Properties

Label 2912.2.k.i.1793.10
Level $2912$
Weight $2$
Character 2912.1793
Analytic conductor $23.252$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1793,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1793");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 37x^{12} + 544x^{10} + 4060x^{8} + 16288x^{6} + 34160x^{4} + 33216x^{2} + 10816 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1793.10
Root \(1.80938i\) of defining polynomial
Character \(\chi\) \(=\) 2912.1793
Dual form 2912.2.k.i.1793.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80938 q^{3} +4.01229i q^{5} +1.00000i q^{7} +0.273853 q^{9} +1.12517i q^{11} +(-3.54502 - 0.657893i) q^{13} +7.25976i q^{15} +3.60098 q^{17} -0.211281i q^{19} +1.80938i q^{21} -6.65783 q^{23} -11.0985 q^{25} -4.93263 q^{27} -7.73269 q^{29} +4.41968i q^{31} +2.03585i q^{33} -4.01229 q^{35} -2.03868i q^{37} +(-6.41429 - 1.19038i) q^{39} -6.13460i q^{41} +11.5504 q^{43} +1.09878i q^{45} +11.9707i q^{47} -1.00000 q^{49} +6.51554 q^{51} +8.20624 q^{53} -4.51450 q^{55} -0.382287i q^{57} +3.68159i q^{59} +5.45038 q^{61} +0.273853i q^{63} +(2.63966 - 14.2237i) q^{65} -15.0159i q^{67} -12.0465 q^{69} -7.42623i q^{71} -3.80390i q^{73} -20.0814 q^{75} -1.12517 q^{77} -4.36938 q^{79} -9.74656 q^{81} +14.2682i q^{83} +14.4482i q^{85} -13.9914 q^{87} +9.68239i q^{89} +(0.657893 - 3.54502i) q^{91} +7.99688i q^{93} +0.847720 q^{95} +8.22069i q^{97} +0.308130i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} + 32 q^{9} - 6 q^{13} + 36 q^{17} - 18 q^{23} - 18 q^{25} - 14 q^{27} - 16 q^{29} + 8 q^{35} + 34 q^{39} + 60 q^{43} - 14 q^{49} + 12 q^{51} + 4 q^{53} - 60 q^{55} + 6 q^{61} + 20 q^{65}+ \cdots + 68 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.80938 1.04465 0.522323 0.852748i \(-0.325066\pi\)
0.522323 + 0.852748i \(0.325066\pi\)
\(4\) 0 0
\(5\) 4.01229i 1.79435i 0.441673 + 0.897176i \(0.354385\pi\)
−0.441673 + 0.897176i \(0.645615\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 0.273853 0.0912844
\(10\) 0 0
\(11\) 1.12517i 0.339250i 0.985509 + 0.169625i \(0.0542557\pi\)
−0.985509 + 0.169625i \(0.945744\pi\)
\(12\) 0 0
\(13\) −3.54502 0.657893i −0.983212 0.182467i
\(14\) 0 0
\(15\) 7.25976i 1.87446i
\(16\) 0 0
\(17\) 3.60098 0.873366 0.436683 0.899615i \(-0.356153\pi\)
0.436683 + 0.899615i \(0.356153\pi\)
\(18\) 0 0
\(19\) 0.211281i 0.0484711i −0.999706 0.0242356i \(-0.992285\pi\)
0.999706 0.0242356i \(-0.00771517\pi\)
\(20\) 0 0
\(21\) 1.80938i 0.394839i
\(22\) 0 0
\(23\) −6.65783 −1.38825 −0.694127 0.719853i \(-0.744209\pi\)
−0.694127 + 0.719853i \(0.744209\pi\)
\(24\) 0 0
\(25\) −11.0985 −2.21970
\(26\) 0 0
\(27\) −4.93263 −0.949286
\(28\) 0 0
\(29\) −7.73269 −1.43593 −0.717963 0.696082i \(-0.754925\pi\)
−0.717963 + 0.696082i \(0.754925\pi\)
\(30\) 0 0
\(31\) 4.41968i 0.793798i 0.917862 + 0.396899i \(0.129914\pi\)
−0.917862 + 0.396899i \(0.870086\pi\)
\(32\) 0 0
\(33\) 2.03585i 0.354396i
\(34\) 0 0
\(35\) −4.01229 −0.678201
\(36\) 0 0
\(37\) 2.03868i 0.335157i −0.985859 0.167578i \(-0.946405\pi\)
0.985859 0.167578i \(-0.0535947\pi\)
\(38\) 0 0
\(39\) −6.41429 1.19038i −1.02711 0.190613i
\(40\) 0 0
\(41\) 6.13460i 0.958063i −0.877798 0.479031i \(-0.840988\pi\)
0.877798 0.479031i \(-0.159012\pi\)
\(42\) 0 0
\(43\) 11.5504 1.76143 0.880713 0.473651i \(-0.157064\pi\)
0.880713 + 0.473651i \(0.157064\pi\)
\(44\) 0 0
\(45\) 1.09878i 0.163796i
\(46\) 0 0
\(47\) 11.9707i 1.74611i 0.487623 + 0.873054i \(0.337864\pi\)
−0.487623 + 0.873054i \(0.662136\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 6.51554 0.912358
\(52\) 0 0
\(53\) 8.20624 1.12721 0.563607 0.826043i \(-0.309413\pi\)
0.563607 + 0.826043i \(0.309413\pi\)
\(54\) 0 0
\(55\) −4.51450 −0.608734
\(56\) 0 0
\(57\) 0.382287i 0.0506351i
\(58\) 0 0
\(59\) 3.68159i 0.479303i 0.970859 + 0.239651i \(0.0770331\pi\)
−0.970859 + 0.239651i \(0.922967\pi\)
\(60\) 0 0
\(61\) 5.45038 0.697850 0.348925 0.937151i \(-0.386547\pi\)
0.348925 + 0.937151i \(0.386547\pi\)
\(62\) 0 0
\(63\) 0.273853i 0.0345023i
\(64\) 0 0
\(65\) 2.63966 14.2237i 0.327410 1.76423i
\(66\) 0 0
\(67\) 15.0159i 1.83449i −0.398324 0.917245i \(-0.630408\pi\)
0.398324 0.917245i \(-0.369592\pi\)
\(68\) 0 0
\(69\) −12.0465 −1.45023
\(70\) 0 0
\(71\) 7.42623i 0.881331i −0.897671 0.440665i \(-0.854743\pi\)
0.897671 0.440665i \(-0.145257\pi\)
\(72\) 0 0
\(73\) 3.80390i 0.445212i −0.974908 0.222606i \(-0.928544\pi\)
0.974908 0.222606i \(-0.0714564\pi\)
\(74\) 0 0
\(75\) −20.0814 −2.31880
\(76\) 0 0
\(77\) −1.12517 −0.128225
\(78\) 0 0
\(79\) −4.36938 −0.491594 −0.245797 0.969321i \(-0.579050\pi\)
−0.245797 + 0.969321i \(0.579050\pi\)
\(80\) 0 0
\(81\) −9.74656 −1.08295
\(82\) 0 0
\(83\) 14.2682i 1.56614i 0.621933 + 0.783070i \(0.286348\pi\)
−0.621933 + 0.783070i \(0.713652\pi\)
\(84\) 0 0
\(85\) 14.4482i 1.56713i
\(86\) 0 0
\(87\) −13.9914 −1.50003
\(88\) 0 0
\(89\) 9.68239i 1.02633i 0.858289 + 0.513166i \(0.171527\pi\)
−0.858289 + 0.513166i \(0.828473\pi\)
\(90\) 0 0
\(91\) 0.657893 3.54502i 0.0689659 0.371619i
\(92\) 0 0
\(93\) 7.99688i 0.829237i
\(94\) 0 0
\(95\) 0.847720 0.0869742
\(96\) 0 0
\(97\) 8.22069i 0.834685i 0.908749 + 0.417342i \(0.137038\pi\)
−0.908749 + 0.417342i \(0.862962\pi\)
\(98\) 0 0
\(99\) 0.308130i 0.0309683i
\(100\) 0 0
\(101\) 12.1334 1.20732 0.603658 0.797243i \(-0.293709\pi\)
0.603658 + 0.797243i \(0.293709\pi\)
\(102\) 0 0
\(103\) −13.1207 −1.29282 −0.646411 0.762989i \(-0.723731\pi\)
−0.646411 + 0.762989i \(0.723731\pi\)
\(104\) 0 0
\(105\) −7.25976 −0.708480
\(106\) 0 0
\(107\) −12.4981 −1.20824 −0.604120 0.796893i \(-0.706475\pi\)
−0.604120 + 0.796893i \(0.706475\pi\)
\(108\) 0 0
\(109\) 5.47007i 0.523938i −0.965076 0.261969i \(-0.915628\pi\)
0.965076 0.261969i \(-0.0843718\pi\)
\(110\) 0 0
\(111\) 3.68874i 0.350120i
\(112\) 0 0
\(113\) −16.9170 −1.59141 −0.795707 0.605682i \(-0.792900\pi\)
−0.795707 + 0.605682i \(0.792900\pi\)
\(114\) 0 0
\(115\) 26.7132i 2.49102i
\(116\) 0 0
\(117\) −0.970816 0.180166i −0.0897519 0.0166564i
\(118\) 0 0
\(119\) 3.60098i 0.330101i
\(120\) 0 0
\(121\) 9.73400 0.884909
\(122\) 0 0
\(123\) 11.0998i 1.00084i
\(124\) 0 0
\(125\) 24.4690i 2.18857i
\(126\) 0 0
\(127\) −3.42935 −0.304306 −0.152153 0.988357i \(-0.548621\pi\)
−0.152153 + 0.988357i \(0.548621\pi\)
\(128\) 0 0
\(129\) 20.8991 1.84007
\(130\) 0 0
\(131\) 8.66700 0.757239 0.378620 0.925552i \(-0.376399\pi\)
0.378620 + 0.925552i \(0.376399\pi\)
\(132\) 0 0
\(133\) 0.211281 0.0183204
\(134\) 0 0
\(135\) 19.7912i 1.70335i
\(136\) 0 0
\(137\) 13.1920i 1.12707i 0.826091 + 0.563536i \(0.190559\pi\)
−0.826091 + 0.563536i \(0.809441\pi\)
\(138\) 0 0
\(139\) −4.86578 −0.412710 −0.206355 0.978477i \(-0.566160\pi\)
−0.206355 + 0.978477i \(0.566160\pi\)
\(140\) 0 0
\(141\) 21.6596i 1.82406i
\(142\) 0 0
\(143\) 0.740239 3.98874i 0.0619019 0.333555i
\(144\) 0 0
\(145\) 31.0258i 2.57656i
\(146\) 0 0
\(147\) −1.80938 −0.149235
\(148\) 0 0
\(149\) 10.6762i 0.874629i 0.899309 + 0.437314i \(0.144070\pi\)
−0.899309 + 0.437314i \(0.855930\pi\)
\(150\) 0 0
\(151\) 19.7429i 1.60666i 0.595535 + 0.803329i \(0.296940\pi\)
−0.595535 + 0.803329i \(0.703060\pi\)
\(152\) 0 0
\(153\) 0.986140 0.0797247
\(154\) 0 0
\(155\) −17.7330 −1.42435
\(156\) 0 0
\(157\) 11.3604 0.906660 0.453330 0.891343i \(-0.350236\pi\)
0.453330 + 0.891343i \(0.350236\pi\)
\(158\) 0 0
\(159\) 14.8482 1.17754
\(160\) 0 0
\(161\) 6.65783i 0.524710i
\(162\) 0 0
\(163\) 7.29297i 0.571230i 0.958344 + 0.285615i \(0.0921978\pi\)
−0.958344 + 0.285615i \(0.907802\pi\)
\(164\) 0 0
\(165\) −8.16843 −0.635912
\(166\) 0 0
\(167\) 11.0452i 0.854705i 0.904085 + 0.427353i \(0.140554\pi\)
−0.904085 + 0.427353i \(0.859446\pi\)
\(168\) 0 0
\(169\) 12.1344 + 4.66449i 0.933412 + 0.358807i
\(170\) 0 0
\(171\) 0.0578599i 0.00442466i
\(172\) 0 0
\(173\) 0.727064 0.0552776 0.0276388 0.999618i \(-0.491201\pi\)
0.0276388 + 0.999618i \(0.491201\pi\)
\(174\) 0 0
\(175\) 11.0985i 0.838968i
\(176\) 0 0
\(177\) 6.66140i 0.500701i
\(178\) 0 0
\(179\) −1.52061 −0.113656 −0.0568280 0.998384i \(-0.518099\pi\)
−0.0568280 + 0.998384i \(0.518099\pi\)
\(180\) 0 0
\(181\) 2.65339 0.197225 0.0986124 0.995126i \(-0.468560\pi\)
0.0986124 + 0.995126i \(0.468560\pi\)
\(182\) 0 0
\(183\) 9.86181 0.729006
\(184\) 0 0
\(185\) 8.17978 0.601390
\(186\) 0 0
\(187\) 4.05170i 0.296290i
\(188\) 0 0
\(189\) 4.93263i 0.358796i
\(190\) 0 0
\(191\) 0.252114 0.0182424 0.00912118 0.999958i \(-0.497097\pi\)
0.00912118 + 0.999958i \(0.497097\pi\)
\(192\) 0 0
\(193\) 11.7157i 0.843316i −0.906755 0.421658i \(-0.861448\pi\)
0.906755 0.421658i \(-0.138552\pi\)
\(194\) 0 0
\(195\) 4.77615 25.7360i 0.342027 1.84299i
\(196\) 0 0
\(197\) 9.53382i 0.679257i 0.940560 + 0.339628i \(0.110301\pi\)
−0.940560 + 0.339628i \(0.889699\pi\)
\(198\) 0 0
\(199\) −11.4508 −0.811727 −0.405863 0.913934i \(-0.633029\pi\)
−0.405863 + 0.913934i \(0.633029\pi\)
\(200\) 0 0
\(201\) 27.1695i 1.91639i
\(202\) 0 0
\(203\) 7.73269i 0.542729i
\(204\) 0 0
\(205\) 24.6138 1.71910
\(206\) 0 0
\(207\) −1.82327 −0.126726
\(208\) 0 0
\(209\) 0.237726 0.0164438
\(210\) 0 0
\(211\) −28.6273 −1.97079 −0.985393 0.170298i \(-0.945527\pi\)
−0.985393 + 0.170298i \(0.945527\pi\)
\(212\) 0 0
\(213\) 13.4369i 0.920678i
\(214\) 0 0
\(215\) 46.3438i 3.16062i
\(216\) 0 0
\(217\) −4.41968 −0.300027
\(218\) 0 0
\(219\) 6.88269i 0.465089i
\(220\) 0 0
\(221\) −12.7656 2.36906i −0.858704 0.159360i
\(222\) 0 0
\(223\) 2.14547i 0.143671i 0.997416 + 0.0718357i \(0.0228857\pi\)
−0.997416 + 0.0718357i \(0.977114\pi\)
\(224\) 0 0
\(225\) −3.03936 −0.202624
\(226\) 0 0
\(227\) 3.76294i 0.249755i −0.992172 0.124877i \(-0.960146\pi\)
0.992172 0.124877i \(-0.0398538\pi\)
\(228\) 0 0
\(229\) 9.03262i 0.596892i −0.954426 0.298446i \(-0.903532\pi\)
0.954426 0.298446i \(-0.0964683\pi\)
\(230\) 0 0
\(231\) −2.03585 −0.133949
\(232\) 0 0
\(233\) 11.5866 0.759066 0.379533 0.925178i \(-0.376085\pi\)
0.379533 + 0.925178i \(0.376085\pi\)
\(234\) 0 0
\(235\) −48.0300 −3.13313
\(236\) 0 0
\(237\) −7.90586 −0.513541
\(238\) 0 0
\(239\) 22.2221i 1.43743i 0.695307 + 0.718713i \(0.255269\pi\)
−0.695307 + 0.718713i \(0.744731\pi\)
\(240\) 0 0
\(241\) 14.8107i 0.954040i 0.878892 + 0.477020i \(0.158283\pi\)
−0.878892 + 0.477020i \(0.841717\pi\)
\(242\) 0 0
\(243\) −2.83733 −0.182015
\(244\) 0 0
\(245\) 4.01229i 0.256336i
\(246\) 0 0
\(247\) −0.139000 + 0.748994i −0.00884436 + 0.0476574i
\(248\) 0 0
\(249\) 25.8166i 1.63606i
\(250\) 0 0
\(251\) −24.8658 −1.56952 −0.784759 0.619802i \(-0.787213\pi\)
−0.784759 + 0.619802i \(0.787213\pi\)
\(252\) 0 0
\(253\) 7.49116i 0.470965i
\(254\) 0 0
\(255\) 26.1423i 1.63709i
\(256\) 0 0
\(257\) 23.1265 1.44259 0.721296 0.692627i \(-0.243547\pi\)
0.721296 + 0.692627i \(0.243547\pi\)
\(258\) 0 0
\(259\) 2.03868 0.126677
\(260\) 0 0
\(261\) −2.11762 −0.131078
\(262\) 0 0
\(263\) 27.7840 1.71324 0.856618 0.515952i \(-0.172562\pi\)
0.856618 + 0.515952i \(0.172562\pi\)
\(264\) 0 0
\(265\) 32.9259i 2.02262i
\(266\) 0 0
\(267\) 17.5191i 1.07215i
\(268\) 0 0
\(269\) 11.6180 0.708365 0.354182 0.935176i \(-0.384759\pi\)
0.354182 + 0.935176i \(0.384759\pi\)
\(270\) 0 0
\(271\) 4.49910i 0.273301i 0.990619 + 0.136651i \(0.0436338\pi\)
−0.990619 + 0.136651i \(0.956366\pi\)
\(272\) 0 0
\(273\) 1.19038 6.41429i 0.0720450 0.388210i
\(274\) 0 0
\(275\) 12.4877i 0.753034i
\(276\) 0 0
\(277\) 2.37569 0.142741 0.0713706 0.997450i \(-0.477263\pi\)
0.0713706 + 0.997450i \(0.477263\pi\)
\(278\) 0 0
\(279\) 1.21034i 0.0724614i
\(280\) 0 0
\(281\) 7.26749i 0.433542i 0.976222 + 0.216771i \(0.0695526\pi\)
−0.976222 + 0.216771i \(0.930447\pi\)
\(282\) 0 0
\(283\) 20.2964 1.20649 0.603247 0.797555i \(-0.293873\pi\)
0.603247 + 0.797555i \(0.293873\pi\)
\(284\) 0 0
\(285\) 1.53385 0.0908573
\(286\) 0 0
\(287\) 6.13460 0.362114
\(288\) 0 0
\(289\) −4.03294 −0.237231
\(290\) 0 0
\(291\) 14.8743i 0.871950i
\(292\) 0 0
\(293\) 0.801148i 0.0468035i −0.999726 0.0234018i \(-0.992550\pi\)
0.999726 0.0234018i \(-0.00744969\pi\)
\(294\) 0 0
\(295\) −14.7716 −0.860038
\(296\) 0 0
\(297\) 5.55003i 0.322045i
\(298\) 0 0
\(299\) 23.6021 + 4.38014i 1.36495 + 0.253310i
\(300\) 0 0
\(301\) 11.5504i 0.665756i
\(302\) 0 0
\(303\) 21.9539 1.26122
\(304\) 0 0
\(305\) 21.8685i 1.25219i
\(306\) 0 0
\(307\) 18.0895i 1.03242i 0.856461 + 0.516212i \(0.172658\pi\)
−0.856461 + 0.516212i \(0.827342\pi\)
\(308\) 0 0
\(309\) −23.7403 −1.35054
\(310\) 0 0
\(311\) −1.08563 −0.0615602 −0.0307801 0.999526i \(-0.509799\pi\)
−0.0307801 + 0.999526i \(0.509799\pi\)
\(312\) 0 0
\(313\) −2.66346 −0.150547 −0.0752737 0.997163i \(-0.523983\pi\)
−0.0752737 + 0.997163i \(0.523983\pi\)
\(314\) 0 0
\(315\) −1.09878 −0.0619092
\(316\) 0 0
\(317\) 11.5464i 0.648512i −0.945969 0.324256i \(-0.894886\pi\)
0.945969 0.324256i \(-0.105114\pi\)
\(318\) 0 0
\(319\) 8.70056i 0.487138i
\(320\) 0 0
\(321\) −22.6139 −1.26218
\(322\) 0 0
\(323\) 0.760818i 0.0423330i
\(324\) 0 0
\(325\) 39.3444 + 7.30163i 2.18244 + 0.405021i
\(326\) 0 0
\(327\) 9.89743i 0.547329i
\(328\) 0 0
\(329\) −11.9707 −0.659967
\(330\) 0 0
\(331\) 20.8490i 1.14596i −0.819568 0.572982i \(-0.805786\pi\)
0.819568 0.572982i \(-0.194214\pi\)
\(332\) 0 0
\(333\) 0.558299i 0.0305946i
\(334\) 0 0
\(335\) 60.2484 3.29172
\(336\) 0 0
\(337\) −20.7215 −1.12877 −0.564387 0.825511i \(-0.690887\pi\)
−0.564387 + 0.825511i \(0.690887\pi\)
\(338\) 0 0
\(339\) −30.6092 −1.66246
\(340\) 0 0
\(341\) −4.97287 −0.269296
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 48.3342i 2.60223i
\(346\) 0 0
\(347\) 13.2038 0.708819 0.354410 0.935090i \(-0.384682\pi\)
0.354410 + 0.935090i \(0.384682\pi\)
\(348\) 0 0
\(349\) 15.7494i 0.843046i −0.906818 0.421523i \(-0.861496\pi\)
0.906818 0.421523i \(-0.138504\pi\)
\(350\) 0 0
\(351\) 17.4863 + 3.24515i 0.933349 + 0.173213i
\(352\) 0 0
\(353\) 31.2703i 1.66435i 0.554515 + 0.832174i \(0.312904\pi\)
−0.554515 + 0.832174i \(0.687096\pi\)
\(354\) 0 0
\(355\) 29.7962 1.58142
\(356\) 0 0
\(357\) 6.51554i 0.344839i
\(358\) 0 0
\(359\) 26.5386i 1.40065i 0.713822 + 0.700327i \(0.246962\pi\)
−0.713822 + 0.700327i \(0.753038\pi\)
\(360\) 0 0
\(361\) 18.9554 0.997651
\(362\) 0 0
\(363\) 17.6125 0.924417
\(364\) 0 0
\(365\) 15.2623 0.798868
\(366\) 0 0
\(367\) −7.27668 −0.379840 −0.189920 0.981800i \(-0.560823\pi\)
−0.189920 + 0.981800i \(0.560823\pi\)
\(368\) 0 0
\(369\) 1.67998i 0.0874562i
\(370\) 0 0
\(371\) 8.20624i 0.426047i
\(372\) 0 0
\(373\) −20.4623 −1.05950 −0.529748 0.848155i \(-0.677714\pi\)
−0.529748 + 0.848155i \(0.677714\pi\)
\(374\) 0 0
\(375\) 44.2737i 2.28628i
\(376\) 0 0
\(377\) 27.4126 + 5.08729i 1.41182 + 0.262009i
\(378\) 0 0
\(379\) 38.1485i 1.95956i 0.200080 + 0.979780i \(0.435880\pi\)
−0.200080 + 0.979780i \(0.564120\pi\)
\(380\) 0 0
\(381\) −6.20500 −0.317892
\(382\) 0 0
\(383\) 3.31983i 0.169635i 0.996396 + 0.0848176i \(0.0270308\pi\)
−0.996396 + 0.0848176i \(0.972969\pi\)
\(384\) 0 0
\(385\) 4.51450i 0.230080i
\(386\) 0 0
\(387\) 3.16313 0.160791
\(388\) 0 0
\(389\) 9.74598 0.494141 0.247070 0.968998i \(-0.420532\pi\)
0.247070 + 0.968998i \(0.420532\pi\)
\(390\) 0 0
\(391\) −23.9747 −1.21245
\(392\) 0 0
\(393\) 15.6819 0.791046
\(394\) 0 0
\(395\) 17.5312i 0.882092i
\(396\) 0 0
\(397\) 22.8867i 1.14865i −0.818628 0.574324i \(-0.805265\pi\)
0.818628 0.574324i \(-0.194735\pi\)
\(398\) 0 0
\(399\) 0.382287 0.0191383
\(400\) 0 0
\(401\) 28.1273i 1.40461i −0.711876 0.702306i \(-0.752154\pi\)
0.711876 0.702306i \(-0.247846\pi\)
\(402\) 0 0
\(403\) 2.90768 15.6679i 0.144842 0.780471i
\(404\) 0 0
\(405\) 39.1061i 1.94320i
\(406\) 0 0
\(407\) 2.29385 0.113702
\(408\) 0 0
\(409\) 21.3432i 1.05535i 0.849446 + 0.527676i \(0.176937\pi\)
−0.849446 + 0.527676i \(0.823063\pi\)
\(410\) 0 0
\(411\) 23.8694i 1.17739i
\(412\) 0 0
\(413\) −3.68159 −0.181159
\(414\) 0 0
\(415\) −57.2483 −2.81021
\(416\) 0 0
\(417\) −8.80404 −0.431136
\(418\) 0 0
\(419\) 21.2141 1.03638 0.518189 0.855266i \(-0.326606\pi\)
0.518189 + 0.855266i \(0.326606\pi\)
\(420\) 0 0
\(421\) 26.3337i 1.28342i 0.766946 + 0.641712i \(0.221776\pi\)
−0.766946 + 0.641712i \(0.778224\pi\)
\(422\) 0 0
\(423\) 3.27822i 0.159392i
\(424\) 0 0
\(425\) −39.9655 −1.93861
\(426\) 0 0
\(427\) 5.45038i 0.263762i
\(428\) 0 0
\(429\) 1.33937 7.21714i 0.0646655 0.348447i
\(430\) 0 0
\(431\) 12.7641i 0.614826i 0.951576 + 0.307413i \(0.0994634\pi\)
−0.951576 + 0.307413i \(0.900537\pi\)
\(432\) 0 0
\(433\) −17.1130 −0.822400 −0.411200 0.911545i \(-0.634890\pi\)
−0.411200 + 0.911545i \(0.634890\pi\)
\(434\) 0 0
\(435\) 56.1375i 2.69159i
\(436\) 0 0
\(437\) 1.40667i 0.0672902i
\(438\) 0 0
\(439\) 7.63549 0.364422 0.182211 0.983259i \(-0.441675\pi\)
0.182211 + 0.983259i \(0.441675\pi\)
\(440\) 0 0
\(441\) −0.273853 −0.0130406
\(442\) 0 0
\(443\) 6.84923 0.325417 0.162708 0.986674i \(-0.447977\pi\)
0.162708 + 0.986674i \(0.447977\pi\)
\(444\) 0 0
\(445\) −38.8486 −1.84160
\(446\) 0 0
\(447\) 19.3173i 0.913677i
\(448\) 0 0
\(449\) 32.9532i 1.55516i −0.628784 0.777580i \(-0.716447\pi\)
0.628784 0.777580i \(-0.283553\pi\)
\(450\) 0 0
\(451\) 6.90244 0.325023
\(452\) 0 0
\(453\) 35.7225i 1.67839i
\(454\) 0 0
\(455\) 14.2237 + 2.63966i 0.666816 + 0.123749i
\(456\) 0 0
\(457\) 2.40115i 0.112321i 0.998422 + 0.0561604i \(0.0178858\pi\)
−0.998422 + 0.0561604i \(0.982114\pi\)
\(458\) 0 0
\(459\) −17.7623 −0.829074
\(460\) 0 0
\(461\) 27.5006i 1.28083i −0.768030 0.640414i \(-0.778763\pi\)
0.768030 0.640414i \(-0.221237\pi\)
\(462\) 0 0
\(463\) 21.4114i 0.995071i 0.867444 + 0.497535i \(0.165762\pi\)
−0.867444 + 0.497535i \(0.834238\pi\)
\(464\) 0 0
\(465\) −32.0858 −1.48794
\(466\) 0 0
\(467\) 0.485886 0.0224841 0.0112421 0.999937i \(-0.496421\pi\)
0.0112421 + 0.999937i \(0.496421\pi\)
\(468\) 0 0
\(469\) 15.0159 0.693372
\(470\) 0 0
\(471\) 20.5553 0.947138
\(472\) 0 0
\(473\) 12.9962i 0.597564i
\(474\) 0 0
\(475\) 2.34490i 0.107591i
\(476\) 0 0
\(477\) 2.24731 0.102897
\(478\) 0 0
\(479\) 19.4648i 0.889368i −0.895687 0.444684i \(-0.853316\pi\)
0.895687 0.444684i \(-0.146684\pi\)
\(480\) 0 0
\(481\) −1.34123 + 7.22716i −0.0611550 + 0.329530i
\(482\) 0 0
\(483\) 12.0465i 0.548136i
\(484\) 0 0
\(485\) −32.9838 −1.49772
\(486\) 0 0
\(487\) 23.3887i 1.05984i −0.848047 0.529922i \(-0.822221\pi\)
0.848047 0.529922i \(-0.177779\pi\)
\(488\) 0 0
\(489\) 13.1958i 0.596733i
\(490\) 0 0
\(491\) −13.3745 −0.603583 −0.301791 0.953374i \(-0.597585\pi\)
−0.301791 + 0.953374i \(0.597585\pi\)
\(492\) 0 0
\(493\) −27.8453 −1.25409
\(494\) 0 0
\(495\) −1.23631 −0.0555680
\(496\) 0 0
\(497\) 7.42623 0.333112
\(498\) 0 0
\(499\) 26.7979i 1.19964i −0.800136 0.599818i \(-0.795240\pi\)
0.800136 0.599818i \(-0.204760\pi\)
\(500\) 0 0
\(501\) 19.9850i 0.892864i
\(502\) 0 0
\(503\) −29.2886 −1.30591 −0.652957 0.757395i \(-0.726472\pi\)
−0.652957 + 0.757395i \(0.726472\pi\)
\(504\) 0 0
\(505\) 48.6827i 2.16635i
\(506\) 0 0
\(507\) 21.9556 + 8.43983i 0.975084 + 0.374826i
\(508\) 0 0
\(509\) 5.88848i 0.261002i 0.991448 + 0.130501i \(0.0416586\pi\)
−0.991448 + 0.130501i \(0.958341\pi\)
\(510\) 0 0
\(511\) 3.80390 0.168274
\(512\) 0 0
\(513\) 1.04217i 0.0460129i
\(514\) 0 0
\(515\) 52.6442i 2.31978i
\(516\) 0 0
\(517\) −13.4690 −0.592368
\(518\) 0 0
\(519\) 1.31553 0.0577455
\(520\) 0 0
\(521\) 11.7267 0.513755 0.256878 0.966444i \(-0.417306\pi\)
0.256878 + 0.966444i \(0.417306\pi\)
\(522\) 0 0
\(523\) −3.12214 −0.136521 −0.0682607 0.997668i \(-0.521745\pi\)
−0.0682607 + 0.997668i \(0.521745\pi\)
\(524\) 0 0
\(525\) 20.0814i 0.876424i
\(526\) 0 0
\(527\) 15.9152i 0.693276i
\(528\) 0 0
\(529\) 21.3267 0.927247
\(530\) 0 0
\(531\) 1.00822i 0.0437529i
\(532\) 0 0
\(533\) −4.03591 + 21.7473i −0.174815 + 0.941979i
\(534\) 0 0
\(535\) 50.1462i 2.16801i
\(536\) 0 0
\(537\) −2.75136 −0.118730
\(538\) 0 0
\(539\) 1.12517i 0.0484643i
\(540\) 0 0
\(541\) 11.1538i 0.479541i 0.970830 + 0.239770i \(0.0770721\pi\)
−0.970830 + 0.239770i \(0.922928\pi\)
\(542\) 0 0
\(543\) 4.80099 0.206030
\(544\) 0 0
\(545\) 21.9475 0.940129
\(546\) 0 0
\(547\) 10.5189 0.449757 0.224878 0.974387i \(-0.427802\pi\)
0.224878 + 0.974387i \(0.427802\pi\)
\(548\) 0 0
\(549\) 1.49260 0.0637028
\(550\) 0 0
\(551\) 1.63377i 0.0696009i
\(552\) 0 0
\(553\) 4.36938i 0.185805i
\(554\) 0 0
\(555\) 14.8003 0.628239
\(556\) 0 0
\(557\) 43.2660i 1.83324i −0.399760 0.916620i \(-0.630906\pi\)
0.399760 0.916620i \(-0.369094\pi\)
\(558\) 0 0
\(559\) −40.9466 7.59896i −1.73185 0.321402i
\(560\) 0 0
\(561\) 7.33106i 0.309518i
\(562\) 0 0
\(563\) 27.0595 1.14042 0.570211 0.821498i \(-0.306861\pi\)
0.570211 + 0.821498i \(0.306861\pi\)
\(564\) 0 0
\(565\) 67.8758i 2.85556i
\(566\) 0 0
\(567\) 9.74656i 0.409317i
\(568\) 0 0
\(569\) −10.0465 −0.421170 −0.210585 0.977576i \(-0.567537\pi\)
−0.210585 + 0.977576i \(0.567537\pi\)
\(570\) 0 0
\(571\) 44.6276 1.86761 0.933803 0.357788i \(-0.116469\pi\)
0.933803 + 0.357788i \(0.116469\pi\)
\(572\) 0 0
\(573\) 0.456171 0.0190568
\(574\) 0 0
\(575\) 73.8919 3.08151
\(576\) 0 0
\(577\) 16.7156i 0.695879i 0.937517 + 0.347940i \(0.113119\pi\)
−0.937517 + 0.347940i \(0.886881\pi\)
\(578\) 0 0
\(579\) 21.1982i 0.880966i
\(580\) 0 0
\(581\) −14.2682 −0.591946
\(582\) 0 0
\(583\) 9.23338i 0.382408i
\(584\) 0 0
\(585\) 0.722880 3.89520i 0.0298874 0.161047i
\(586\) 0 0
\(587\) 15.2771i 0.630555i −0.948999 0.315278i \(-0.897902\pi\)
0.948999 0.315278i \(-0.102098\pi\)
\(588\) 0 0
\(589\) 0.933793 0.0384763
\(590\) 0 0
\(591\) 17.2503i 0.709583i
\(592\) 0 0
\(593\) 6.70680i 0.275415i 0.990473 + 0.137708i \(0.0439735\pi\)
−0.990473 + 0.137708i \(0.956027\pi\)
\(594\) 0 0
\(595\) −14.4482 −0.592318
\(596\) 0 0
\(597\) −20.7189 −0.847967
\(598\) 0 0
\(599\) 5.30563 0.216782 0.108391 0.994108i \(-0.465430\pi\)
0.108391 + 0.994108i \(0.465430\pi\)
\(600\) 0 0
\(601\) 30.1041 1.22797 0.613986 0.789317i \(-0.289565\pi\)
0.613986 + 0.789317i \(0.289565\pi\)
\(602\) 0 0
\(603\) 4.11217i 0.167460i
\(604\) 0 0
\(605\) 39.0557i 1.58784i
\(606\) 0 0
\(607\) −11.1086 −0.450883 −0.225442 0.974257i \(-0.572382\pi\)
−0.225442 + 0.974257i \(0.572382\pi\)
\(608\) 0 0
\(609\) 13.9914i 0.566959i
\(610\) 0 0
\(611\) 7.87545 42.4364i 0.318607 1.71679i
\(612\) 0 0
\(613\) 17.1277i 0.691783i 0.938275 + 0.345891i \(0.112423\pi\)
−0.938275 + 0.345891i \(0.887577\pi\)
\(614\) 0 0
\(615\) 44.5357 1.79585
\(616\) 0 0
\(617\) 33.9390i 1.36633i 0.730264 + 0.683166i \(0.239397\pi\)
−0.730264 + 0.683166i \(0.760603\pi\)
\(618\) 0 0
\(619\) 20.9785i 0.843196i 0.906783 + 0.421598i \(0.138531\pi\)
−0.906783 + 0.421598i \(0.861469\pi\)
\(620\) 0 0
\(621\) 32.8406 1.31785
\(622\) 0 0
\(623\) −9.68239 −0.387917
\(624\) 0 0
\(625\) 42.6842 1.70737
\(626\) 0 0
\(627\) 0.430136 0.0171780
\(628\) 0 0
\(629\) 7.34125i 0.292715i
\(630\) 0 0
\(631\) 19.7336i 0.785583i −0.919628 0.392791i \(-0.871509\pi\)
0.919628 0.392791i \(-0.128491\pi\)
\(632\) 0 0
\(633\) −51.7977 −2.05877
\(634\) 0 0
\(635\) 13.7596i 0.546032i
\(636\) 0 0
\(637\) 3.54502 + 0.657893i 0.140459 + 0.0260667i
\(638\) 0 0
\(639\) 2.03370i 0.0804518i
\(640\) 0 0
\(641\) 35.1738 1.38928 0.694641 0.719356i \(-0.255563\pi\)
0.694641 + 0.719356i \(0.255563\pi\)
\(642\) 0 0
\(643\) 19.4656i 0.767647i −0.923407 0.383823i \(-0.874607\pi\)
0.923407 0.383823i \(-0.125393\pi\)
\(644\) 0 0
\(645\) 83.8534i 3.30173i
\(646\) 0 0
\(647\) −5.98561 −0.235319 −0.117659 0.993054i \(-0.537539\pi\)
−0.117659 + 0.993054i \(0.537539\pi\)
\(648\) 0 0
\(649\) −4.14240 −0.162604
\(650\) 0 0
\(651\) −7.99688 −0.313422
\(652\) 0 0
\(653\) −48.5204 −1.89875 −0.949375 0.314146i \(-0.898282\pi\)
−0.949375 + 0.314146i \(0.898282\pi\)
\(654\) 0 0
\(655\) 34.7745i 1.35875i
\(656\) 0 0
\(657\) 1.04171i 0.0406409i
\(658\) 0 0
\(659\) 0.268593 0.0104629 0.00523145 0.999986i \(-0.498335\pi\)
0.00523145 + 0.999986i \(0.498335\pi\)
\(660\) 0 0
\(661\) 29.2823i 1.13895i −0.822009 0.569475i \(-0.807146\pi\)
0.822009 0.569475i \(-0.192854\pi\)
\(662\) 0 0
\(663\) −23.0977 4.28653i −0.897042 0.166475i
\(664\) 0 0
\(665\) 0.847720i 0.0328732i
\(666\) 0 0
\(667\) 51.4829 1.99343
\(668\) 0 0
\(669\) 3.88197i 0.150086i
\(670\) 0 0
\(671\) 6.13258i 0.236746i
\(672\) 0 0
\(673\) 45.2733 1.74516 0.872579 0.488473i \(-0.162446\pi\)
0.872579 + 0.488473i \(0.162446\pi\)
\(674\) 0 0
\(675\) 54.7448 2.10713
\(676\) 0 0
\(677\) 3.68744 0.141720 0.0708599 0.997486i \(-0.477426\pi\)
0.0708599 + 0.997486i \(0.477426\pi\)
\(678\) 0 0
\(679\) −8.22069 −0.315481
\(680\) 0 0
\(681\) 6.80858i 0.260905i
\(682\) 0 0
\(683\) 17.4994i 0.669597i 0.942290 + 0.334798i \(0.108668\pi\)
−0.942290 + 0.334798i \(0.891332\pi\)
\(684\) 0 0
\(685\) −52.9303 −2.02236
\(686\) 0 0
\(687\) 16.3434i 0.623541i
\(688\) 0 0
\(689\) −29.0913 5.39883i −1.10829 0.205679i
\(690\) 0 0
\(691\) 41.1786i 1.56651i 0.621701 + 0.783254i \(0.286442\pi\)
−0.621701 + 0.783254i \(0.713558\pi\)
\(692\) 0 0
\(693\) −0.308130 −0.0117049
\(694\) 0 0
\(695\) 19.5229i 0.740547i
\(696\) 0 0
\(697\) 22.0906i 0.836740i
\(698\) 0 0
\(699\) 20.9646 0.792955
\(700\) 0 0
\(701\) 44.5878 1.68406 0.842028 0.539433i \(-0.181362\pi\)
0.842028 + 0.539433i \(0.181362\pi\)
\(702\) 0 0
\(703\) −0.430734 −0.0162454
\(704\) 0 0
\(705\) −86.9045 −3.27301
\(706\) 0 0
\(707\) 12.1334i 0.456323i
\(708\) 0 0
\(709\) 0.794798i 0.0298493i −0.999889 0.0149246i \(-0.995249\pi\)
0.999889 0.0149246i \(-0.00475083\pi\)
\(710\) 0 0
\(711\) −1.19657 −0.0448748
\(712\) 0 0
\(713\) 29.4255i 1.10199i
\(714\) 0 0
\(715\) 16.0040 + 2.97006i 0.598515 + 0.111074i
\(716\) 0 0
\(717\) 40.2082i 1.50160i
\(718\) 0 0
\(719\) −6.03984 −0.225248 −0.112624 0.993638i \(-0.535926\pi\)
−0.112624 + 0.993638i \(0.535926\pi\)
\(720\) 0 0
\(721\) 13.1207i 0.488641i
\(722\) 0 0
\(723\) 26.7981i 0.996634i
\(724\) 0 0
\(725\) 85.8213 3.18732
\(726\) 0 0
\(727\) 24.2424 0.899099 0.449550 0.893255i \(-0.351584\pi\)
0.449550 + 0.893255i \(0.351584\pi\)
\(728\) 0 0
\(729\) 24.1059 0.892811
\(730\) 0 0
\(731\) 41.5929 1.53837
\(732\) 0 0
\(733\) 39.6138i 1.46317i −0.681751 0.731585i \(-0.738781\pi\)
0.681751 0.731585i \(-0.261219\pi\)
\(734\) 0 0
\(735\) 7.25976i 0.267780i
\(736\) 0 0
\(737\) 16.8954 0.622351
\(738\) 0 0
\(739\) 28.1283i 1.03472i 0.855769 + 0.517358i \(0.173085\pi\)
−0.855769 + 0.517358i \(0.826915\pi\)
\(740\) 0 0
\(741\) −0.251504 + 1.35521i −0.00923923 + 0.0497851i
\(742\) 0 0
\(743\) 15.0355i 0.551599i −0.961215 0.275799i \(-0.911057\pi\)
0.961215 0.275799i \(-0.0889426\pi\)
\(744\) 0 0
\(745\) −42.8361 −1.56939
\(746\) 0 0
\(747\) 3.90740i 0.142964i
\(748\) 0 0
\(749\) 12.4981i 0.456672i
\(750\) 0 0
\(751\) −33.5964 −1.22595 −0.612975 0.790102i \(-0.710027\pi\)
−0.612975 + 0.790102i \(0.710027\pi\)
\(752\) 0 0
\(753\) −44.9917 −1.63959
\(754\) 0 0
\(755\) −79.2145 −2.88291
\(756\) 0 0
\(757\) 19.1463 0.695884 0.347942 0.937516i \(-0.386881\pi\)
0.347942 + 0.937516i \(0.386881\pi\)
\(758\) 0 0
\(759\) 13.5543i 0.491992i
\(760\) 0 0
\(761\) 44.3671i 1.60831i −0.594422 0.804153i \(-0.702619\pi\)
0.594422 0.804153i \(-0.297381\pi\)
\(762\) 0 0
\(763\) 5.47007 0.198030
\(764\) 0 0
\(765\) 3.95669i 0.143054i
\(766\) 0 0
\(767\) 2.42210 13.0513i 0.0874568 0.471256i
\(768\) 0 0
\(769\) 26.3343i 0.949640i −0.880083 0.474820i \(-0.842513\pi\)
0.880083 0.474820i \(-0.157487\pi\)
\(770\) 0 0
\(771\) 41.8446 1.50700
\(772\) 0 0
\(773\) 29.6069i 1.06489i −0.846466 0.532443i \(-0.821274\pi\)
0.846466 0.532443i \(-0.178726\pi\)
\(774\) 0 0
\(775\) 49.0518i 1.76199i
\(776\) 0 0
\(777\) 3.68874 0.132333
\(778\) 0 0
\(779\) −1.29612 −0.0464384
\(780\) 0 0
\(781\) 8.35573 0.298992
\(782\) 0 0
\(783\) 38.1425 1.36310
\(784\) 0 0
\(785\) 45.5813i 1.62687i
\(786\) 0 0
\(787\) 4.27900i 0.152530i 0.997088 + 0.0762650i \(0.0242995\pi\)
−0.997088 + 0.0762650i \(0.975701\pi\)
\(788\) 0 0
\(789\) 50.2718 1.78972
\(790\) 0 0
\(791\) 16.9170i 0.601498i
\(792\) 0 0
\(793\) −19.3217 3.58577i −0.686134 0.127334i
\(794\) 0 0
\(795\) 59.5754i 2.11292i
\(796\) 0 0
\(797\) 2.58662 0.0916229 0.0458114 0.998950i \(-0.485413\pi\)
0.0458114 + 0.998950i \(0.485413\pi\)
\(798\) 0 0
\(799\) 43.1063i 1.52499i
\(800\) 0 0
\(801\) 2.65156i 0.0936881i
\(802\) 0 0
\(803\) 4.28001 0.151038
\(804\) 0 0
\(805\) 26.7132 0.941515
\(806\) 0 0
\(807\) 21.0214 0.739990
\(808\) 0 0
\(809\) −34.5870 −1.21601 −0.608007 0.793931i \(-0.708031\pi\)
−0.608007 + 0.793931i \(0.708031\pi\)
\(810\) 0 0
\(811\) 6.36884i 0.223640i −0.993728 0.111820i \(-0.964332\pi\)
0.993728 0.111820i \(-0.0356680\pi\)
\(812\) 0 0
\(813\) 8.14059i 0.285503i
\(814\) 0 0
\(815\) −29.2615 −1.02499
\(816\) 0 0
\(817\) 2.44038i 0.0853782i
\(818\) 0 0
\(819\) 0.180166 0.970816i 0.00629552 0.0339230i
\(820\) 0 0
\(821\) 0.0417676i 0.00145770i 1.00000 0.000728849i \(0.000232000\pi\)
−1.00000 0.000728849i \(0.999768\pi\)
\(822\) 0 0
\(823\) 46.7977 1.63126 0.815632 0.578571i \(-0.196389\pi\)
0.815632 + 0.578571i \(0.196389\pi\)
\(824\) 0 0
\(825\) 22.5949i 0.786653i
\(826\) 0 0
\(827\) 12.2318i 0.425343i 0.977124 + 0.212671i \(0.0682164\pi\)
−0.977124 + 0.212671i \(0.931784\pi\)
\(828\) 0 0
\(829\) 5.64980 0.196226 0.0981128 0.995175i \(-0.468719\pi\)
0.0981128 + 0.995175i \(0.468719\pi\)
\(830\) 0 0
\(831\) 4.29852 0.149114
\(832\) 0 0
\(833\) −3.60098 −0.124767
\(834\) 0 0
\(835\) −44.3167 −1.53364
\(836\) 0 0
\(837\) 21.8007i 0.753541i
\(838\) 0 0
\(839\) 39.5226i 1.36447i 0.731132 + 0.682236i \(0.238992\pi\)
−0.731132 + 0.682236i \(0.761008\pi\)
\(840\) 0 0
\(841\) 30.7946 1.06188
\(842\) 0 0
\(843\) 13.1497i 0.452898i
\(844\) 0 0
\(845\) −18.7153 + 48.6866i −0.643826 + 1.67487i
\(846\) 0 0
\(847\) 9.73400i 0.334464i
\(848\) 0 0
\(849\) 36.7238 1.26036
\(850\) 0 0
\(851\) 13.5732i 0.465283i
\(852\) 0 0
\(853\) 45.3952i 1.55430i −0.629314 0.777151i \(-0.716664\pi\)
0.629314 0.777151i \(-0.283336\pi\)
\(854\) 0 0
\(855\) 0.232151 0.00793939
\(856\) 0 0
\(857\) 28.4003 0.970137 0.485068 0.874476i \(-0.338795\pi\)
0.485068 + 0.874476i \(0.338795\pi\)
\(858\) 0 0
\(859\) −27.7622 −0.947235 −0.473618 0.880731i \(-0.657052\pi\)
−0.473618 + 0.880731i \(0.657052\pi\)
\(860\) 0 0
\(861\) 11.0998 0.378281
\(862\) 0 0
\(863\) 11.3324i 0.385758i −0.981223 0.192879i \(-0.938218\pi\)
0.981223 0.192879i \(-0.0617824\pi\)
\(864\) 0 0
\(865\) 2.91719i 0.0991875i
\(866\) 0 0
\(867\) −7.29711 −0.247823
\(868\) 0 0
\(869\) 4.91628i 0.166773i
\(870\) 0 0
\(871\) −9.87889 + 53.2318i −0.334733 + 1.80369i
\(872\) 0 0
\(873\) 2.25126i 0.0761937i
\(874\) 0 0
\(875\) 24.4690 0.827203
\(876\) 0 0
\(877\) 44.4641i 1.50145i 0.660618 + 0.750723i \(0.270295\pi\)
−0.660618 + 0.750723i \(0.729705\pi\)
\(878\) 0 0
\(879\) 1.44958i 0.0488931i
\(880\) 0 0
\(881\) 44.7090 1.50629 0.753143 0.657857i \(-0.228537\pi\)
0.753143 + 0.657857i \(0.228537\pi\)
\(882\) 0 0
\(883\) −9.34785 −0.314580 −0.157290 0.987552i \(-0.550276\pi\)
−0.157290 + 0.987552i \(0.550276\pi\)
\(884\) 0 0
\(885\) −26.7275 −0.898435
\(886\) 0 0
\(887\) 35.8117 1.20244 0.601220 0.799084i \(-0.294682\pi\)
0.601220 + 0.799084i \(0.294682\pi\)
\(888\) 0 0
\(889\) 3.42935i 0.115017i
\(890\) 0 0
\(891\) 10.9665i 0.367392i
\(892\) 0 0
\(893\) 2.52918 0.0846358
\(894\) 0 0
\(895\) 6.10114i 0.203939i
\(896\) 0 0
\(897\) 42.7052 + 7.92533i 1.42589 + 0.264619i
\(898\) 0 0
\(899\) 34.1760i 1.13983i
\(900\) 0 0
\(901\) 29.5505 0.984471
\(902\) 0 0
\(903\) 20.8991i 0.695479i
\(904\) 0 0
\(905\) 10.6462i 0.353891i
\(906\) 0 0
\(907\) 35.4034 1.17555 0.587776 0.809024i \(-0.300004\pi\)
0.587776 + 0.809024i \(0.300004\pi\)
\(908\) 0 0
\(909\) 3.32277 0.110209
\(910\) 0 0
\(911\) 2.19563 0.0727446 0.0363723 0.999338i \(-0.488420\pi\)
0.0363723 + 0.999338i \(0.488420\pi\)
\(912\) 0 0
\(913\) −16.0541 −0.531314
\(914\) 0 0
\(915\) 39.5685i 1.30809i
\(916\) 0 0
\(917\) 8.66700i 0.286209i
\(918\) 0 0
\(919\) −45.9837 −1.51686 −0.758430 0.651754i \(-0.774033\pi\)
−0.758430 + 0.651754i \(0.774033\pi\)
\(920\) 0 0
\(921\) 32.7308i 1.07852i
\(922\) 0 0
\(923\) −4.88566 + 26.3261i −0.160814 + 0.866535i
\(924\) 0 0
\(925\) 22.6263i 0.743948i
\(926\) 0 0
\(927\) −3.59315 −0.118015
\(928\) 0 0
\(929\) 34.7040i 1.13860i −0.822130 0.569300i \(-0.807214\pi\)
0.822130 0.569300i \(-0.192786\pi\)
\(930\) 0 0
\(931\) 0.211281i 0.00692444i
\(932\) 0 0
\(933\) −1.96431 −0.0643086
\(934\) 0 0
\(935\) −16.2566 −0.531648
\(936\) 0 0
\(937\) −1.79230 −0.0585518 −0.0292759 0.999571i \(-0.509320\pi\)
−0.0292759 + 0.999571i \(0.509320\pi\)
\(938\) 0 0
\(939\) −4.81920 −0.157269
\(940\) 0 0
\(941\) 23.4155i 0.763324i 0.924302 + 0.381662i \(0.124648\pi\)
−0.924302 + 0.381662i \(0.875352\pi\)
\(942\) 0 0
\(943\) 40.8431i 1.33003i
\(944\) 0 0
\(945\) 19.7912 0.643807
\(946\) 0 0
\(947\) 48.2052i 1.56646i 0.621732 + 0.783230i \(0.286429\pi\)
−0.621732 + 0.783230i \(0.713571\pi\)
\(948\) 0 0
\(949\) −2.50256 + 13.4849i −0.0812364 + 0.437738i
\(950\) 0 0
\(951\) 20.8919i 0.677466i
\(952\) 0 0
\(953\) −55.1431 −1.78626 −0.893130 0.449800i \(-0.851495\pi\)
−0.893130 + 0.449800i \(0.851495\pi\)
\(954\) 0 0
\(955\) 1.01156i 0.0327332i
\(956\) 0 0
\(957\) 15.7426i 0.508887i
\(958\) 0 0
\(959\) −13.1920 −0.425993
\(960\) 0 0
\(961\) 11.4664 0.369885
\(962\) 0 0
\(963\) −3.42266 −0.110294
\(964\) 0 0
\(965\) 47.0069 1.51321
\(966\) 0 0
\(967\) 25.7119i 0.826839i −0.910541 0.413419i \(-0.864334\pi\)
0.910541 0.413419i \(-0.135666\pi\)
\(968\) 0 0
\(969\) 1.37661i 0.0442230i
\(970\) 0 0
\(971\) 0.594076 0.0190648 0.00953240 0.999955i \(-0.496966\pi\)
0.00953240 + 0.999955i \(0.496966\pi\)
\(972\) 0 0
\(973\) 4.86578i 0.155990i
\(974\) 0 0
\(975\) 71.1890 + 13.2114i 2.27987 + 0.423104i
\(976\) 0 0
\(977\) 49.2389i 1.57529i −0.616127 0.787647i \(-0.711299\pi\)
0.616127 0.787647i \(-0.288701\pi\)
\(978\) 0 0
\(979\) −10.8943 −0.348183
\(980\) 0 0
\(981\) 1.49800i 0.0478274i
\(982\) 0 0
\(983\) 11.3672i 0.362557i −0.983432 0.181279i \(-0.941976\pi\)
0.983432 0.181279i \(-0.0580236\pi\)
\(984\) 0 0
\(985\) −38.2525 −1.21883
\(986\) 0 0
\(987\) −21.6596 −0.689432
\(988\) 0 0
\(989\) −76.9008 −2.44530
\(990\) 0 0
\(991\) −13.0008 −0.412985 −0.206493 0.978448i \(-0.566205\pi\)
−0.206493 + 0.978448i \(0.566205\pi\)
\(992\) 0 0
\(993\) 37.7237i 1.19713i
\(994\) 0 0
\(995\) 45.9440i 1.45652i
\(996\) 0 0
\(997\) −39.3875 −1.24741 −0.623707 0.781658i \(-0.714374\pi\)
−0.623707 + 0.781658i \(0.714374\pi\)
\(998\) 0 0
\(999\) 10.0561i 0.318160i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.k.i.1793.10 yes 14
4.3 odd 2 2912.2.k.j.1793.6 yes 14
13.12 even 2 inner 2912.2.k.i.1793.9 14
52.51 odd 2 2912.2.k.j.1793.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.k.i.1793.9 14 13.12 even 2 inner
2912.2.k.i.1793.10 yes 14 1.1 even 1 trivial
2912.2.k.j.1793.5 yes 14 52.51 odd 2
2912.2.k.j.1793.6 yes 14 4.3 odd 2