Properties

Label 2912.2.k.i.1793.1
Level $2912$
Weight $2$
Character 2912.1793
Analytic conductor $23.252$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1793,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1793");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 37x^{12} + 544x^{10} + 4060x^{8} + 16288x^{6} + 34160x^{4} + 33216x^{2} + 10816 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1793.1
Root \(-3.28037i\) of defining polynomial
Character \(\chi\) \(=\) 2912.1793
Dual form 2912.2.k.i.1793.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.28037 q^{3} -0.760790i q^{5} +1.00000i q^{7} +7.76086 q^{9} +1.60001i q^{11} +(-1.07939 - 3.44019i) q^{13} +2.49568i q^{15} -4.36086 q^{17} +7.34163i q^{19} -3.28037i q^{21} +6.38477 q^{23} +4.42120 q^{25} -15.6174 q^{27} -4.95692 q^{29} -0.261137i q^{31} -5.24862i q^{33} +0.760790 q^{35} -4.74360i q^{37} +(3.54082 + 11.2851i) q^{39} -0.895672i q^{41} -4.18466 q^{43} -5.90439i q^{45} -5.63856i q^{47} -1.00000 q^{49} +14.3053 q^{51} +8.81277 q^{53} +1.21727 q^{55} -24.0833i q^{57} -3.49774i q^{59} +5.77605 q^{61} +7.76086i q^{63} +(-2.61726 + 0.821193i) q^{65} -4.82282i q^{67} -20.9444 q^{69} -7.45664i q^{71} +3.84128i q^{73} -14.5032 q^{75} -1.60001 q^{77} -9.48055 q^{79} +27.9483 q^{81} -1.08431i q^{83} +3.31770i q^{85} +16.2606 q^{87} +16.6986i q^{89} +(3.44019 - 1.07939i) q^{91} +0.856628i q^{93} +5.58544 q^{95} +6.31970i q^{97} +12.4174i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} + 32 q^{9} - 6 q^{13} + 36 q^{17} - 18 q^{23} - 18 q^{25} - 14 q^{27} - 16 q^{29} + 8 q^{35} + 34 q^{39} + 60 q^{43} - 14 q^{49} + 12 q^{51} + 4 q^{53} - 60 q^{55} + 6 q^{61} + 20 q^{65}+ \cdots + 68 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.28037 −1.89393 −0.946963 0.321344i \(-0.895866\pi\)
−0.946963 + 0.321344i \(0.895866\pi\)
\(4\) 0 0
\(5\) 0.760790i 0.340236i −0.985424 0.170118i \(-0.945585\pi\)
0.985424 0.170118i \(-0.0544148\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 7.76086 2.58695
\(10\) 0 0
\(11\) 1.60001i 0.482420i 0.970473 + 0.241210i \(0.0775442\pi\)
−0.970473 + 0.241210i \(0.922456\pi\)
\(12\) 0 0
\(13\) −1.07939 3.44019i −0.299370 0.954137i
\(14\) 0 0
\(15\) 2.49568i 0.644381i
\(16\) 0 0
\(17\) −4.36086 −1.05766 −0.528832 0.848726i \(-0.677370\pi\)
−0.528832 + 0.848726i \(0.677370\pi\)
\(18\) 0 0
\(19\) 7.34163i 1.68428i 0.539255 + 0.842142i \(0.318706\pi\)
−0.539255 + 0.842142i \(0.681294\pi\)
\(20\) 0 0
\(21\) 3.28037i 0.715836i
\(22\) 0 0
\(23\) 6.38477 1.33132 0.665658 0.746257i \(-0.268151\pi\)
0.665658 + 0.746257i \(0.268151\pi\)
\(24\) 0 0
\(25\) 4.42120 0.884240
\(26\) 0 0
\(27\) −15.6174 −3.00557
\(28\) 0 0
\(29\) −4.95692 −0.920478 −0.460239 0.887795i \(-0.652236\pi\)
−0.460239 + 0.887795i \(0.652236\pi\)
\(30\) 0 0
\(31\) 0.261137i 0.0469016i −0.999725 0.0234508i \(-0.992535\pi\)
0.999725 0.0234508i \(-0.00746531\pi\)
\(32\) 0 0
\(33\) 5.24862i 0.913667i
\(34\) 0 0
\(35\) 0.760790 0.128597
\(36\) 0 0
\(37\) 4.74360i 0.779843i −0.920848 0.389922i \(-0.872502\pi\)
0.920848 0.389922i \(-0.127498\pi\)
\(38\) 0 0
\(39\) 3.54082 + 11.2851i 0.566985 + 1.80706i
\(40\) 0 0
\(41\) 0.895672i 0.139880i −0.997551 0.0699402i \(-0.977719\pi\)
0.997551 0.0699402i \(-0.0222809\pi\)
\(42\) 0 0
\(43\) −4.18466 −0.638155 −0.319077 0.947729i \(-0.603373\pi\)
−0.319077 + 0.947729i \(0.603373\pi\)
\(44\) 0 0
\(45\) 5.90439i 0.880174i
\(46\) 0 0
\(47\) 5.63856i 0.822469i −0.911530 0.411235i \(-0.865098\pi\)
0.911530 0.411235i \(-0.134902\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 14.3053 2.00314
\(52\) 0 0
\(53\) 8.81277 1.21053 0.605264 0.796025i \(-0.293068\pi\)
0.605264 + 0.796025i \(0.293068\pi\)
\(54\) 0 0
\(55\) 1.21727 0.164136
\(56\) 0 0
\(57\) 24.0833i 3.18991i
\(58\) 0 0
\(59\) 3.49774i 0.455367i −0.973735 0.227684i \(-0.926885\pi\)
0.973735 0.227684i \(-0.0731152\pi\)
\(60\) 0 0
\(61\) 5.77605 0.739548 0.369774 0.929122i \(-0.379435\pi\)
0.369774 + 0.929122i \(0.379435\pi\)
\(62\) 0 0
\(63\) 7.76086i 0.977776i
\(64\) 0 0
\(65\) −2.61726 + 0.821193i −0.324632 + 0.101856i
\(66\) 0 0
\(67\) 4.82282i 0.589201i −0.955621 0.294600i \(-0.904813\pi\)
0.955621 0.294600i \(-0.0951866\pi\)
\(68\) 0 0
\(69\) −20.9444 −2.52141
\(70\) 0 0
\(71\) 7.45664i 0.884941i −0.896783 0.442470i \(-0.854102\pi\)
0.896783 0.442470i \(-0.145898\pi\)
\(72\) 0 0
\(73\) 3.84128i 0.449588i 0.974406 + 0.224794i \(0.0721709\pi\)
−0.974406 + 0.224794i \(0.927829\pi\)
\(74\) 0 0
\(75\) −14.5032 −1.67468
\(76\) 0 0
\(77\) −1.60001 −0.182338
\(78\) 0 0
\(79\) −9.48055 −1.06665 −0.533323 0.845912i \(-0.679057\pi\)
−0.533323 + 0.845912i \(0.679057\pi\)
\(80\) 0 0
\(81\) 27.9483 3.10537
\(82\) 0 0
\(83\) 1.08431i 0.119018i −0.998228 0.0595092i \(-0.981046\pi\)
0.998228 0.0595092i \(-0.0189536\pi\)
\(84\) 0 0
\(85\) 3.31770i 0.359855i
\(86\) 0 0
\(87\) 16.2606 1.74332
\(88\) 0 0
\(89\) 16.6986i 1.77005i 0.465544 + 0.885025i \(0.345859\pi\)
−0.465544 + 0.885025i \(0.654141\pi\)
\(90\) 0 0
\(91\) 3.44019 1.07939i 0.360630 0.113151i
\(92\) 0 0
\(93\) 0.856628i 0.0888282i
\(94\) 0 0
\(95\) 5.58544 0.573054
\(96\) 0 0
\(97\) 6.31970i 0.641668i 0.947135 + 0.320834i \(0.103963\pi\)
−0.947135 + 0.320834i \(0.896037\pi\)
\(98\) 0 0
\(99\) 12.4174i 1.24800i
\(100\) 0 0
\(101\) −15.5455 −1.54683 −0.773416 0.633899i \(-0.781454\pi\)
−0.773416 + 0.633899i \(0.781454\pi\)
\(102\) 0 0
\(103\) −4.00535 −0.394659 −0.197329 0.980337i \(-0.563227\pi\)
−0.197329 + 0.980337i \(0.563227\pi\)
\(104\) 0 0
\(105\) −2.49568 −0.243553
\(106\) 0 0
\(107\) −6.33427 −0.612357 −0.306178 0.951974i \(-0.599050\pi\)
−0.306178 + 0.951974i \(0.599050\pi\)
\(108\) 0 0
\(109\) 11.7216i 1.12273i 0.827570 + 0.561363i \(0.189723\pi\)
−0.827570 + 0.561363i \(0.810277\pi\)
\(110\) 0 0
\(111\) 15.5608i 1.47696i
\(112\) 0 0
\(113\) 12.8870 1.21230 0.606152 0.795349i \(-0.292712\pi\)
0.606152 + 0.795349i \(0.292712\pi\)
\(114\) 0 0
\(115\) 4.85747i 0.452962i
\(116\) 0 0
\(117\) −8.37703 26.6988i −0.774456 2.46831i
\(118\) 0 0
\(119\) 4.36086i 0.399760i
\(120\) 0 0
\(121\) 8.43998 0.767271
\(122\) 0 0
\(123\) 2.93814i 0.264923i
\(124\) 0 0
\(125\) 7.16756i 0.641086i
\(126\) 0 0
\(127\) −10.6000 −0.940599 −0.470300 0.882507i \(-0.655854\pi\)
−0.470300 + 0.882507i \(0.655854\pi\)
\(128\) 0 0
\(129\) 13.7273 1.20862
\(130\) 0 0
\(131\) −16.2889 −1.42317 −0.711585 0.702600i \(-0.752023\pi\)
−0.711585 + 0.702600i \(0.752023\pi\)
\(132\) 0 0
\(133\) −7.34163 −0.636600
\(134\) 0 0
\(135\) 11.8816i 1.02260i
\(136\) 0 0
\(137\) 5.67900i 0.485190i 0.970128 + 0.242595i \(0.0779986\pi\)
−0.970128 + 0.242595i \(0.922001\pi\)
\(138\) 0 0
\(139\) 16.0196 1.35876 0.679382 0.733785i \(-0.262248\pi\)
0.679382 + 0.733785i \(0.262248\pi\)
\(140\) 0 0
\(141\) 18.4966i 1.55770i
\(142\) 0 0
\(143\) 5.50432 1.72704i 0.460295 0.144422i
\(144\) 0 0
\(145\) 3.77118i 0.313179i
\(146\) 0 0
\(147\) 3.28037 0.270561
\(148\) 0 0
\(149\) 1.77742i 0.145612i −0.997346 0.0728060i \(-0.976805\pi\)
0.997346 0.0728060i \(-0.0231954\pi\)
\(150\) 0 0
\(151\) 21.0220i 1.71075i 0.518009 + 0.855375i \(0.326673\pi\)
−0.518009 + 0.855375i \(0.673327\pi\)
\(152\) 0 0
\(153\) −33.8440 −2.73613
\(154\) 0 0
\(155\) −0.198671 −0.0159576
\(156\) 0 0
\(157\) −6.65780 −0.531350 −0.265675 0.964063i \(-0.585595\pi\)
−0.265675 + 0.964063i \(0.585595\pi\)
\(158\) 0 0
\(159\) −28.9092 −2.29265
\(160\) 0 0
\(161\) 6.38477i 0.503190i
\(162\) 0 0
\(163\) 23.2347i 1.81988i 0.414741 + 0.909940i \(0.363872\pi\)
−0.414741 + 0.909940i \(0.636128\pi\)
\(164\) 0 0
\(165\) −3.99310 −0.310862
\(166\) 0 0
\(167\) 18.4614i 1.42858i 0.699847 + 0.714292i \(0.253251\pi\)
−0.699847 + 0.714292i \(0.746749\pi\)
\(168\) 0 0
\(169\) −10.6698 + 7.42664i −0.820755 + 0.571280i
\(170\) 0 0
\(171\) 56.9773i 4.35716i
\(172\) 0 0
\(173\) 18.5291 1.40874 0.704372 0.709831i \(-0.251229\pi\)
0.704372 + 0.709831i \(0.251229\pi\)
\(174\) 0 0
\(175\) 4.42120i 0.334211i
\(176\) 0 0
\(177\) 11.4739i 0.862431i
\(178\) 0 0
\(179\) 7.89780 0.590310 0.295155 0.955449i \(-0.404629\pi\)
0.295155 + 0.955449i \(0.404629\pi\)
\(180\) 0 0
\(181\) 0.576860 0.0428777 0.0214388 0.999770i \(-0.493175\pi\)
0.0214388 + 0.999770i \(0.493175\pi\)
\(182\) 0 0
\(183\) −18.9476 −1.40065
\(184\) 0 0
\(185\) −3.60889 −0.265331
\(186\) 0 0
\(187\) 6.97741i 0.510238i
\(188\) 0 0
\(189\) 15.6174i 1.13600i
\(190\) 0 0
\(191\) −2.33031 −0.168615 −0.0843075 0.996440i \(-0.526868\pi\)
−0.0843075 + 0.996440i \(0.526868\pi\)
\(192\) 0 0
\(193\) 7.11386i 0.512067i −0.966668 0.256033i \(-0.917584\pi\)
0.966668 0.256033i \(-0.0824157\pi\)
\(194\) 0 0
\(195\) 8.58560 2.69382i 0.614828 0.192908i
\(196\) 0 0
\(197\) 20.6314i 1.46993i 0.678107 + 0.734963i \(0.262800\pi\)
−0.678107 + 0.734963i \(0.737200\pi\)
\(198\) 0 0
\(199\) −1.93506 −0.137173 −0.0685865 0.997645i \(-0.521849\pi\)
−0.0685865 + 0.997645i \(0.521849\pi\)
\(200\) 0 0
\(201\) 15.8206i 1.11590i
\(202\) 0 0
\(203\) 4.95692i 0.347908i
\(204\) 0 0
\(205\) −0.681418 −0.0475923
\(206\) 0 0
\(207\) 49.5513 3.44405
\(208\) 0 0
\(209\) −11.7466 −0.812532
\(210\) 0 0
\(211\) −20.9989 −1.44563 −0.722813 0.691044i \(-0.757151\pi\)
−0.722813 + 0.691044i \(0.757151\pi\)
\(212\) 0 0
\(213\) 24.4606i 1.67601i
\(214\) 0 0
\(215\) 3.18365i 0.217123i
\(216\) 0 0
\(217\) 0.261137 0.0177272
\(218\) 0 0
\(219\) 12.6008i 0.851486i
\(220\) 0 0
\(221\) 4.70709 + 15.0022i 0.316633 + 1.00916i
\(222\) 0 0
\(223\) 23.4561i 1.57073i −0.619030 0.785367i \(-0.712474\pi\)
0.619030 0.785367i \(-0.287526\pi\)
\(224\) 0 0
\(225\) 34.3123 2.28749
\(226\) 0 0
\(227\) 15.3245i 1.01712i 0.861027 + 0.508560i \(0.169822\pi\)
−0.861027 + 0.508560i \(0.830178\pi\)
\(228\) 0 0
\(229\) 23.2295i 1.53505i 0.641020 + 0.767524i \(0.278512\pi\)
−0.641020 + 0.767524i \(0.721488\pi\)
\(230\) 0 0
\(231\) 5.24862 0.345334
\(232\) 0 0
\(233\) −26.1915 −1.71586 −0.857932 0.513763i \(-0.828251\pi\)
−0.857932 + 0.513763i \(0.828251\pi\)
\(234\) 0 0
\(235\) −4.28977 −0.279833
\(236\) 0 0
\(237\) 31.0998 2.02015
\(238\) 0 0
\(239\) 16.7670i 1.08457i 0.840196 + 0.542283i \(0.182440\pi\)
−0.840196 + 0.542283i \(0.817560\pi\)
\(240\) 0 0
\(241\) 29.4420i 1.89653i 0.317487 + 0.948263i \(0.397161\pi\)
−0.317487 + 0.948263i \(0.602839\pi\)
\(242\) 0 0
\(243\) −44.8289 −2.87577
\(244\) 0 0
\(245\) 0.760790i 0.0486051i
\(246\) 0 0
\(247\) 25.2566 7.92451i 1.60704 0.504225i
\(248\) 0 0
\(249\) 3.55694i 0.225412i
\(250\) 0 0
\(251\) −14.6733 −0.926173 −0.463086 0.886313i \(-0.653258\pi\)
−0.463086 + 0.886313i \(0.653258\pi\)
\(252\) 0 0
\(253\) 10.2157i 0.642254i
\(254\) 0 0
\(255\) 10.8833i 0.681539i
\(256\) 0 0
\(257\) −4.36837 −0.272491 −0.136246 0.990675i \(-0.543504\pi\)
−0.136246 + 0.990675i \(0.543504\pi\)
\(258\) 0 0
\(259\) 4.74360 0.294753
\(260\) 0 0
\(261\) −38.4700 −2.38123
\(262\) 0 0
\(263\) −12.3748 −0.763063 −0.381532 0.924356i \(-0.624603\pi\)
−0.381532 + 0.924356i \(0.624603\pi\)
\(264\) 0 0
\(265\) 6.70467i 0.411865i
\(266\) 0 0
\(267\) 54.7777i 3.35234i
\(268\) 0 0
\(269\) 22.3515 1.36279 0.681397 0.731914i \(-0.261373\pi\)
0.681397 + 0.731914i \(0.261373\pi\)
\(270\) 0 0
\(271\) 25.1788i 1.52951i 0.644324 + 0.764753i \(0.277139\pi\)
−0.644324 + 0.764753i \(0.722861\pi\)
\(272\) 0 0
\(273\) −11.2851 + 3.54082i −0.683006 + 0.214300i
\(274\) 0 0
\(275\) 7.07394i 0.426575i
\(276\) 0 0
\(277\) 9.85789 0.592303 0.296152 0.955141i \(-0.404297\pi\)
0.296152 + 0.955141i \(0.404297\pi\)
\(278\) 0 0
\(279\) 2.02665i 0.121332i
\(280\) 0 0
\(281\) 27.3164i 1.62956i −0.579769 0.814781i \(-0.696857\pi\)
0.579769 0.814781i \(-0.303143\pi\)
\(282\) 0 0
\(283\) 14.6654 0.871769 0.435884 0.900003i \(-0.356436\pi\)
0.435884 + 0.900003i \(0.356436\pi\)
\(284\) 0 0
\(285\) −18.3223 −1.08532
\(286\) 0 0
\(287\) 0.895672 0.0528698
\(288\) 0 0
\(289\) 2.01713 0.118655
\(290\) 0 0
\(291\) 20.7310i 1.21527i
\(292\) 0 0
\(293\) 3.30881i 0.193303i −0.995318 0.0966514i \(-0.969187\pi\)
0.995318 0.0966514i \(-0.0308132\pi\)
\(294\) 0 0
\(295\) −2.66105 −0.154932
\(296\) 0 0
\(297\) 24.9879i 1.44995i
\(298\) 0 0
\(299\) −6.89169 21.9648i −0.398556 1.27026i
\(300\) 0 0
\(301\) 4.18466i 0.241200i
\(302\) 0 0
\(303\) 50.9950 2.92958
\(304\) 0 0
\(305\) 4.39436i 0.251621i
\(306\) 0 0
\(307\) 31.1628i 1.77856i −0.457367 0.889278i \(-0.651207\pi\)
0.457367 0.889278i \(-0.348793\pi\)
\(308\) 0 0
\(309\) 13.1390 0.747454
\(310\) 0 0
\(311\) 20.1037 1.13998 0.569988 0.821653i \(-0.306948\pi\)
0.569988 + 0.821653i \(0.306948\pi\)
\(312\) 0 0
\(313\) −32.0485 −1.81149 −0.905743 0.423827i \(-0.860686\pi\)
−0.905743 + 0.423827i \(0.860686\pi\)
\(314\) 0 0
\(315\) 5.90439 0.332674
\(316\) 0 0
\(317\) 3.06402i 0.172092i 0.996291 + 0.0860462i \(0.0274233\pi\)
−0.996291 + 0.0860462i \(0.972577\pi\)
\(318\) 0 0
\(319\) 7.93110i 0.444057i
\(320\) 0 0
\(321\) 20.7788 1.15976
\(322\) 0 0
\(323\) 32.0158i 1.78141i
\(324\) 0 0
\(325\) −4.77222 15.2098i −0.264715 0.843686i
\(326\) 0 0
\(327\) 38.4512i 2.12636i
\(328\) 0 0
\(329\) 5.63856 0.310864
\(330\) 0 0
\(331\) 29.2691i 1.60878i 0.594104 + 0.804388i \(0.297507\pi\)
−0.594104 + 0.804388i \(0.702493\pi\)
\(332\) 0 0
\(333\) 36.8144i 2.01742i
\(334\) 0 0
\(335\) −3.66915 −0.200467
\(336\) 0 0
\(337\) −9.23557 −0.503093 −0.251547 0.967845i \(-0.580939\pi\)
−0.251547 + 0.967845i \(0.580939\pi\)
\(338\) 0 0
\(339\) −42.2741 −2.29601
\(340\) 0 0
\(341\) 0.417821 0.0226263
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 15.9343i 0.857875i
\(346\) 0 0
\(347\) −11.3517 −0.609390 −0.304695 0.952450i \(-0.598555\pi\)
−0.304695 + 0.952450i \(0.598555\pi\)
\(348\) 0 0
\(349\) 3.01015i 0.161130i −0.996749 0.0805650i \(-0.974328\pi\)
0.996749 0.0805650i \(-0.0256724\pi\)
\(350\) 0 0
\(351\) 16.8573 + 53.7268i 0.899778 + 2.86773i
\(352\) 0 0
\(353\) 4.70892i 0.250630i 0.992117 + 0.125315i \(0.0399942\pi\)
−0.992117 + 0.125315i \(0.960006\pi\)
\(354\) 0 0
\(355\) −5.67294 −0.301089
\(356\) 0 0
\(357\) 14.3053i 0.757115i
\(358\) 0 0
\(359\) 23.8698i 1.25980i −0.776676 0.629901i \(-0.783096\pi\)
0.776676 0.629901i \(-0.216904\pi\)
\(360\) 0 0
\(361\) −34.8995 −1.83681
\(362\) 0 0
\(363\) −27.6863 −1.45315
\(364\) 0 0
\(365\) 2.92241 0.152966
\(366\) 0 0
\(367\) 18.6643 0.974268 0.487134 0.873327i \(-0.338042\pi\)
0.487134 + 0.873327i \(0.338042\pi\)
\(368\) 0 0
\(369\) 6.95118i 0.361864i
\(370\) 0 0
\(371\) 8.81277i 0.457536i
\(372\) 0 0
\(373\) 21.8345 1.13055 0.565273 0.824904i \(-0.308771\pi\)
0.565273 + 0.824904i \(0.308771\pi\)
\(374\) 0 0
\(375\) 23.5123i 1.21417i
\(376\) 0 0
\(377\) 5.35048 + 17.0528i 0.275563 + 0.878262i
\(378\) 0 0
\(379\) 17.8739i 0.918123i 0.888404 + 0.459062i \(0.151814\pi\)
−0.888404 + 0.459062i \(0.848186\pi\)
\(380\) 0 0
\(381\) 34.7720 1.78142
\(382\) 0 0
\(383\) 2.10363i 0.107491i −0.998555 0.0537453i \(-0.982884\pi\)
0.998555 0.0537453i \(-0.0171159\pi\)
\(384\) 0 0
\(385\) 1.21727i 0.0620378i
\(386\) 0 0
\(387\) −32.4766 −1.65088
\(388\) 0 0
\(389\) −20.1523 −1.02176 −0.510882 0.859651i \(-0.670681\pi\)
−0.510882 + 0.859651i \(0.670681\pi\)
\(390\) 0 0
\(391\) −27.8431 −1.40809
\(392\) 0 0
\(393\) 53.4338 2.69538
\(394\) 0 0
\(395\) 7.21271i 0.362911i
\(396\) 0 0
\(397\) 9.26937i 0.465216i 0.972571 + 0.232608i \(0.0747259\pi\)
−0.972571 + 0.232608i \(0.925274\pi\)
\(398\) 0 0
\(399\) 24.0833 1.20567
\(400\) 0 0
\(401\) 3.30880i 0.165233i −0.996581 0.0826167i \(-0.973672\pi\)
0.996581 0.0826167i \(-0.0263277\pi\)
\(402\) 0 0
\(403\) −0.898362 + 0.281870i −0.0447506 + 0.0140409i
\(404\) 0 0
\(405\) 21.2628i 1.05656i
\(406\) 0 0
\(407\) 7.58979 0.376212
\(408\) 0 0
\(409\) 36.6226i 1.81087i −0.424482 0.905437i \(-0.639544\pi\)
0.424482 0.905437i \(-0.360456\pi\)
\(410\) 0 0
\(411\) 18.6292i 0.918913i
\(412\) 0 0
\(413\) 3.49774 0.172113
\(414\) 0 0
\(415\) −0.824932 −0.0404943
\(416\) 0 0
\(417\) −52.5502 −2.57340
\(418\) 0 0
\(419\) −10.5762 −0.516679 −0.258339 0.966054i \(-0.583175\pi\)
−0.258339 + 0.966054i \(0.583175\pi\)
\(420\) 0 0
\(421\) 14.6278i 0.712917i 0.934311 + 0.356458i \(0.116016\pi\)
−0.934311 + 0.356458i \(0.883984\pi\)
\(422\) 0 0
\(423\) 43.7601i 2.12769i
\(424\) 0 0
\(425\) −19.2802 −0.935229
\(426\) 0 0
\(427\) 5.77605i 0.279523i
\(428\) 0 0
\(429\) −18.0562 + 5.66533i −0.871764 + 0.273525i
\(430\) 0 0
\(431\) 2.30428i 0.110993i 0.998459 + 0.0554966i \(0.0176742\pi\)
−0.998459 + 0.0554966i \(0.982326\pi\)
\(432\) 0 0
\(433\) 3.63305 0.174593 0.0872965 0.996182i \(-0.472177\pi\)
0.0872965 + 0.996182i \(0.472177\pi\)
\(434\) 0 0
\(435\) 12.3709i 0.593138i
\(436\) 0 0
\(437\) 46.8746i 2.24232i
\(438\) 0 0
\(439\) −18.2832 −0.872608 −0.436304 0.899799i \(-0.643713\pi\)
−0.436304 + 0.899799i \(0.643713\pi\)
\(440\) 0 0
\(441\) −7.76086 −0.369565
\(442\) 0 0
\(443\) 40.3161 1.91547 0.957737 0.287646i \(-0.0928725\pi\)
0.957737 + 0.287646i \(0.0928725\pi\)
\(444\) 0 0
\(445\) 12.7041 0.602234
\(446\) 0 0
\(447\) 5.83061i 0.275778i
\(448\) 0 0
\(449\) 7.99236i 0.377183i −0.982056 0.188591i \(-0.939608\pi\)
0.982056 0.188591i \(-0.0603922\pi\)
\(450\) 0 0
\(451\) 1.43308 0.0674811
\(452\) 0 0
\(453\) 68.9602i 3.24003i
\(454\) 0 0
\(455\) −0.821193 2.61726i −0.0384981 0.122699i
\(456\) 0 0
\(457\) 14.6746i 0.686450i 0.939253 + 0.343225i \(0.111519\pi\)
−0.939253 + 0.343225i \(0.888481\pi\)
\(458\) 0 0
\(459\) 68.1053 3.17889
\(460\) 0 0
\(461\) 27.0796i 1.26122i 0.776100 + 0.630610i \(0.217195\pi\)
−0.776100 + 0.630610i \(0.782805\pi\)
\(462\) 0 0
\(463\) 28.5491i 1.32679i 0.748270 + 0.663395i \(0.230885\pi\)
−0.748270 + 0.663395i \(0.769115\pi\)
\(464\) 0 0
\(465\) 0.651714 0.0302225
\(466\) 0 0
\(467\) −15.1313 −0.700195 −0.350097 0.936713i \(-0.613851\pi\)
−0.350097 + 0.936713i \(0.613851\pi\)
\(468\) 0 0
\(469\) 4.82282 0.222697
\(470\) 0 0
\(471\) 21.8401 1.00634
\(472\) 0 0
\(473\) 6.69548i 0.307859i
\(474\) 0 0
\(475\) 32.4588i 1.48931i
\(476\) 0 0
\(477\) 68.3947 3.13158
\(478\) 0 0
\(479\) 12.5192i 0.572019i −0.958227 0.286009i \(-0.907671\pi\)
0.958227 0.286009i \(-0.0923289\pi\)
\(480\) 0 0
\(481\) −16.3189 + 5.12022i −0.744077 + 0.233462i
\(482\) 0 0
\(483\) 20.9444i 0.953005i
\(484\) 0 0
\(485\) 4.80797 0.218318
\(486\) 0 0
\(487\) 1.81778i 0.0823714i 0.999152 + 0.0411857i \(0.0131135\pi\)
−0.999152 + 0.0411857i \(0.986886\pi\)
\(488\) 0 0
\(489\) 76.2184i 3.44672i
\(490\) 0 0
\(491\) −11.9704 −0.540217 −0.270108 0.962830i \(-0.587059\pi\)
−0.270108 + 0.962830i \(0.587059\pi\)
\(492\) 0 0
\(493\) 21.6165 0.973557
\(494\) 0 0
\(495\) 9.44705 0.424613
\(496\) 0 0
\(497\) 7.45664 0.334476
\(498\) 0 0
\(499\) 33.9002i 1.51758i 0.651336 + 0.758790i \(0.274209\pi\)
−0.651336 + 0.758790i \(0.725791\pi\)
\(500\) 0 0
\(501\) 60.5603i 2.70563i
\(502\) 0 0
\(503\) −22.3180 −0.995109 −0.497554 0.867433i \(-0.665769\pi\)
−0.497554 + 0.867433i \(0.665769\pi\)
\(504\) 0 0
\(505\) 11.8268i 0.526288i
\(506\) 0 0
\(507\) 35.0010 24.3622i 1.55445 1.08196i
\(508\) 0 0
\(509\) 26.5145i 1.17523i −0.809139 0.587617i \(-0.800066\pi\)
0.809139 0.587617i \(-0.199934\pi\)
\(510\) 0 0
\(511\) −3.84128 −0.169928
\(512\) 0 0
\(513\) 114.657i 5.06223i
\(514\) 0 0
\(515\) 3.04723i 0.134277i
\(516\) 0 0
\(517\) 9.02173 0.396775
\(518\) 0 0
\(519\) −60.7825 −2.66805
\(520\) 0 0
\(521\) 12.2357 0.536054 0.268027 0.963411i \(-0.413628\pi\)
0.268027 + 0.963411i \(0.413628\pi\)
\(522\) 0 0
\(523\) 19.9448 0.872125 0.436062 0.899916i \(-0.356373\pi\)
0.436062 + 0.899916i \(0.356373\pi\)
\(524\) 0 0
\(525\) 14.5032i 0.632971i
\(526\) 0 0
\(527\) 1.13878i 0.0496062i
\(528\) 0 0
\(529\) 17.7653 0.772404
\(530\) 0 0
\(531\) 27.1455i 1.17801i
\(532\) 0 0
\(533\) −3.08128 + 0.966783i −0.133465 + 0.0418760i
\(534\) 0 0
\(535\) 4.81905i 0.208346i
\(536\) 0 0
\(537\) −25.9078 −1.11800
\(538\) 0 0
\(539\) 1.60001i 0.0689171i
\(540\) 0 0
\(541\) 27.8440i 1.19711i 0.801083 + 0.598553i \(0.204257\pi\)
−0.801083 + 0.598553i \(0.795743\pi\)
\(542\) 0 0
\(543\) −1.89232 −0.0812071
\(544\) 0 0
\(545\) 8.91768 0.381991
\(546\) 0 0
\(547\) −1.81588 −0.0776414 −0.0388207 0.999246i \(-0.512360\pi\)
−0.0388207 + 0.999246i \(0.512360\pi\)
\(548\) 0 0
\(549\) 44.8271 1.91317
\(550\) 0 0
\(551\) 36.3919i 1.55035i
\(552\) 0 0
\(553\) 9.48055i 0.403154i
\(554\) 0 0
\(555\) 11.8385 0.502516
\(556\) 0 0
\(557\) 29.2770i 1.24051i 0.784401 + 0.620253i \(0.212970\pi\)
−0.784401 + 0.620253i \(0.787030\pi\)
\(558\) 0 0
\(559\) 4.51690 + 14.3960i 0.191045 + 0.608887i
\(560\) 0 0
\(561\) 22.8885i 0.966353i
\(562\) 0 0
\(563\) 27.5425 1.16078 0.580389 0.814340i \(-0.302901\pi\)
0.580389 + 0.814340i \(0.302901\pi\)
\(564\) 0 0
\(565\) 9.80427i 0.412469i
\(566\) 0 0
\(567\) 27.9483i 1.17372i
\(568\) 0 0
\(569\) −34.5835 −1.44981 −0.724907 0.688847i \(-0.758117\pi\)
−0.724907 + 0.688847i \(0.758117\pi\)
\(570\) 0 0
\(571\) 13.4640 0.563452 0.281726 0.959495i \(-0.409093\pi\)
0.281726 + 0.959495i \(0.409093\pi\)
\(572\) 0 0
\(573\) 7.64428 0.319344
\(574\) 0 0
\(575\) 28.2283 1.17720
\(576\) 0 0
\(577\) 33.8343i 1.40854i 0.709931 + 0.704271i \(0.248726\pi\)
−0.709931 + 0.704271i \(0.751274\pi\)
\(578\) 0 0
\(579\) 23.3361i 0.969816i
\(580\) 0 0
\(581\) 1.08431 0.0449847
\(582\) 0 0
\(583\) 14.1005i 0.583982i
\(584\) 0 0
\(585\) −20.3122 + 6.37316i −0.839806 + 0.263498i
\(586\) 0 0
\(587\) 33.4515i 1.38069i −0.723480 0.690345i \(-0.757459\pi\)
0.723480 0.690345i \(-0.242541\pi\)
\(588\) 0 0
\(589\) 1.91717 0.0789957
\(590\) 0 0
\(591\) 67.6787i 2.78393i
\(592\) 0 0
\(593\) 28.2128i 1.15856i −0.815129 0.579280i \(-0.803334\pi\)
0.815129 0.579280i \(-0.196666\pi\)
\(594\) 0 0
\(595\) −3.31770 −0.136013
\(596\) 0 0
\(597\) 6.34773 0.259795
\(598\) 0 0
\(599\) 24.7302 1.01045 0.505225 0.862988i \(-0.331410\pi\)
0.505225 + 0.862988i \(0.331410\pi\)
\(600\) 0 0
\(601\) −28.9306 −1.18010 −0.590051 0.807366i \(-0.700892\pi\)
−0.590051 + 0.807366i \(0.700892\pi\)
\(602\) 0 0
\(603\) 37.4292i 1.52423i
\(604\) 0 0
\(605\) 6.42106i 0.261053i
\(606\) 0 0
\(607\) −11.1920 −0.454268 −0.227134 0.973864i \(-0.572935\pi\)
−0.227134 + 0.973864i \(0.572935\pi\)
\(608\) 0 0
\(609\) 16.2606i 0.658911i
\(610\) 0 0
\(611\) −19.3977 + 6.08624i −0.784748 + 0.246223i
\(612\) 0 0
\(613\) 35.7076i 1.44222i −0.692822 0.721109i \(-0.743633\pi\)
0.692822 0.721109i \(-0.256367\pi\)
\(614\) 0 0
\(615\) 2.23531 0.0901363
\(616\) 0 0
\(617\) 44.7674i 1.80227i 0.433541 + 0.901134i \(0.357264\pi\)
−0.433541 + 0.901134i \(0.642736\pi\)
\(618\) 0 0
\(619\) 30.5204i 1.22672i 0.789805 + 0.613358i \(0.210182\pi\)
−0.789805 + 0.613358i \(0.789818\pi\)
\(620\) 0 0
\(621\) −99.7135 −4.00137
\(622\) 0 0
\(623\) −16.6986 −0.669016
\(624\) 0 0
\(625\) 16.6530 0.666119
\(626\) 0 0
\(627\) 38.5334 1.53888
\(628\) 0 0
\(629\) 20.6862i 0.824813i
\(630\) 0 0
\(631\) 20.2780i 0.807254i −0.914924 0.403627i \(-0.867749\pi\)
0.914924 0.403627i \(-0.132251\pi\)
\(632\) 0 0
\(633\) 68.8844 2.73791
\(634\) 0 0
\(635\) 8.06439i 0.320026i
\(636\) 0 0
\(637\) 1.07939 + 3.44019i 0.0427672 + 0.136305i
\(638\) 0 0
\(639\) 57.8700i 2.28930i
\(640\) 0 0
\(641\) 10.0626 0.397449 0.198725 0.980055i \(-0.436320\pi\)
0.198725 + 0.980055i \(0.436320\pi\)
\(642\) 0 0
\(643\) 13.6462i 0.538152i 0.963119 + 0.269076i \(0.0867183\pi\)
−0.963119 + 0.269076i \(0.913282\pi\)
\(644\) 0 0
\(645\) 10.4436i 0.411215i
\(646\) 0 0
\(647\) 3.41634 0.134310 0.0671550 0.997743i \(-0.478608\pi\)
0.0671550 + 0.997743i \(0.478608\pi\)
\(648\) 0 0
\(649\) 5.59641 0.219678
\(650\) 0 0
\(651\) −0.856628 −0.0335739
\(652\) 0 0
\(653\) −19.3094 −0.755634 −0.377817 0.925880i \(-0.623325\pi\)
−0.377817 + 0.925880i \(0.623325\pi\)
\(654\) 0 0
\(655\) 12.3925i 0.484214i
\(656\) 0 0
\(657\) 29.8116i 1.16306i
\(658\) 0 0
\(659\) −13.0159 −0.507027 −0.253514 0.967332i \(-0.581586\pi\)
−0.253514 + 0.967332i \(0.581586\pi\)
\(660\) 0 0
\(661\) 19.1782i 0.745947i −0.927842 0.372973i \(-0.878338\pi\)
0.927842 0.372973i \(-0.121662\pi\)
\(662\) 0 0
\(663\) −15.4410 49.2128i −0.599680 1.91127i
\(664\) 0 0
\(665\) 5.58544i 0.216594i
\(666\) 0 0
\(667\) −31.6488 −1.22545
\(668\) 0 0
\(669\) 76.9447i 2.97485i
\(670\) 0 0
\(671\) 9.24171i 0.356772i
\(672\) 0 0
\(673\) −5.37316 −0.207120 −0.103560 0.994623i \(-0.533023\pi\)
−0.103560 + 0.994623i \(0.533023\pi\)
\(674\) 0 0
\(675\) −69.0476 −2.65764
\(676\) 0 0
\(677\) −37.6640 −1.44755 −0.723773 0.690038i \(-0.757594\pi\)
−0.723773 + 0.690038i \(0.757594\pi\)
\(678\) 0 0
\(679\) −6.31970 −0.242528
\(680\) 0 0
\(681\) 50.2699i 1.92635i
\(682\) 0 0
\(683\) 32.9170i 1.25954i −0.776784 0.629768i \(-0.783150\pi\)
0.776784 0.629768i \(-0.216850\pi\)
\(684\) 0 0
\(685\) 4.32053 0.165079
\(686\) 0 0
\(687\) 76.2015i 2.90727i
\(688\) 0 0
\(689\) −9.51245 30.3176i −0.362396 1.15501i
\(690\) 0 0
\(691\) 29.1383i 1.10847i 0.832359 + 0.554237i \(0.186990\pi\)
−0.832359 + 0.554237i \(0.813010\pi\)
\(692\) 0 0
\(693\) −12.4174 −0.471699
\(694\) 0 0
\(695\) 12.1875i 0.462300i
\(696\) 0 0
\(697\) 3.90590i 0.147947i
\(698\) 0 0
\(699\) 85.9180 3.24972
\(700\) 0 0
\(701\) 44.8363 1.69344 0.846722 0.532035i \(-0.178572\pi\)
0.846722 + 0.532035i \(0.178572\pi\)
\(702\) 0 0
\(703\) 34.8257 1.31348
\(704\) 0 0
\(705\) 14.0720 0.529984
\(706\) 0 0
\(707\) 15.5455i 0.584648i
\(708\) 0 0
\(709\) 22.9875i 0.863313i 0.902038 + 0.431657i \(0.142071\pi\)
−0.902038 + 0.431657i \(0.857929\pi\)
\(710\) 0 0
\(711\) −73.5772 −2.75936
\(712\) 0 0
\(713\) 1.66730i 0.0624409i
\(714\) 0 0
\(715\) −1.31391 4.18764i −0.0491376 0.156609i
\(716\) 0 0
\(717\) 55.0020i 2.05409i
\(718\) 0 0
\(719\) 13.7872 0.514177 0.257088 0.966388i \(-0.417237\pi\)
0.257088 + 0.966388i \(0.417237\pi\)
\(720\) 0 0
\(721\) 4.00535i 0.149167i
\(722\) 0 0
\(723\) 96.5808i 3.59188i
\(724\) 0 0
\(725\) −21.9155 −0.813923
\(726\) 0 0
\(727\) 4.70998 0.174683 0.0873417 0.996178i \(-0.472163\pi\)
0.0873417 + 0.996178i \(0.472163\pi\)
\(728\) 0 0
\(729\) 63.2104 2.34113
\(730\) 0 0
\(731\) 18.2487 0.674954
\(732\) 0 0
\(733\) 35.8427i 1.32388i 0.749557 + 0.661940i \(0.230266\pi\)
−0.749557 + 0.661940i \(0.769734\pi\)
\(734\) 0 0
\(735\) 2.49568i 0.0920544i
\(736\) 0 0
\(737\) 7.71653 0.284242
\(738\) 0 0
\(739\) 37.2790i 1.37133i −0.727918 0.685664i \(-0.759512\pi\)
0.727918 0.685664i \(-0.240488\pi\)
\(740\) 0 0
\(741\) −82.8511 + 25.9954i −3.04361 + 0.954964i
\(742\) 0 0
\(743\) 5.68269i 0.208478i 0.994552 + 0.104239i \(0.0332407\pi\)
−0.994552 + 0.104239i \(0.966759\pi\)
\(744\) 0 0
\(745\) −1.35225 −0.0495424
\(746\) 0 0
\(747\) 8.41517i 0.307895i
\(748\) 0 0
\(749\) 6.33427i 0.231449i
\(750\) 0 0
\(751\) 38.4665 1.40366 0.701832 0.712343i \(-0.252366\pi\)
0.701832 + 0.712343i \(0.252366\pi\)
\(752\) 0 0
\(753\) 48.1340 1.75410
\(754\) 0 0
\(755\) 15.9934 0.582058
\(756\) 0 0
\(757\) 29.6453 1.07748 0.538739 0.842473i \(-0.318901\pi\)
0.538739 + 0.842473i \(0.318901\pi\)
\(758\) 0 0
\(759\) 33.5112i 1.21638i
\(760\) 0 0
\(761\) 20.7622i 0.752628i 0.926492 + 0.376314i \(0.122809\pi\)
−0.926492 + 0.376314i \(0.877191\pi\)
\(762\) 0 0
\(763\) −11.7216 −0.424350
\(764\) 0 0
\(765\) 25.7482i 0.930929i
\(766\) 0 0
\(767\) −12.0329 + 3.77544i −0.434483 + 0.136323i
\(768\) 0 0
\(769\) 39.8384i 1.43661i 0.695729 + 0.718305i \(0.255082\pi\)
−0.695729 + 0.718305i \(0.744918\pi\)
\(770\) 0 0
\(771\) 14.3299 0.516078
\(772\) 0 0
\(773\) 34.9153i 1.25582i −0.778287 0.627909i \(-0.783911\pi\)
0.778287 0.627909i \(-0.216089\pi\)
\(774\) 0 0
\(775\) 1.15454i 0.0414723i
\(776\) 0 0
\(777\) −15.5608 −0.558240
\(778\) 0 0
\(779\) 6.57569 0.235598
\(780\) 0 0
\(781\) 11.9307 0.426913
\(782\) 0 0
\(783\) 77.4142 2.76656
\(784\) 0 0
\(785\) 5.06519i 0.180784i
\(786\) 0 0
\(787\) 0.524948i 0.0187124i −0.999956 0.00935619i \(-0.997022\pi\)
0.999956 0.00935619i \(-0.00297821\pi\)
\(788\) 0 0
\(789\) 40.5940 1.44518
\(790\) 0 0
\(791\) 12.8870i 0.458208i
\(792\) 0 0
\(793\) −6.23464 19.8707i −0.221398 0.705630i
\(794\) 0 0
\(795\) 21.9938i 0.780041i
\(796\) 0 0
\(797\) 16.3824 0.580293 0.290146 0.956982i \(-0.406296\pi\)
0.290146 + 0.956982i \(0.406296\pi\)
\(798\) 0 0
\(799\) 24.5890i 0.869897i
\(800\) 0 0
\(801\) 129.596i 4.57903i
\(802\) 0 0
\(803\) −6.14607 −0.216890
\(804\) 0 0
\(805\) 4.85747 0.171203
\(806\) 0 0
\(807\) −73.3213 −2.58103
\(808\) 0 0
\(809\) −23.2403 −0.817084 −0.408542 0.912740i \(-0.633963\pi\)
−0.408542 + 0.912740i \(0.633963\pi\)
\(810\) 0 0
\(811\) 15.0032i 0.526834i −0.964682 0.263417i \(-0.915150\pi\)
0.964682 0.263417i \(-0.0848495\pi\)
\(812\) 0 0
\(813\) 82.5960i 2.89677i
\(814\) 0 0
\(815\) 17.6767 0.619188
\(816\) 0 0
\(817\) 30.7222i 1.07483i
\(818\) 0 0
\(819\) 26.6988 8.37703i 0.932933 0.292717i
\(820\) 0 0
\(821\) 32.6183i 1.13839i 0.822204 + 0.569193i \(0.192744\pi\)
−0.822204 + 0.569193i \(0.807256\pi\)
\(822\) 0 0
\(823\) −3.16682 −0.110389 −0.0551943 0.998476i \(-0.517578\pi\)
−0.0551943 + 0.998476i \(0.517578\pi\)
\(824\) 0 0
\(825\) 23.2052i 0.807901i
\(826\) 0 0
\(827\) 6.27434i 0.218180i 0.994032 + 0.109090i \(0.0347937\pi\)
−0.994032 + 0.109090i \(0.965206\pi\)
\(828\) 0 0
\(829\) 11.5935 0.402660 0.201330 0.979523i \(-0.435474\pi\)
0.201330 + 0.979523i \(0.435474\pi\)
\(830\) 0 0
\(831\) −32.3376 −1.12178
\(832\) 0 0
\(833\) 4.36086 0.151095
\(834\) 0 0
\(835\) 14.0452 0.486056
\(836\) 0 0
\(837\) 4.07828i 0.140966i
\(838\) 0 0
\(839\) 17.7903i 0.614188i −0.951679 0.307094i \(-0.900643\pi\)
0.951679 0.307094i \(-0.0993566\pi\)
\(840\) 0 0
\(841\) −4.42891 −0.152721
\(842\) 0 0
\(843\) 89.6081i 3.08627i
\(844\) 0 0
\(845\) 5.65012 + 8.11749i 0.194370 + 0.279250i
\(846\) 0 0
\(847\) 8.43998i 0.290001i
\(848\) 0 0
\(849\) −48.1081 −1.65106
\(850\) 0 0
\(851\) 30.2868i 1.03822i
\(852\) 0 0
\(853\) 4.84692i 0.165955i 0.996551 + 0.0829776i \(0.0264430\pi\)
−0.996551 + 0.0829776i \(0.973557\pi\)
\(854\) 0 0
\(855\) 43.3478 1.48246
\(856\) 0 0
\(857\) −37.4954 −1.28082 −0.640409 0.768034i \(-0.721235\pi\)
−0.640409 + 0.768034i \(0.721235\pi\)
\(858\) 0 0
\(859\) −7.77239 −0.265191 −0.132595 0.991170i \(-0.542331\pi\)
−0.132595 + 0.991170i \(0.542331\pi\)
\(860\) 0 0
\(861\) −2.93814 −0.100132
\(862\) 0 0
\(863\) 7.76065i 0.264175i 0.991238 + 0.132088i \(0.0421681\pi\)
−0.991238 + 0.132088i \(0.957832\pi\)
\(864\) 0 0
\(865\) 14.0968i 0.479305i
\(866\) 0 0
\(867\) −6.61695 −0.224723
\(868\) 0 0
\(869\) 15.1689i 0.514571i
\(870\) 0 0
\(871\) −16.5914 + 5.20572i −0.562178 + 0.176389i
\(872\) 0 0
\(873\) 49.0463i 1.65997i
\(874\) 0 0
\(875\) 7.16756 0.242308
\(876\) 0 0
\(877\) 6.85760i 0.231565i 0.993275 + 0.115782i \(0.0369375\pi\)
−0.993275 + 0.115782i \(0.963063\pi\)
\(878\) 0 0
\(879\) 10.8541i 0.366101i
\(880\) 0 0
\(881\) −12.9270 −0.435521 −0.217761 0.976002i \(-0.569875\pi\)
−0.217761 + 0.976002i \(0.569875\pi\)
\(882\) 0 0
\(883\) −31.5595 −1.06206 −0.531031 0.847353i \(-0.678195\pi\)
−0.531031 + 0.847353i \(0.678195\pi\)
\(884\) 0 0
\(885\) 8.72923 0.293430
\(886\) 0 0
\(887\) 53.3613 1.79170 0.895848 0.444361i \(-0.146569\pi\)
0.895848 + 0.444361i \(0.146569\pi\)
\(888\) 0 0
\(889\) 10.6000i 0.355513i
\(890\) 0 0
\(891\) 44.7175i 1.49809i
\(892\) 0 0
\(893\) 41.3962 1.38527
\(894\) 0 0
\(895\) 6.00857i 0.200844i
\(896\) 0 0
\(897\) 22.6073 + 72.0529i 0.754836 + 2.40577i
\(898\) 0 0
\(899\) 1.29444i 0.0431719i
\(900\) 0 0
\(901\) −38.4313 −1.28033
\(902\) 0 0
\(903\) 13.7273i 0.456815i
\(904\) 0 0
\(905\) 0.438870i 0.0145885i
\(906\) 0 0
\(907\) −42.1777 −1.40049 −0.700244 0.713904i \(-0.746925\pi\)
−0.700244 + 0.713904i \(0.746925\pi\)
\(908\) 0 0
\(909\) −120.646 −4.00158
\(910\) 0 0
\(911\) −17.0673 −0.565465 −0.282732 0.959199i \(-0.591241\pi\)
−0.282732 + 0.959199i \(0.591241\pi\)
\(912\) 0 0
\(913\) 1.73490 0.0574169
\(914\) 0 0
\(915\) 14.4152i 0.476551i
\(916\) 0 0
\(917\) 16.2889i 0.537908i
\(918\) 0 0
\(919\) −53.7739 −1.77384 −0.886919 0.461924i \(-0.847159\pi\)
−0.886919 + 0.461924i \(0.847159\pi\)
\(920\) 0 0
\(921\) 102.226i 3.36845i
\(922\) 0 0
\(923\) −25.6523 + 8.04866i −0.844355 + 0.264925i
\(924\) 0 0
\(925\) 20.9724i 0.689568i
\(926\) 0 0
\(927\) −31.0849 −1.02096
\(928\) 0 0
\(929\) 33.7464i 1.10718i −0.832788 0.553592i \(-0.813257\pi\)
0.832788 0.553592i \(-0.186743\pi\)
\(930\) 0 0
\(931\) 7.34163i 0.240612i
\(932\) 0 0
\(933\) −65.9476 −2.15903
\(934\) 0 0
\(935\) −5.30834 −0.173601
\(936\) 0 0
\(937\) −52.3784 −1.71113 −0.855563 0.517698i \(-0.826789\pi\)
−0.855563 + 0.517698i \(0.826789\pi\)
\(938\) 0 0
\(939\) 105.131 3.43082
\(940\) 0 0
\(941\) 30.6587i 0.999446i 0.866185 + 0.499723i \(0.166565\pi\)
−0.866185 + 0.499723i \(0.833435\pi\)
\(942\) 0 0
\(943\) 5.71866i 0.186225i
\(944\) 0 0
\(945\) −11.8816 −0.386507
\(946\) 0 0
\(947\) 31.4545i 1.02213i −0.859541 0.511067i \(-0.829250\pi\)
0.859541 0.511067i \(-0.170750\pi\)
\(948\) 0 0
\(949\) 13.2147 4.14626i 0.428968 0.134593i
\(950\) 0 0
\(951\) 10.0511i 0.325930i
\(952\) 0 0
\(953\) −13.2590 −0.429503 −0.214751 0.976669i \(-0.568894\pi\)
−0.214751 + 0.976669i \(0.568894\pi\)
\(954\) 0 0
\(955\) 1.77287i 0.0573689i
\(956\) 0 0
\(957\) 26.0170i 0.841010i
\(958\) 0 0
\(959\) −5.67900 −0.183384
\(960\) 0 0
\(961\) 30.9318 0.997800
\(962\) 0 0
\(963\) −49.1593 −1.58414
\(964\) 0 0
\(965\) −5.41215 −0.174223
\(966\) 0 0
\(967\) 13.4181i 0.431498i 0.976449 + 0.215749i \(0.0692194\pi\)
−0.976449 + 0.215749i \(0.930781\pi\)
\(968\) 0 0
\(969\) 105.024i 3.37385i
\(970\) 0 0
\(971\) −9.65428 −0.309821 −0.154910 0.987929i \(-0.549509\pi\)
−0.154910 + 0.987929i \(0.549509\pi\)
\(972\) 0 0
\(973\) 16.0196i 0.513564i
\(974\) 0 0
\(975\) 15.6547 + 49.8937i 0.501350 + 1.59788i
\(976\) 0 0
\(977\) 12.4119i 0.397092i 0.980092 + 0.198546i \(0.0636220\pi\)
−0.980092 + 0.198546i \(0.936378\pi\)
\(978\) 0 0
\(979\) −26.7179 −0.853907
\(980\) 0 0
\(981\) 90.9697i 2.90444i
\(982\) 0 0
\(983\) 13.2171i 0.421560i 0.977534 + 0.210780i \(0.0676004\pi\)
−0.977534 + 0.210780i \(0.932400\pi\)
\(984\) 0 0
\(985\) 15.6962 0.500121
\(986\) 0 0
\(987\) −18.4966 −0.588753
\(988\) 0 0
\(989\) −26.7181 −0.849586
\(990\) 0 0
\(991\) −5.18039 −0.164561 −0.0822803 0.996609i \(-0.526220\pi\)
−0.0822803 + 0.996609i \(0.526220\pi\)
\(992\) 0 0
\(993\) 96.0137i 3.04690i
\(994\) 0 0
\(995\) 1.47218i 0.0466712i
\(996\) 0 0
\(997\) −22.6948 −0.718752 −0.359376 0.933193i \(-0.617010\pi\)
−0.359376 + 0.933193i \(0.617010\pi\)
\(998\) 0 0
\(999\) 74.0827i 2.34387i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.k.i.1793.1 14
4.3 odd 2 2912.2.k.j.1793.13 yes 14
13.12 even 2 inner 2912.2.k.i.1793.2 yes 14
52.51 odd 2 2912.2.k.j.1793.14 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.k.i.1793.1 14 1.1 even 1 trivial
2912.2.k.i.1793.2 yes 14 13.12 even 2 inner
2912.2.k.j.1793.13 yes 14 4.3 odd 2
2912.2.k.j.1793.14 yes 14 52.51 odd 2