{11} -1.00000 q^{13} +9.40816i q^{15} +3.46118i q^{17} +4.50271i q^{19} +(2.16540 - 6.08953i) q^{21} +0.813440i q^{23} +9.83303 q^{25} +0.0798187i q^{27} -2.95921i q^{29} -7.74273 q^{31} +4.42699i q^{33} +(-9.60083 - 3.41399i) q^{35} -0.986953i q^{37} -2.44281i q^{39} +3.45219i q^{41} -5.13822 q^{43} -11.4283 q^{45} +12.5979 q^{47} +(5.42846 + 4.41948i) q^{49} -8.45502 q^{51} +1.21088i q^{53} +6.97966 q^{55} -10.9993 q^{57} +12.8822i q^{59} -4.69520 q^{61} +(7.39705 + 2.63034i) q^{63} -3.85137 q^{65} +2.12856 q^{67} -1.98708 q^{69} +3.99821i q^{71} +9.25114i q^{73} +24.0202i q^{75} +(-4.51765 - 1.60645i) q^{77} +11.8410i q^{79} -9.09696 q^{81} -17.6272i q^{83} +13.3303i q^{85} +7.22879 q^{87} +0.651173i q^{89} +(2.49284 + 0.886436i) q^{91} -18.9140i q^{93} +17.3416i q^{95} +10.3289i q^{97} -5.37755 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} - 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} + 24 q^{45} + 40 q^{51} - 20 q^{63} + 4 q^{67} - 20 q^{77} + 64 q^{81} + 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.44281i 1.41036i 0.709030 + 0.705179i \(0.249133\pi\)
−0.709030 + 0.705179i \(0.750867\pi\)
\(4\) 0 0
\(5\) 3.85137 1.72238 0.861192 0.508280i \(-0.169718\pi\)
0.861192 + 0.508280i \(0.169718\pi\)
\(6\) 0 0
\(7\) −2.49284 0.886436i −0.942203 0.335041i
\(8\) 0 0
\(9\) −2.96733 −0.989108
\(10\) 0 0
\(11\) 1.81225 0.546415 0.273208 0.961955i \(-0.411915\pi\)
0.273208 + 0.961955i \(0.411915\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 9.40816i 2.42918i
\(16\) 0 0
\(17\) 3.46118i 0.839461i 0.907649 + 0.419730i \(0.137875\pi\)
−0.907649 + 0.419730i \(0.862125\pi\)
\(18\) 0 0
\(19\) 4.50271i 1.03299i 0.856289 + 0.516496i \(0.172764\pi\)
−0.856289 + 0.516496i \(0.827236\pi\)
\(20\) 0 0
\(21\) 2.16540 6.08953i 0.472528 1.32884i
\(22\) 0 0
\(23\) 0.813440i 0.169614i 0.996397 + 0.0848070i \(0.0270274\pi\)
−0.996397 + 0.0848070i \(0.972973\pi\)
\(24\) 0 0
\(25\) 9.83303 1.96661
\(26\) 0 0
\(27\) 0.0798187i 0.0153611i
\(28\) 0 0
\(29\) 2.95921i 0.549511i −0.961514 0.274756i \(-0.911403\pi\)
0.961514 0.274756i \(-0.0885970\pi\)
\(30\) 0 0
\(31\) −7.74273 −1.39063 −0.695317 0.718703i \(-0.744736\pi\)
−0.695317 + 0.718703i \(0.744736\pi\)
\(32\) 0 0
\(33\) 4.42699i 0.770641i
\(34\) 0 0
\(35\) −9.60083 3.41399i −1.62284 0.577070i
\(36\) 0 0
\(37\) 0.986953i 0.162254i −0.996704 0.0811271i \(-0.974148\pi\)
0.996704 0.0811271i \(-0.0258520\pi\)
\(38\) 0 0
\(39\) 2.44281i 0.391163i
\(40\) 0 0
\(41\) 3.45219i 0.539142i 0.962981 + 0.269571i \(0.0868819\pi\)
−0.962981 + 0.269571i \(0.913118\pi\)
\(42\) 0 0
\(43\) −5.13822 −0.783572 −0.391786 0.920056i \(-0.628143\pi\)
−0.391786 + 0.920056i \(0.628143\pi\)
\(44\) 0 0
\(45\) −11.4283 −1.70362
\(46\) 0 0
\(47\) 12.5979 1.83759 0.918797 0.394729i \(-0.129162\pi\)
0.918797 + 0.394729i \(0.129162\pi\)
\(48\) 0 0
\(49\) 5.42846 + 4.41948i 0.775494 + 0.631354i
\(50\) 0 0
\(51\) −8.45502 −1.18394
\(52\) 0 0
\(53\) 1.21088i 0.166328i 0.996536 + 0.0831639i \(0.0265025\pi\)
−0.996536 + 0.0831639i \(0.973498\pi\)
\(54\) 0 0
\(55\) 6.97966 0.941137
\(56\) 0 0
\(57\) −10.9993 −1.45689
\(58\) 0 0
\(59\) 12.8822i 1.67712i 0.544807 + 0.838561i \(0.316603\pi\)
−0.544807 + 0.838561i \(0.683397\pi\)
\(60\) 0 0
\(61\) −4.69520 −0.601159 −0.300579 0.953757i \(-0.597180\pi\)
−0.300579 + 0.953757i \(0.597180\pi\)
\(62\) 0 0
\(63\) 7.39705 + 2.63034i 0.931941 + 0.331392i
\(64\) 0 0
\(65\) −3.85137 −0.477703
\(66\) 0 0
\(67\) 2.12856 0.260045 0.130023 0.991511i \(-0.458495\pi\)
0.130023 + 0.991511i \(0.458495\pi\)
\(68\) 0 0
\(69\) −1.98708 −0.239216
\(70\) 0 0
\(71\) 3.99821i 0.474500i 0.971449 + 0.237250i \(0.0762460\pi\)
−0.971449 + 0.237250i \(0.923754\pi\)
\(72\) 0 0
\(73\) 9.25114i 1.08276i 0.840777 + 0.541382i \(0.182099\pi\)
−0.840777 + 0.541382i \(0.817901\pi\)
\(74\) 0 0
\(75\) 24.0202i 2.77362i
\(76\) 0 0
\(77\) −4.51765 1.60645i −0.514834 0.183072i
\(78\) 0 0
\(79\) 11.8410i 1.33222i 0.745854 + 0.666110i \(0.232042\pi\)
−0.745854 + 0.666110i \(0.767958\pi\)
\(80\) 0 0
\(81\) −9.09696 −1.01077
\(82\) 0 0
\(83\) 17.6272i 1.93484i −0.253182 0.967419i \(-0.581477\pi\)
0.253182 0.967419i \(-0.418523\pi\)
\(84\) 0 0
\(85\) 13.3303i 1.44587i
\(86\) 0 0
\(87\) 7.22879 0.775007
\(88\) 0 0
\(89\) 0.651173i 0.0690242i 0.999404 + 0.0345121i \(0.0109877\pi\)
−0.999404 + 0.0345121i \(0.989012\pi\)
\(90\) 0 0
\(91\) 2.49284 + 0.886436i 0.261320 + 0.0929238i
\(92\) 0 0
\(93\) 18.9140i 1.96129i
\(94\) 0 0
\(95\) 17.3416i 1.77921i
\(96\) 0 0
\(97\) 10.3289i 1.04874i 0.851490 + 0.524371i \(0.175699\pi\)
−0.851490 + 0.524371i \(0.824301\pi\)
\(98\) 0 0
\(99\) −5.37755 −0.540464
\(100\) 0 0
\(101\) 18.0120 1.79226 0.896132 0.443788i \(-0.146366\pi\)
0.896132 + 0.443788i \(0.146366\pi\)
\(102\) 0 0
\(103\) −3.56069 −0.350845 −0.175422 0.984493i \(-0.556129\pi\)
−0.175422 + 0.984493i \(0.556129\pi\)
\(104\) 0 0
\(105\) 8.33974 23.4530i 0.813875 2.28878i
\(106\) 0 0
\(107\) 14.4988 1.40165 0.700824 0.713334i \(-0.252816\pi\)
0.700824 + 0.713334i \(0.252816\pi\)
\(108\) 0 0
\(109\) 17.5262i 1.67870i 0.543589 + 0.839351i \(0.317065\pi\)
−0.543589 + 0.839351i \(0.682935\pi\)
\(110\) 0 0
\(111\) 2.41094 0.228836
\(112\) 0 0
\(113\) −9.73680 −0.915962 −0.457981 0.888962i \(-0.651427\pi\)
−0.457981 + 0.888962i \(0.651427\pi\)
\(114\) 0 0
\(115\) 3.13286i 0.292141i
\(116\) 0 0
\(117\) 2.96733 0.274329
\(118\) 0 0
\(119\) 3.06812 8.62817i 0.281254 0.790943i
\(120\) 0 0
\(121\) −7.71574 −0.701431
\(122\) 0 0
\(123\) −8.43305 −0.760383
\(124\) 0 0
\(125\) 18.6138 1.66487
\(126\) 0 0
\(127\) 0.775751i 0.0688368i −0.999408 0.0344184i \(-0.989042\pi\)
0.999408 0.0344184i \(-0.0109579\pi\)
\(128\) 0 0
\(129\) 12.5517i 1.10512i
\(130\) 0 0
\(131\) 5.40650i 0.472368i −0.971708 0.236184i \(-0.924103\pi\)
0.971708 0.236184i \(-0.0758969\pi\)
\(132\) 0 0
\(133\) 3.99137 11.2245i 0.346095 0.973289i
\(134\) 0 0
\(135\) 0.307411i 0.0264577i
\(136\) 0 0
\(137\) 5.29585 0.452455 0.226227 0.974075i \(-0.427361\pi\)
0.226227 + 0.974075i \(0.427361\pi\)
\(138\) 0 0
\(139\) 15.7618i 1.33690i −0.743758 0.668449i \(-0.766959\pi\)
0.743758 0.668449i \(-0.233041\pi\)
\(140\) 0 0
\(141\) 30.7743i 2.59167i
\(142\) 0 0
\(143\) −1.81225 −0.151548
\(144\) 0 0
\(145\) 11.3970i 0.946470i
\(146\) 0 0
\(147\) −10.7960 + 13.2607i −0.890435 + 1.09372i
\(148\) 0 0
\(149\) 20.2534i 1.65923i −0.558339 0.829613i \(-0.688561\pi\)
0.558339 0.829613i \(-0.311439\pi\)
\(150\) 0 0
\(151\) 10.6491i 0.866609i −0.901248 0.433304i \(-0.857348\pi\)
0.901248 0.433304i \(-0.142652\pi\)
\(152\) 0 0
\(153\) 10.2705i 0.830318i
\(154\) 0 0
\(155\) −29.8201 −2.39521
\(156\) 0 0
\(157\) −12.8972 −1.02931 −0.514653 0.857398i \(-0.672079\pi\)
−0.514653 + 0.857398i \(0.672079\pi\)
\(158\) 0 0
\(159\) −2.95796 −0.234582
\(160\) 0 0
\(161\) 0.721063 2.02777i 0.0568277 0.159811i
\(162\) 0 0
\(163\) −17.2917 −1.35439 −0.677195 0.735804i \(-0.736805\pi\)
−0.677195 + 0.735804i \(0.736805\pi\)
\(164\) 0 0
\(165\) 17.0500i 1.32734i
\(166\) 0 0
\(167\) 9.67383 0.748583 0.374292 0.927311i \(-0.377886\pi\)
0.374292 + 0.927311i \(0.377886\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 13.3610i 1.02174i
\(172\) 0 0
\(173\) −7.65616 −0.582087 −0.291043 0.956710i \(-0.594002\pi\)
−0.291043 + 0.956710i \(0.594002\pi\)
\(174\) 0 0
\(175\) −24.5121 8.71636i −1.85294 0.658895i
\(176\) 0 0
\(177\) −31.4688 −2.36534
\(178\) 0 0
\(179\) 22.6980 1.69652 0.848262 0.529576i \(-0.177649\pi\)
0.848262 + 0.529576i \(0.177649\pi\)
\(180\) 0 0
\(181\) 16.7233 1.24303 0.621517 0.783400i \(-0.286517\pi\)
0.621517 + 0.783400i \(0.286517\pi\)
\(182\) 0 0
\(183\) 11.4695i 0.847849i
\(184\) 0 0
\(185\) 3.80112i 0.279464i
\(186\) 0 0
\(187\) 6.27255i 0.458694i
\(188\) 0 0
\(189\) 0.0707542 0.198975i 0.00514661 0.0144733i
\(190\) 0 0
\(191\) 8.61903i 0.623651i −0.950139 0.311826i \(-0.899060\pi\)
0.950139 0.311826i \(-0.100940\pi\)
\(192\) 0 0
\(193\) −18.9038 −1.36072 −0.680361 0.732877i \(-0.738177\pi\)
−0.680361 + 0.732877i \(0.738177\pi\)
\(194\) 0 0
\(195\) 9.40816i 0.673733i
\(196\) 0 0
\(197\) 4.49011i 0.319907i −0.987125 0.159954i \(-0.948865\pi\)
0.987125 0.159954i \(-0.0511345\pi\)
\(198\) 0 0
\(199\) 9.15280 0.648825 0.324413 0.945916i \(-0.394833\pi\)
0.324413 + 0.945916i \(0.394833\pi\)
\(200\) 0 0
\(201\) 5.19968i 0.366757i
\(202\) 0 0
\(203\) −2.62315 + 7.37682i −0.184109 + 0.517751i
\(204\) 0 0
\(205\) 13.2957i 0.928609i
\(206\) 0 0
\(207\) 2.41374i 0.167767i
\(208\) 0 0
\(209\) 8.16005i 0.564443i
\(210\) 0 0
\(211\) −8.77366 −0.604004 −0.302002 0.953307i \(-0.597655\pi\)
−0.302002 + 0.953307i \(0.597655\pi\)
\(212\) 0 0
\(213\) −9.76686 −0.669214
\(214\) 0 0
\(215\) −19.7892 −1.34961
\(216\) 0 0
\(217\) 19.3013 + 6.86343i 1.31026 + 0.465920i
\(218\) 0 0
\(219\) −22.5988 −1.52708
\(220\) 0 0
\(221\) 3.46118i 0.232824i
\(222\) 0 0
\(223\) 1.21343 0.0812571 0.0406286 0.999174i \(-0.487064\pi\)
0.0406286 + 0.999174i \(0.487064\pi\)
\(224\) 0 0
\(225\) −29.1778 −1.94519
\(226\) 0 0
\(227\) 27.1333i 1.80090i −0.434958 0.900451i \(-0.643237\pi\)
0.434958 0.900451i \(-0.356763\pi\)
\(228\) 0 0
\(229\) −0.338616 −0.0223764 −0.0111882 0.999937i \(-0.503561\pi\)
−0.0111882 + 0.999937i \(0.503561\pi\)
\(230\) 0 0
\(231\) 3.92425 11.0358i 0.258197 0.726100i
\(232\) 0 0
\(233\) −2.38874 −0.156492 −0.0782459 0.996934i \(-0.524932\pi\)
−0.0782459 + 0.996934i \(0.524932\pi\)
\(234\) 0 0
\(235\) 48.5192 3.16504
\(236\) 0 0
\(237\) −28.9254 −1.87891
\(238\) 0 0
\(239\) 22.6748i 1.46671i −0.679846 0.733355i \(-0.737953\pi\)
0.679846 0.733355i \(-0.262047\pi\)
\(240\) 0 0
\(241\) 24.4172i 1.57285i 0.617685 + 0.786426i \(0.288071\pi\)
−0.617685 + 0.786426i \(0.711929\pi\)
\(242\) 0 0
\(243\) 21.9827i 1.41019i
\(244\) 0 0
\(245\) 20.9070 + 17.0210i 1.33570 + 1.08743i
\(246\) 0 0
\(247\) 4.50271i 0.286501i
\(248\) 0 0
\(249\) 43.0599 2.72881
\(250\) 0 0
\(251\) 10.9009i 0.688057i 0.938959 + 0.344029i \(0.111792\pi\)
−0.938959 + 0.344029i \(0.888208\pi\)
\(252\) 0 0
\(253\) 1.47416i 0.0926797i
\(254\) 0 0
\(255\) −32.5634 −2.03920
\(256\) 0 0
\(257\) 27.1459i 1.69331i −0.532140 0.846657i \(-0.678612\pi\)
0.532140 0.846657i \(-0.321388\pi\)
\(258\) 0 0
\(259\) −0.874871 + 2.46031i −0.0543619 + 0.152876i
\(260\) 0 0
\(261\) 8.78094i 0.543526i
\(262\) 0 0
\(263\) 27.3617i 1.68720i 0.536975 + 0.843598i \(0.319567\pi\)
−0.536975 + 0.843598i \(0.680433\pi\)
\(264\) 0 0
\(265\) 4.66356i 0.286480i
\(266\) 0 0
\(267\) −1.59069 −0.0973488
\(268\) 0 0
\(269\) 29.3298 1.78827 0.894134 0.447799i \(-0.147792\pi\)
0.894134 + 0.447799i \(0.147792\pi\)
\(270\) 0 0
\(271\) −4.63752 −0.281709 −0.140855 0.990030i \(-0.544985\pi\)
−0.140855 + 0.990030i \(0.544985\pi\)
\(272\) 0 0
\(273\) −2.16540 + 6.08953i −0.131056 + 0.368555i
\(274\) 0 0
\(275\) 17.8200 1.07458
\(276\) 0 0
\(277\) 2.25309i 0.135375i 0.997707 + 0.0676876i \(0.0215621\pi\)
−0.997707 + 0.0676876i \(0.978438\pi\)
\(278\) 0 0
\(279\) 22.9752 1.37549
\(280\) 0 0
\(281\) −7.46920 −0.445575 −0.222788 0.974867i \(-0.571516\pi\)
−0.222788 + 0.974867i \(0.571516\pi\)
\(282\) 0 0
\(283\) 0.265875i 0.0158047i −0.999969 0.00790233i \(-0.997485\pi\)
0.999969 0.00790233i \(-0.00251541\pi\)
\(284\) 0 0
\(285\) −42.3622 −2.50932
\(286\) 0 0
\(287\) 3.06015 8.60575i 0.180635 0.507981i
\(288\) 0 0
\(289\) 5.02020 0.295306
\(290\) 0 0
\(291\) −25.2316 −1.47910
\(292\) 0 0
\(293\) 4.28179 0.250145 0.125072 0.992148i \(-0.460084\pi\)
0.125072 + 0.992148i \(0.460084\pi\)
\(294\) 0 0
\(295\) 49.6142i 2.88865i
\(296\) 0 0
\(297\) 0.144652i 0.00839354i
\(298\) 0 0
\(299\) 0.813440i 0.0470425i
\(300\) 0 0
\(301\) 12.8088 + 4.55471i 0.738284 + 0.262529i
\(302\) 0 0
\(303\) 44.0000i 2.52773i
\(304\) 0 0
\(305\) −18.0829 −1.03543
\(306\) 0 0
\(307\) 2.40502i 0.137262i −0.997642 0.0686309i \(-0.978137\pi\)
0.997642 0.0686309i \(-0.0218631\pi\)
\(308\) 0 0
\(309\) 8.69808i 0.494817i
\(310\) 0 0
\(311\) 18.9445 1.07424 0.537121 0.843505i \(-0.319512\pi\)
0.537121 + 0.843505i \(0.319512\pi\)
\(312\) 0 0
\(313\) 2.60232i 0.147092i 0.997292 + 0.0735460i \(0.0234316\pi\)
−0.997292 + 0.0735460i \(0.976568\pi\)
\(314\) 0 0
\(315\) 28.4888 + 10.1304i 1.60516 + 0.570785i
\(316\) 0 0
\(317\) 2.67627i 0.150314i 0.997172 + 0.0751571i \(0.0239458\pi\)
−0.997172 + 0.0751571i \(0.976054\pi\)
\(318\) 0 0
\(319\) 5.36284i 0.300261i
\(320\) 0 0
\(321\) 35.4177i 1.97682i
\(322\) 0 0
\(323\) −15.5847 −0.867157
\(324\) 0 0
\(325\) −9.83303 −0.545439
\(326\) 0 0
\(327\) −42.8131 −2.36757
\(328\) 0 0
\(329\) −31.4045 11.1672i −1.73139 0.615670i
\(330\) 0 0
\(331\) −15.6728 −0.861453 −0.430726 0.902483i \(-0.641743\pi\)
−0.430726 + 0.902483i \(0.641743\pi\)
\(332\) 0 0
\(333\) 2.92861i 0.160487i
\(334\) 0 0
\(335\) 8.19788 0.447898
\(336\) 0 0
\(337\) 27.0995 1.47620 0.738102 0.674690i \(-0.235723\pi\)
0.738102 + 0.674690i \(0.235723\pi\)
\(338\) 0 0
\(339\) 23.7852i 1.29183i
\(340\) 0 0
\(341\) −14.0318 −0.759864
\(342\) 0 0
\(343\) −9.61467 15.8290i −0.519144 0.854687i
\(344\) 0 0
\(345\) −7.65298 −0.412023
\(346\) 0 0
\(347\) 2.59125 0.139106 0.0695528 0.997578i \(-0.477843\pi\)
0.0695528 + 0.997578i \(0.477843\pi\)
\(348\) 0 0
\(349\) −12.4308 −0.665408 −0.332704 0.943031i \(-0.607961\pi\)
−0.332704 + 0.943031i \(0.607961\pi\)
\(350\) 0 0
\(351\) 0.0798187i 0.00426041i
\(352\) 0 0
\(353\) 12.9113i 0.687198i 0.939116 + 0.343599i \(0.111646\pi\)
−0.939116 + 0.343599i \(0.888354\pi\)
\(354\) 0 0
\(355\) 15.3986i 0.817271i
\(356\) 0 0
\(357\) 21.0770 + 7.49484i 1.11551 + 0.396669i
\(358\) 0 0
\(359\) 15.4518i 0.815517i −0.913090 0.407759i \(-0.866310\pi\)
0.913090 0.407759i \(-0.133690\pi\)
\(360\) 0 0
\(361\) −1.27441 −0.0670740
\(362\) 0 0
\(363\) 18.8481i 0.989268i
\(364\) 0 0
\(365\) 35.6295i 1.86494i
\(366\) 0 0
\(367\) −31.0339 −1.61995 −0.809977 0.586461i \(-0.800521\pi\)
−0.809977 + 0.586461i \(0.800521\pi\)
\(368\) 0 0
\(369\) 10.2438i 0.533270i
\(370\) 0 0
\(371\) 1.07337 3.01854i 0.0557267 0.156715i
\(372\) 0 0
\(373\) 23.1844i 1.20044i −0.799835 0.600220i \(-0.795080\pi\)
0.799835 0.600220i \(-0.204920\pi\)
\(374\) 0 0
\(375\) 45.4700i 2.34806i
\(376\) 0 0
\(377\) 2.95921i 0.152407i
\(378\) 0 0
\(379\) 9.21018 0.473095 0.236547 0.971620i \(-0.423984\pi\)
0.236547 + 0.971620i \(0.423984\pi\)
\(380\) 0 0
\(381\) 1.89501 0.0970845
\(382\) 0 0
\(383\) −1.04939 −0.0536214 −0.0268107 0.999641i \(-0.508535\pi\)
−0.0268107 + 0.999641i \(0.508535\pi\)
\(384\) 0 0
\(385\) −17.3991 6.18702i −0.886742 0.315320i
\(386\) 0 0
\(387\) 15.2468 0.775038
\(388\) 0 0
\(389\) 33.8614i 1.71684i −0.512948 0.858419i \(-0.671447\pi\)
0.512948 0.858419i \(-0.328553\pi\)
\(390\) 0 0
\(391\) −2.81547 −0.142384
\(392\) 0 0
\(393\) 13.2071 0.666208
\(394\) 0 0
\(395\) 45.6041i 2.29459i
\(396\) 0 0
\(397\) −15.8664 −0.796314 −0.398157 0.917317i \(-0.630350\pi\)
−0.398157 + 0.917317i \(0.630350\pi\)
\(398\) 0 0
\(399\) 27.4194 + 9.75015i 1.37269 + 0.488118i
\(400\) 0 0
\(401\) −2.08850 −0.104295 −0.0521473 0.998639i \(-0.516607\pi\)
−0.0521473 + 0.998639i \(0.516607\pi\)
\(402\) 0 0
\(403\) 7.74273 0.385693
\(404\) 0 0
\(405\) −35.0357 −1.74094
\(406\) 0 0
\(407\) 1.78861i 0.0886581i
\(408\) 0 0
\(409\) 1.03994i 0.0514215i 0.999669 + 0.0257107i \(0.00818488\pi\)
−0.999669 + 0.0257107i \(0.991815\pi\)
\(410\) 0 0
\(411\) 12.9368i 0.638123i
\(412\) 0 0
\(413\) 11.4193 32.1133i 0.561906 1.58019i
\(414\) 0 0
\(415\) 67.8889i 3.33253i
\(416\) 0 0
\(417\) 38.5031 1.88550
\(418\) 0 0
\(419\) 17.2962i 0.844973i 0.906369 + 0.422486i \(0.138843\pi\)
−0.906369 + 0.422486i \(0.861157\pi\)
\(420\) 0 0
\(421\) 21.9062i 1.06764i −0.845597 0.533821i \(-0.820755\pi\)
0.845597 0.533821i \(-0.179245\pi\)
\(422\) 0 0
\(423\) −37.3821 −1.81758
\(424\) 0 0
\(425\) 34.0339i 1.65089i
\(426\) 0 0
\(427\) 11.7044 + 4.16200i 0.566414 + 0.201413i
\(428\) 0 0
\(429\) 4.42699i 0.213737i
\(430\) 0 0
\(431\) 23.8919i 1.15083i −0.817860 0.575417i \(-0.804840\pi\)
0.817860 0.575417i \(-0.195160\pi\)
\(432\) 0 0
\(433\) 2.82638i 0.135827i 0.997691 + 0.0679135i \(0.0216342\pi\)
−0.997691 + 0.0679135i \(0.978366\pi\)
\(434\) 0 0
\(435\) 27.8407 1.33486
\(436\) 0 0
\(437\) −3.66269 −0.175210
\(438\) 0 0
\(439\) 1.33988 0.0639489 0.0319745 0.999489i \(-0.489820\pi\)
0.0319745 + 0.999489i \(0.489820\pi\)
\(440\) 0 0
\(441\) −16.1080 13.1140i −0.767048 0.624478i
\(442\) 0 0
\(443\) 7.54624 0.358533 0.179266 0.983801i \(-0.442628\pi\)
0.179266 + 0.983801i \(0.442628\pi\)
\(444\) 0 0
\(445\) 2.50791i 0.118886i
\(446\) 0 0
\(447\) 49.4753 2.34010
\(448\) 0 0
\(449\) 17.7511 0.837725 0.418862 0.908050i \(-0.362429\pi\)
0.418862 + 0.908050i \(0.362429\pi\)
\(450\) 0 0
\(451\) 6.25625i 0.294595i
\(452\) 0 0
\(453\) 26.0137 1.22223
\(454\) 0 0
\(455\) 9.60083 + 3.41399i 0.450094 + 0.160050i
\(456\) 0 0
\(457\) 1.09635 0.0512851 0.0256425 0.999671i \(-0.491837\pi\)
0.0256425 + 0.999671i \(0.491837\pi\)
\(458\) 0 0
\(459\) −0.276267 −0.0128950
\(460\) 0 0
\(461\) 3.61769 0.168493 0.0842463 0.996445i \(-0.473152\pi\)
0.0842463 + 0.996445i \(0.473152\pi\)
\(462\) 0 0
\(463\) 3.14597i 0.146206i −0.997324 0.0731029i \(-0.976710\pi\)
0.997324 0.0731029i \(-0.0232901\pi\)
\(464\) 0 0
\(465\) 72.8448i 3.37810i
\(466\) 0 0
\(467\) 22.1648i 1.02567i 0.858488 + 0.512833i \(0.171404\pi\)
−0.858488 + 0.512833i \(0.828596\pi\)
\(468\) 0 0
\(469\) −5.30616 1.88684i −0.245016 0.0871260i
\(470\) 0 0
\(471\) 31.5054i 1.45169i
\(472\) 0 0
\(473\) −9.31177 −0.428155
\(474\) 0 0
\(475\) 44.2753i 2.03149i
\(476\) 0 0
\(477\) 3.59309i 0.164516i
\(478\) 0 0
\(479\) 22.6530 1.03504 0.517521 0.855671i \(-0.326855\pi\)
0.517521 + 0.855671i \(0.326855\pi\)
\(480\) 0 0
\(481\) 0.986953i 0.0450012i
\(482\) 0 0
\(483\) 4.95347 + 1.76142i 0.225391 + 0.0801474i
\(484\) 0 0
\(485\) 39.7804i 1.80634i
\(486\) 0 0
\(487\) 0.888954i 0.0402824i 0.999797 + 0.0201412i \(0.00641157\pi\)
−0.999797 + 0.0201412i \(0.993588\pi\)
\(488\) 0 0
\(489\) 42.2403i 1.91017i
\(490\) 0 0
\(491\) −1.30699 −0.0589837 −0.0294918 0.999565i \(-0.509389\pi\)
−0.0294918 + 0.999565i \(0.509389\pi\)
\(492\) 0 0
\(493\) 10.2424 0.461293
\(494\) 0 0
\(495\) −20.7109 −0.930886
\(496\) 0 0
\(497\) 3.54415 9.96687i 0.158977 0.447075i
\(498\) 0 0
\(499\) 28.7592 1.28744 0.643720 0.765262i \(-0.277390\pi\)
0.643720 + 0.765262i \(0.277390\pi\)
\(500\) 0 0
\(501\) 23.6313i 1.05577i
\(502\) 0 0
\(503\) 11.8526 0.528479 0.264240 0.964457i \(-0.414879\pi\)
0.264240 + 0.964457i \(0.414879\pi\)
\(504\) 0 0
\(505\) 69.3710 3.08697
\(506\) 0 0
\(507\) 2.44281i 0.108489i
\(508\) 0 0
\(509\) 15.4601 0.685259 0.342629 0.939471i \(-0.388682\pi\)
0.342629 + 0.939471i \(0.388682\pi\)
\(510\) 0 0
\(511\) 8.20055 23.0616i 0.362771 1.02018i
\(512\) 0 0
\(513\) −0.359400 −0.0158679
\(514\) 0 0
\(515\) −13.7135 −0.604289
\(516\) 0 0
\(517\) 22.8306 1.00409
\(518\) 0 0
\(519\) 18.7025i 0.820950i
\(520\) 0 0
\(521\) 34.6336i 1.51733i 0.651484 + 0.758663i \(0.274147\pi\)
−0.651484 + 0.758663i \(0.725853\pi\)
\(522\) 0 0
\(523\) 25.9793i 1.13600i −0.823030 0.567998i \(-0.807718\pi\)
0.823030 0.567998i \(-0.192282\pi\)
\(524\) 0 0
\(525\) 21.2924 59.8785i 0.929277 2.61331i
\(526\) 0 0
\(527\) 26.7990i 1.16738i
\(528\) 0 0
\(529\) 22.3383 0.971231
\(530\) 0 0
\(531\) 38.2258i 1.65886i
\(532\) 0 0
\(533\) 3.45219i 0.149531i
\(534\) 0 0
\(535\) 55.8401 2.41418
\(536\) 0 0
\(537\) 55.4468i 2.39271i
\(538\) 0 0
\(539\) 9.83775 + 8.00922i 0.423742 + 0.344982i
\(540\) 0 0
\(541\) 12.5538i 0.539732i −0.962898 0.269866i \(-0.913021\pi\)
0.962898 0.269866i \(-0.0869794\pi\)
\(542\) 0 0
\(543\) 40.8519i 1.75312i
\(544\) 0 0
\(545\) 67.4997i 2.89137i
\(546\) 0 0
\(547\) 19.8173 0.847327 0.423663 0.905820i \(-0.360744\pi\)
0.423663 + 0.905820i \(0.360744\pi\)
\(548\) 0 0
\(549\) 13.9322 0.594611
\(550\) 0 0
\(551\) 13.3245 0.567641
\(552\) 0 0
\(553\) 10.4963 29.5177i 0.446349 1.25522i
\(554\) 0 0
\(555\) 9.28542 0.394144
\(556\) 0 0
\(557\) 22.7061i 0.962089i 0.876696 + 0.481044i \(0.159742\pi\)
−0.876696 + 0.481044i \(0.840258\pi\)
\(558\) 0 0
\(559\) 5.13822 0.217324
\(560\) 0 0
\(561\) −15.3226 −0.646922
\(562\) 0 0
\(563\) 6.86719i 0.289417i 0.989474 + 0.144709i \(0.0462245\pi\)
−0.989474 + 0.144709i \(0.953775\pi\)
\(564\) 0 0
\(565\) −37.5000 −1.57764
\(566\) 0 0
\(567\) 22.6772 + 8.06387i 0.952354 + 0.338651i
\(568\) 0 0
\(569\) 0.587660 0.0246360 0.0123180 0.999924i \(-0.496079\pi\)
0.0123180 + 0.999924i \(0.496079\pi\)
\(570\) 0 0
\(571\) 11.7541 0.491894 0.245947 0.969283i \(-0.420901\pi\)
0.245947 + 0.969283i \(0.420901\pi\)
\(572\) 0 0
\(573\) 21.0547 0.879571
\(574\) 0 0
\(575\) 7.99859i 0.333564i
\(576\) 0 0
\(577\) 19.3871i 0.807095i 0.914959 + 0.403547i \(0.132223\pi\)
−0.914959 + 0.403547i \(0.867777\pi\)
\(578\) 0 0
\(579\) 46.1783i 1.91910i
\(580\) 0 0
\(581\) −15.6254 + 43.9417i −0.648251 + 1.82301i
\(582\) 0 0
\(583\) 2.19443i 0.0908840i
\(584\) 0 0
\(585\) 11.4283 0.472500
\(586\) 0 0
\(587\) 41.4962i 1.71273i −0.516368 0.856367i \(-0.672716\pi\)
0.516368 0.856367i \(-0.327284\pi\)
\(588\) 0 0
\(589\) 34.8633i 1.43652i
\(590\) 0 0
\(591\) 10.9685 0.451184
\(592\) 0 0
\(593\) 23.4256i 0.961976i −0.876727 0.480988i \(-0.840278\pi\)
0.876727 0.480988i \(-0.159722\pi\)
\(594\) 0 0
\(595\) 11.8165 33.2302i 0.484428 1.36231i
\(596\) 0 0
\(597\) 22.3586i 0.915075i
\(598\) 0 0
\(599\) 16.8992i 0.690485i 0.938514 + 0.345242i \(0.112203\pi\)
−0.938514 + 0.345242i \(0.887797\pi\)
\(600\) 0 0
\(601\) 41.1108i 1.67695i −0.544943 0.838473i \(-0.683449\pi\)
0.544943 0.838473i \(-0.316551\pi\)
\(602\) 0 0
\(603\) −6.31614 −0.257213
\(604\) 0 0
\(605\) −29.7161 −1.20813
\(606\) 0 0
\(607\) 35.6288 1.44613 0.723064 0.690781i \(-0.242733\pi\)
0.723064 + 0.690781i \(0.242733\pi\)
\(608\) 0 0
\(609\) −18.0202 6.40786i −0.730215 0.259660i
\(610\) 0 0
\(611\) −12.5979 −0.509657
\(612\) 0 0
\(613\) 15.0402i 0.607466i −0.952757 0.303733i \(-0.901767\pi\)
0.952757 0.303733i \(-0.0982331\pi\)
\(614\) 0 0
\(615\) −32.4788 −1.30967
\(616\) 0 0
\(617\) −20.9019 −0.841479 −0.420739 0.907182i \(-0.638229\pi\)
−0.420739 + 0.907182i \(0.638229\pi\)
\(618\) 0 0
\(619\) 32.1484i 1.29215i 0.763272 + 0.646077i \(0.223591\pi\)
−0.763272 + 0.646077i \(0.776409\pi\)
\(620\) 0 0
\(621\) −0.0649277 −0.00260546
\(622\) 0 0
\(623\) 0.577223 1.62327i 0.0231260 0.0650348i
\(624\) 0 0
\(625\) 22.5234 0.900935
\(626\) 0 0
\(627\) −19.9335 −0.796066
\(628\) 0 0
\(629\) 3.41603 0.136206
\(630\) 0 0
\(631\) 20.4474i 0.813998i 0.913429 + 0.406999i \(0.133425\pi\)
−0.913429 + 0.406999i \(0.866575\pi\)
\(632\) 0 0
\(633\) 21.4324i 0.851861i
\(634\) 0 0
\(635\) 2.98770i 0.118563i
\(636\) 0 0
\(637\) −5.42846 4.41948i −0.215083 0.175106i
\(638\) 0 0
\(639\) 11.8640i 0.469332i
\(640\) 0 0
\(641\) 19.9013 0.786056 0.393028 0.919527i \(-0.371428\pi\)
0.393028 + 0.919527i \(0.371428\pi\)
\(642\) 0 0
\(643\) 36.6222i 1.44424i −0.691768 0.722120i \(-0.743168\pi\)
0.691768 0.722120i \(-0.256832\pi\)
\(644\) 0 0
\(645\) 48.3413i 1.90343i
\(646\) 0 0
\(647\) −33.4255 −1.31409 −0.657045 0.753851i \(-0.728194\pi\)
−0.657045 + 0.753851i \(0.728194\pi\)
\(648\) 0 0
\(649\) 23.3459i 0.916405i
\(650\) 0 0
\(651\) −16.7661 + 47.1495i −0.657114 + 1.84794i
\(652\) 0 0
\(653\) 15.8386i 0.619811i 0.950767 + 0.309905i \(0.100297\pi\)
−0.950767 + 0.309905i \(0.899703\pi\)
\(654\) 0 0
\(655\) 20.8224i 0.813600i
\(656\) 0 0
\(657\) 27.4511i 1.07097i
\(658\) 0 0
\(659\) 35.1659 1.36987 0.684935 0.728604i \(-0.259831\pi\)
0.684935 + 0.728604i \(0.259831\pi\)
\(660\) 0 0
\(661\) 48.9746 1.90489 0.952446 0.304707i \(-0.0985586\pi\)
0.952446 + 0.304707i \(0.0985586\pi\)
\(662\) 0 0
\(663\) 8.45502 0.328366
\(664\) 0 0
\(665\) 15.3722 43.2298i 0.596109 1.67638i
\(666\) 0 0
\(667\) 2.40714 0.0932049
\(668\) 0 0
\(669\) 2.96417i 0.114602i
\(670\) 0 0
\(671\) −8.50890 −0.328482
\(672\) 0 0
\(673\) −12.2361 −0.471666 −0.235833 0.971794i \(-0.575782\pi\)
−0.235833 + 0.971794i \(0.575782\pi\)
\(674\) 0 0
\(675\) 0.784860i 0.0302093i
\(676\) 0 0
\(677\) 12.6987 0.488051 0.244025 0.969769i \(-0.421532\pi\)
0.244025 + 0.969769i \(0.421532\pi\)
\(678\) 0 0
\(679\) 9.15592 25.7483i 0.351372 0.988128i
\(680\) 0 0
\(681\) 66.2816 2.53992
\(682\) 0 0
\(683\) 14.5785 0.557831 0.278916 0.960316i \(-0.410025\pi\)
0.278916 + 0.960316i \(0.410025\pi\)
\(684\) 0 0
\(685\) 20.3963 0.779301
\(686\) 0 0
\(687\) 0.827175i 0.0315587i
\(688\) 0 0
\(689\) 1.21088i 0.0461310i
\(690\) 0 0
\(691\) 23.6667i 0.900323i 0.892947 + 0.450162i \(0.148634\pi\)
−0.892947 + 0.450162i \(0.851366\pi\)
\(692\) 0 0
\(693\) 13.4053 + 4.76685i 0.509227 + 0.181078i
\(694\) 0 0
\(695\) 60.7045i 2.30265i
\(696\) 0 0
\(697\) −11.9487 −0.452588
\(698\) 0 0
\(699\) 5.83525i 0.220709i
\(700\) 0 0
\(701\) 7.44505i 0.281196i 0.990067 + 0.140598i \(0.0449025\pi\)
−0.990067 + 0.140598i \(0.955098\pi\)
\(702\) 0 0
\(703\) 4.44397 0.167607
\(704\) 0 0
\(705\) 118.523i 4.46384i
\(706\) 0 0
\(707\) −44.9010 15.9665i −1.68868 0.600483i
\(708\) 0 0
\(709\) 44.0918i 1.65590i −0.560800 0.827951i \(-0.689506\pi\)
0.560800 0.827951i \(-0.310494\pi\)
\(710\) 0 0
\(711\) 35.1362i 1.31771i
\(712\) 0 0
\(713\) 6.29825i 0.235871i
\(714\) 0 0
\(715\) −6.97966 −0.261024
\(716\) 0 0
\(717\) 55.3902 2.06859
\(718\) 0 0
\(719\) −24.0504 −0.896929 −0.448464 0.893801i \(-0.648029\pi\)
−0.448464 + 0.893801i \(0.648029\pi\)
\(720\) 0 0
\(721\) 8.87621 + 3.15632i 0.330567 + 0.117548i
\(722\) 0 0
\(723\) −59.6467 −2.21828
\(724\) 0 0
\(725\) 29.0980i 1.08067i
\(726\) 0 0
\(727\) −36.9514 −1.37045 −0.685226 0.728330i \(-0.740297\pi\)
−0.685226 + 0.728330i \(0.740297\pi\)
\(728\) 0 0
\(729\) 26.4087 0.978099
\(730\) 0 0
\(731\) 17.7843i 0.657778i
\(732\) 0 0
\(733\) −22.0569 −0.814692 −0.407346 0.913274i \(-0.633546\pi\)
−0.407346 + 0.913274i \(0.633546\pi\)
\(734\) 0 0
\(735\) −41.5792 + 51.0718i −1.53367 + 1.88381i
\(736\) 0 0
\(737\) 3.85750 0.142093
\(738\) 0 0
\(739\) −36.0166 −1.32489 −0.662445 0.749110i \(-0.730481\pi\)
−0.662445 + 0.749110i \(0.730481\pi\)
\(740\) 0 0
\(741\) 10.9993 0.404068
\(742\) 0 0
\(743\) 10.2860i 0.377358i −0.982039 0.188679i \(-0.939579\pi\)
0.982039 0.188679i \(-0.0604206\pi\)
\(744\) 0 0
\(745\) 78.0034i 2.85782i
\(746\) 0 0
\(747\) 52.3057i 1.91376i
\(748\) 0 0
\(749\) −36.1430 12.8522i −1.32064 0.469610i
\(750\) 0 0
\(751\) 34.8371i 1.27122i 0.772009 + 0.635612i \(0.219252\pi\)
−0.772009 + 0.635612i \(0.780748\pi\)
\(752\) 0 0
\(753\) −26.6288 −0.970407
\(754\) 0 0
\(755\) 41.0135i 1.49263i
\(756\) 0 0
\(757\) 6.93156i 0.251932i 0.992035 + 0.125966i \(0.0402030\pi\)
−0.992035 + 0.125966i \(0.959797\pi\)
\(758\) 0 0
\(759\) −3.60110 −0.130711
\(760\) 0 0
\(761\) 32.8554i 1.19101i 0.803352 + 0.595504i \(0.203048\pi\)
−0.803352 + 0.595504i \(0.796952\pi\)
\(762\) 0 0
\(763\) 15.5358 43.6899i 0.562435 1.58168i
\(764\) 0 0
\(765\) 39.5553i 1.43013i
\(766\) 0 0
\(767\) 12.8822i 0.465150i
\(768\) 0 0
\(769\) 29.5660i 1.06618i −0.846059 0.533089i \(-0.821031\pi\)
0.846059 0.533089i \(-0.178969\pi\)
\(770\) 0 0
\(771\) 66.3122 2.38818
\(772\) 0 0
\(773\) −28.4754 −1.02419 −0.512094 0.858929i \(-0.671130\pi\)
−0.512094 + 0.858929i \(0.671130\pi\)
\(774\) 0 0
\(775\) −76.1345 −2.73483
\(776\) 0 0
\(777\) −6.01008 2.13715i −0.215610 0.0766697i
\(778\) 0 0
\(779\) −15.5442 −0.556930
\(780\) 0 0
\(781\) 7.24576i 0.259274i
\(782\) 0 0
\(783\) 0.236200 0.00844110
\(784\) 0 0
\(785\) −49.6717 −1.77286
\(786\) 0 0
\(787\) 39.7645i 1.41745i 0.705484 + 0.708726i \(0.250730\pi\)
−0.705484 + 0.708726i \(0.749270\pi\)
\(788\) 0 0
\(789\) −66.8395 −2.37955
\(790\) 0 0
\(791\) 24.2723 + 8.63106i 0.863022 + 0.306885i
\(792\) 0 0
\(793\) 4.69520 0.166731
\(794\) 0 0
\(795\) −11.3922 −0.404039
\(796\) 0 0
\(797\) 1.40341 0.0497114 0.0248557 0.999691i \(-0.492087\pi\)
0.0248557 + 0.999691i \(0.492087\pi\)
\(798\) 0 0
\(799\) 43.6037i 1.54259i
\(800\) 0 0
\(801\) 1.93224i 0.0682724i
\(802\) 0 0
\(803\) 16.7654i 0.591639i
\(804\) 0 0
\(805\) 2.77708 7.80970i 0.0978792 0.275256i
\(806\) 0 0
\(807\) 71.6471i 2.52210i
\(808\) 0 0
\(809\) 14.9618 0.526027 0.263014 0.964792i \(-0.415284\pi\)
0.263014 + 0.964792i \(0.415284\pi\)
\(810\) 0 0
\(811\) 3.70960i 0.130262i −0.997877 0.0651308i \(-0.979254\pi\)
0.997877 0.0651308i \(-0.0207464\pi\)
\(812\) 0 0
\(813\) 11.3286i 0.397311i
\(814\) 0 0
\(815\) −66.5967 −2.33278
\(816\) 0 0
\(817\) 23.1359i 0.809424i
\(818\) 0 0
\(819\) −7.39705 2.63034i −0.258474 0.0919117i
\(820\) 0 0
\(821\) 36.0973i 1.25981i 0.776674 + 0.629903i \(0.216905\pi\)
−0.776674 + 0.629903i \(0.783095\pi\)
\(822\) 0 0
\(823\) 7.14831i 0.249175i −0.992209 0.124587i \(-0.960239\pi\)
0.992209 0.124587i \(-0.0397607\pi\)
\(824\) 0 0
\(825\) 43.5308i 1.51555i
\(826\) 0 0
\(827\) 45.0128 1.56525 0.782625 0.622493i \(-0.213880\pi\)
0.782625 + 0.622493i \(0.213880\pi\)
\(828\) 0 0
\(829\) −1.70523 −0.0592250 −0.0296125 0.999561i \(-0.509427\pi\)
−0.0296125 + 0.999561i \(0.509427\pi\)
\(830\) 0 0
\(831\) −5.50388 −0.190927
\(832\) 0 0
\(833\) −15.2966 + 18.7889i −0.529997 + 0.650997i
\(834\) 0 0
\(835\) 37.2575 1.28935
\(836\) 0 0
\(837\) 0.618014i 0.0213617i
\(838\) 0 0
\(839\) 9.92632 0.342694 0.171347 0.985211i \(-0.445188\pi\)
0.171347 + 0.985211i \(0.445188\pi\)
\(840\) 0 0
\(841\) 20.2431 0.698037
\(842\) 0 0
\(843\) 18.2458i 0.628420i
\(844\) 0 0
\(845\) 3.85137 0.132491
\(846\) 0 0
\(847\) 19.2341 + 6.83951i 0.660890 + 0.235008i
\(848\) 0 0
\(849\) 0.649483 0.0222902
\(850\) 0 0
\(851\) 0.802828 0.0275206
\(852\) 0 0
\(853\) 7.29950 0.249930 0.124965 0.992161i \(-0.460118\pi\)
0.124965 + 0.992161i \(0.460118\pi\)
\(854\) 0 0
\(855\) 51.4582i 1.75983i
\(856\) 0 0
\(857\) 42.5363i 1.45301i 0.687160 + 0.726506i \(0.258857\pi\)
−0.687160 + 0.726506i \(0.741143\pi\)
\(858\) 0 0
\(859\) 18.3243i 0.625217i 0.949882 + 0.312609i \(0.101203\pi\)
−0.949882 + 0.312609i \(0.898797\pi\)
\(860\) 0 0
\(861\) 21.0222 + 7.47536i 0.716435 + 0.254760i
\(862\) 0 0
\(863\) 31.0819i 1.05804i 0.848610 + 0.529019i \(0.177440\pi\)
−0.848610 + 0.529019i \(0.822560\pi\)
\(864\) 0 0
\(865\) −29.4867 −1.00258
\(866\) 0 0
\(867\) 12.2634i 0.416487i
\(868\) 0 0
\(869\) 21.4589i 0.727945i
\(870\) 0 0
\(871\) −2.12856 −0.0721236
\(872\) 0 0
\(873\) 30.6492i 1.03732i
\(874\) 0 0
\(875\) −46.4011 16.4999i −1.56864 0.557800i
\(876\) 0 0
\(877\) 50.5638i 1.70742i −0.520752 0.853708i \(-0.674348\pi\)
0.520752 0.853708i \(-0.325652\pi\)
\(878\) 0 0
\(879\) 10.4596i 0.352794i
\(880\) 0 0
\(881\) 0.189942i 0.00639930i −0.999995 0.00319965i \(-0.998982\pi\)
0.999995 0.00319965i \(-0.00101848\pi\)
\(882\) 0 0
\(883\) 32.9338 1.10831 0.554156 0.832413i \(-0.313041\pi\)
0.554156 + 0.832413i \(0.313041\pi\)
\(884\) 0 0
\(885\) −121.198 −4.07403
\(886\) 0 0
\(887\) −36.6972 −1.23217 −0.616086 0.787679i \(-0.711283\pi\)
−0.616086 + 0.787679i \(0.711283\pi\)
\(888\) 0 0
\(889\) −0.687654 + 1.93382i −0.0230632 + 0.0648583i
\(890\) 0 0
\(891\) −16.4860 −0.552302
\(892\) 0 0
\(893\) 56.7248i 1.89822i
\(894\) 0 0
\(895\) 87.4182 2.92207
\(896\) 0 0
\(897\) 1.98708 0.0663467
\(898\) 0 0
\(899\) 22.9123i 0.764170i
\(900\) 0 0
\(901\) −4.19109 −0.139626
\(902\) 0 0
\(903\) −11.1263 + 31.2894i −0.370260 + 1.04124i
\(904\) 0 0
\(905\) 64.4077 2.14098
\(906\) 0 0
\(907\) 30.6366 1.01727 0.508636 0.860982i \(-0.330150\pi\)
0.508636 + 0.860982i \(0.330150\pi\)
\(908\) 0 0
\(909\) −53.4476 −1.77274
\(910\) 0 0
\(911\) 32.3852i 1.07297i 0.843910 + 0.536484i \(0.180248\pi\)
−0.843910 + 0.536484i \(0.819752\pi\)
\(912\) 0 0
\(913\) 31.9450i 1.05722i
\(914\) 0 0
\(915\) 44.1732i 1.46032i
\(916\) 0 0
\(917\) −4.79252 + 13.4775i −0.158263 + 0.445067i
\(918\) 0 0
\(919\) 34.3537i 1.13322i 0.823985 + 0.566612i \(0.191746\pi\)
−0.823985 + 0.566612i \(0.808254\pi\)
\(920\) 0 0
\(921\) 5.87502 0.193588
\(922\) 0 0
\(923\) 3.99821i 0.131603i
\(924\) 0 0
\(925\) 9.70475i 0.319090i
\(926\) 0 0
\(927\) 10.5657 0.347024
\(928\) 0 0
\(929\) 41.2449i 1.35320i −0.736350 0.676601i \(-0.763452\pi\)
0.736350 0.676601i \(-0.236548\pi\)
\(930\) 0 0
\(931\) −19.8996 + 24.4428i −0.652184 + 0.801080i
\(932\) 0 0
\(933\) 46.2778i 1.51507i
\(934\) 0 0
\(935\) 24.1579i 0.790047i
\(936\) 0 0
\(937\) 24.8231i 0.810936i −0.914109 0.405468i \(-0.867109\pi\)
0.914109 0.405468i \(-0.132891\pi\)
\(938\) 0 0
\(939\) −6.35698 −0.207452
\(940\) 0 0
\(941\) 22.0956 0.720295 0.360147 0.932895i \(-0.382726\pi\)
0.360147 + 0.932895i \(0.382726\pi\)
\(942\) 0 0
\(943\) −2.80815 −0.0914460
\(944\) 0 0
\(945\) 0.272500 0.766325i 0.00886444 0.0249286i
\(946\) 0 0
\(947\) 49.5764 1.61102 0.805508 0.592585i \(-0.201893\pi\)
0.805508 + 0.592585i \(0.201893\pi\)
\(948\) 0 0
\(949\) 9.25114i 0.300305i
\(950\) 0 0
\(951\) −6.53761 −0.211997
\(952\) 0 0
\(953\) 46.4982 1.50622 0.753112 0.657892i \(-0.228552\pi\)
0.753112 + 0.657892i \(0.228552\pi\)
\(954\) 0 0
\(955\) 33.1951i 1.07417i
\(956\) 0 0
\(957\) 13.1004 0.423476
\(958\) 0 0
\(959\) −13.2017 4.69443i −0.426305 0.151591i
\(960\) 0 0
\(961\) 28.9498 0.933865
\(962\) 0 0
\(963\) −43.0225 −1.38638
\(964\) 0 0
\(965\) −72.8053 −2.34369
\(966\) 0 0
\(967\) 31.7620i 1.02140i −0.859760 0.510699i \(-0.829387\pi\)
0.859760 0.510699i \(-0.170613\pi\)
\(968\) 0 0
\(969\) 38.0705i 1.22300i
\(970\) 0 0
\(971\) 1.85166i 0.0594226i −0.999559 0.0297113i \(-0.990541\pi\)
0.999559 0.0297113i \(-0.00945879\pi\)
\(972\) 0 0
\(973\) −13.9718 + 39.2916i −0.447916 + 1.25963i
\(974\) 0 0
\(975\) 24.0202i 0.769263i
\(976\) 0 0
\(977\) −40.6090 −1.29920 −0.649598 0.760278i \(-0.725063\pi\)
−0.649598 + 0.760278i \(0.725063\pi\)
\(978\) 0 0
\(979\) 1.18009i 0.0377159i
\(980\) 0 0
\(981\) 52.0058i 1.66042i
\(982\) 0 0
\(983\) 23.1405 0.738066 0.369033 0.929416i \(-0.379689\pi\)
0.369033 + 0.929416i \(0.379689\pi\)
\(984\) 0 0
\(985\) 17.2931i 0.551003i
\(986\) 0 0
\(987\) 27.2795 76.7153i 0.868315 2.44188i
\(988\) 0 0
\(989\) 4.17964i 0.132905i
\(990\) 0 0
\(991\) 3.02612i 0.0961279i 0.998844 + 0.0480640i \(0.0153051\pi\)
−0.998844 + 0.0480640i \(0.984695\pi\)
\(992\) 0 0
\(993\) 38.2856i 1.21496i
\(994\) 0 0
\(995\) 35.2508 1.11753
\(996\) 0 0
\(997\) −25.0174 −0.792308 −0.396154 0.918184i \(-0.629655\pi\)
−0.396154 + 0.918184i \(0.629655\pi\)
\(998\) 0 0
\(999\) 0.0787773 0.00249240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.a.2575.42 48
4.3 odd 2 728.2.h.a.27.9 48
7.6 odd 2 2912.2.h.b.2575.7 48
8.3 odd 2 2912.2.h.b.2575.42 48
8.5 even 2 728.2.h.b.27.10 yes 48
28.27 even 2 728.2.h.b.27.9 yes 48
56.13 odd 2 728.2.h.a.27.10 yes 48
56.27 even 2 inner 2912.2.h.a.2575.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.9 48 4.3 odd 2
728.2.h.a.27.10 yes 48 56.13 odd 2
728.2.h.b.27.9 yes 48 28.27 even 2
728.2.h.b.27.10 yes 48 8.5 even 2
2912.2.h.a.2575.7 48 56.27 even 2 inner
2912.2.h.a.2575.42 48 1.1 even 1 trivial
2912.2.h.b.2575.7 48 7.6 odd 2
2912.2.h.b.2575.42 48 8.3 odd 2