Properties

Label 2912.2.k.i.1793.14
Level $2912$
Weight $2$
Character 2912.1793
Analytic conductor $23.252$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1793,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1793");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 37x^{12} + 544x^{10} + 4060x^{8} + 16288x^{6} + 34160x^{4} + 33216x^{2} + 10816 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1793.14
Root \(-2.99280i\) of defining polynomial
Character \(\chi\) \(=\) 2912.1793
Dual form 2912.2.k.i.1793.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.99280 q^{3} +3.69704i q^{5} -1.00000i q^{7} +5.95684 q^{9} +5.69839i q^{11} +(1.34425 - 3.34559i) q^{13} +11.0645i q^{15} +4.74155 q^{17} -3.62948i q^{19} -2.99280i q^{21} +1.63311 q^{23} -8.66813 q^{25} +8.84922 q^{27} -1.25616 q^{29} -0.621770i q^{31} +17.0541i q^{33} +3.69704 q^{35} +10.6273i q^{37} +(4.02306 - 10.0127i) q^{39} -5.36611i q^{41} +11.3093 q^{43} +22.0227i q^{45} -4.39611i q^{47} -1.00000 q^{49} +14.1905 q^{51} -9.91227 q^{53} -21.0672 q^{55} -10.8623i q^{57} +0.279220i q^{59} -14.0573 q^{61} -5.95684i q^{63} +(12.3688 + 4.96974i) q^{65} +15.2364i q^{67} +4.88756 q^{69} +2.83477i q^{71} -3.94829i q^{73} -25.9420 q^{75} +5.69839 q^{77} -9.20943 q^{79} +8.61340 q^{81} -3.29212i q^{83} +17.5297i q^{85} -3.75943 q^{87} -11.8438i q^{89} +(-3.34559 - 1.34425i) q^{91} -1.86083i q^{93} +13.4183 q^{95} -0.554202i q^{97} +33.9444i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} + 32 q^{9} - 6 q^{13} + 36 q^{17} - 18 q^{23} - 18 q^{25} - 14 q^{27} - 16 q^{29} + 8 q^{35} + 34 q^{39} + 60 q^{43} - 14 q^{49} + 12 q^{51} + 4 q^{53} - 60 q^{55} + 6 q^{61} + 20 q^{65}+ \cdots + 68 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.99280 1.72789 0.863946 0.503584i \(-0.167986\pi\)
0.863946 + 0.503584i \(0.167986\pi\)
\(4\) 0 0
\(5\) 3.69704i 1.65337i 0.562666 + 0.826684i \(0.309776\pi\)
−0.562666 + 0.826684i \(0.690224\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 5.95684 1.98561
\(10\) 0 0
\(11\) 5.69839i 1.71813i 0.511867 + 0.859065i \(0.328954\pi\)
−0.511867 + 0.859065i \(0.671046\pi\)
\(12\) 0 0
\(13\) 1.34425 3.34559i 0.372827 0.927901i
\(14\) 0 0
\(15\) 11.0645i 2.85684i
\(16\) 0 0
\(17\) 4.74155 1.15000 0.574998 0.818155i \(-0.305003\pi\)
0.574998 + 0.818155i \(0.305003\pi\)
\(18\) 0 0
\(19\) 3.62948i 0.832659i −0.909214 0.416329i \(-0.863316\pi\)
0.909214 0.416329i \(-0.136684\pi\)
\(20\) 0 0
\(21\) 2.99280i 0.653082i
\(22\) 0 0
\(23\) 1.63311 0.340527 0.170263 0.985399i \(-0.445538\pi\)
0.170263 + 0.985399i \(0.445538\pi\)
\(24\) 0 0
\(25\) −8.66813 −1.73363
\(26\) 0 0
\(27\) 8.84922 1.70303
\(28\) 0 0
\(29\) −1.25616 −0.233263 −0.116632 0.993175i \(-0.537210\pi\)
−0.116632 + 0.993175i \(0.537210\pi\)
\(30\) 0 0
\(31\) 0.621770i 0.111673i −0.998440 0.0558366i \(-0.982217\pi\)
0.998440 0.0558366i \(-0.0177826\pi\)
\(32\) 0 0
\(33\) 17.0541i 2.96874i
\(34\) 0 0
\(35\) 3.69704 0.624914
\(36\) 0 0
\(37\) 10.6273i 1.74711i 0.486726 + 0.873555i \(0.338191\pi\)
−0.486726 + 0.873555i \(0.661809\pi\)
\(38\) 0 0
\(39\) 4.02306 10.0127i 0.644205 1.60331i
\(40\) 0 0
\(41\) 5.36611i 0.838046i −0.907976 0.419023i \(-0.862373\pi\)
0.907976 0.419023i \(-0.137627\pi\)
\(42\) 0 0
\(43\) 11.3093 1.72466 0.862328 0.506350i \(-0.169006\pi\)
0.862328 + 0.506350i \(0.169006\pi\)
\(44\) 0 0
\(45\) 22.0227i 3.28295i
\(46\) 0 0
\(47\) 4.39611i 0.641239i −0.947208 0.320619i \(-0.896109\pi\)
0.947208 0.320619i \(-0.103891\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 14.1905 1.98707
\(52\) 0 0
\(53\) −9.91227 −1.36155 −0.680777 0.732490i \(-0.738358\pi\)
−0.680777 + 0.732490i \(0.738358\pi\)
\(54\) 0 0
\(55\) −21.0672 −2.84070
\(56\) 0 0
\(57\) 10.8623i 1.43874i
\(58\) 0 0
\(59\) 0.279220i 0.0363513i 0.999835 + 0.0181756i \(0.00578581\pi\)
−0.999835 + 0.0181756i \(0.994214\pi\)
\(60\) 0 0
\(61\) −14.0573 −1.79985 −0.899926 0.436042i \(-0.856380\pi\)
−0.899926 + 0.436042i \(0.856380\pi\)
\(62\) 0 0
\(63\) 5.95684i 0.750491i
\(64\) 0 0
\(65\) 12.3688 + 4.96974i 1.53416 + 0.616420i
\(66\) 0 0
\(67\) 15.2364i 1.86142i 0.365760 + 0.930709i \(0.380809\pi\)
−0.365760 + 0.930709i \(0.619191\pi\)
\(68\) 0 0
\(69\) 4.88756 0.588394
\(70\) 0 0
\(71\) 2.83477i 0.336425i 0.985751 + 0.168213i \(0.0537995\pi\)
−0.985751 + 0.168213i \(0.946201\pi\)
\(72\) 0 0
\(73\) 3.94829i 0.462112i −0.972940 0.231056i \(-0.925782\pi\)
0.972940 0.231056i \(-0.0742181\pi\)
\(74\) 0 0
\(75\) −25.9420 −2.99552
\(76\) 0 0
\(77\) 5.69839 0.649392
\(78\) 0 0
\(79\) −9.20943 −1.03614 −0.518071 0.855338i \(-0.673350\pi\)
−0.518071 + 0.855338i \(0.673350\pi\)
\(80\) 0 0
\(81\) 8.61340 0.957045
\(82\) 0 0
\(83\) 3.29212i 0.361357i −0.983542 0.180679i \(-0.942171\pi\)
0.983542 0.180679i \(-0.0578294\pi\)
\(84\) 0 0
\(85\) 17.5297i 1.90137i
\(86\) 0 0
\(87\) −3.75943 −0.403054
\(88\) 0 0
\(89\) 11.8438i 1.25544i −0.778438 0.627721i \(-0.783988\pi\)
0.778438 0.627721i \(-0.216012\pi\)
\(90\) 0 0
\(91\) −3.34559 1.34425i −0.350714 0.140915i
\(92\) 0 0
\(93\) 1.86083i 0.192959i
\(94\) 0 0
\(95\) 13.4183 1.37669
\(96\) 0 0
\(97\) 0.554202i 0.0562706i −0.999604 0.0281353i \(-0.991043\pi\)
0.999604 0.0281353i \(-0.00895693\pi\)
\(98\) 0 0
\(99\) 33.9444i 3.41154i
\(100\) 0 0
\(101\) 2.63834 0.262525 0.131263 0.991348i \(-0.458097\pi\)
0.131263 + 0.991348i \(0.458097\pi\)
\(102\) 0 0
\(103\) 6.67648 0.657853 0.328926 0.944356i \(-0.393313\pi\)
0.328926 + 0.944356i \(0.393313\pi\)
\(104\) 0 0
\(105\) 11.0645 1.07978
\(106\) 0 0
\(107\) 14.5625 1.40781 0.703906 0.710293i \(-0.251438\pi\)
0.703906 + 0.710293i \(0.251438\pi\)
\(108\) 0 0
\(109\) 4.66963i 0.447270i −0.974673 0.223635i \(-0.928208\pi\)
0.974673 0.223635i \(-0.0717923\pi\)
\(110\) 0 0
\(111\) 31.8052i 3.01882i
\(112\) 0 0
\(113\) 0.471542 0.0443590 0.0221795 0.999754i \(-0.492939\pi\)
0.0221795 + 0.999754i \(0.492939\pi\)
\(114\) 0 0
\(115\) 6.03767i 0.563016i
\(116\) 0 0
\(117\) 8.00746 19.9292i 0.740290 1.84245i
\(118\) 0 0
\(119\) 4.74155i 0.434657i
\(120\) 0 0
\(121\) −21.4717 −1.95197
\(122\) 0 0
\(123\) 16.0597i 1.44805i
\(124\) 0 0
\(125\) 13.5612i 1.21295i
\(126\) 0 0
\(127\) −4.97394 −0.441366 −0.220683 0.975346i \(-0.570829\pi\)
−0.220683 + 0.975346i \(0.570829\pi\)
\(128\) 0 0
\(129\) 33.8465 2.98002
\(130\) 0 0
\(131\) −13.4693 −1.17682 −0.588410 0.808563i \(-0.700246\pi\)
−0.588410 + 0.808563i \(0.700246\pi\)
\(132\) 0 0
\(133\) −3.62948 −0.314715
\(134\) 0 0
\(135\) 32.7159i 2.81574i
\(136\) 0 0
\(137\) 11.2758i 0.963353i 0.876349 + 0.481676i \(0.159972\pi\)
−0.876349 + 0.481676i \(0.840028\pi\)
\(138\) 0 0
\(139\) −1.95984 −0.166232 −0.0831159 0.996540i \(-0.526487\pi\)
−0.0831159 + 0.996540i \(0.526487\pi\)
\(140\) 0 0
\(141\) 13.1567i 1.10799i
\(142\) 0 0
\(143\) 19.0645 + 7.66004i 1.59425 + 0.640565i
\(144\) 0 0
\(145\) 4.64408i 0.385670i
\(146\) 0 0
\(147\) −2.99280 −0.246842
\(148\) 0 0
\(149\) 0.0759518i 0.00622222i −0.999995 0.00311111i \(-0.999010\pi\)
0.999995 0.00311111i \(-0.000990298\pi\)
\(150\) 0 0
\(151\) 0.810323i 0.0659432i −0.999456 0.0329716i \(-0.989503\pi\)
0.999456 0.0329716i \(-0.0104971\pi\)
\(152\) 0 0
\(153\) 28.2447 2.28345
\(154\) 0 0
\(155\) 2.29871 0.184637
\(156\) 0 0
\(157\) 8.76714 0.699694 0.349847 0.936807i \(-0.386234\pi\)
0.349847 + 0.936807i \(0.386234\pi\)
\(158\) 0 0
\(159\) −29.6654 −2.35262
\(160\) 0 0
\(161\) 1.63311i 0.128707i
\(162\) 0 0
\(163\) 16.2180i 1.27029i 0.772391 + 0.635147i \(0.219060\pi\)
−0.772391 + 0.635147i \(0.780940\pi\)
\(164\) 0 0
\(165\) −63.0499 −4.90842
\(166\) 0 0
\(167\) 18.8403i 1.45790i −0.684566 0.728951i \(-0.740008\pi\)
0.684566 0.728951i \(-0.259992\pi\)
\(168\) 0 0
\(169\) −9.38600 8.99461i −0.722000 0.691893i
\(170\) 0 0
\(171\) 21.6202i 1.65334i
\(172\) 0 0
\(173\) 14.5809 1.10857 0.554283 0.832328i \(-0.312992\pi\)
0.554283 + 0.832328i \(0.312992\pi\)
\(174\) 0 0
\(175\) 8.66813i 0.655249i
\(176\) 0 0
\(177\) 0.835648i 0.0628111i
\(178\) 0 0
\(179\) 7.23740 0.540949 0.270475 0.962727i \(-0.412819\pi\)
0.270475 + 0.962727i \(0.412819\pi\)
\(180\) 0 0
\(181\) −23.4509 −1.74309 −0.871545 0.490315i \(-0.836882\pi\)
−0.871545 + 0.490315i \(0.836882\pi\)
\(182\) 0 0
\(183\) −42.0707 −3.10995
\(184\) 0 0
\(185\) −39.2894 −2.88862
\(186\) 0 0
\(187\) 27.0192i 1.97584i
\(188\) 0 0
\(189\) 8.84922i 0.643686i
\(190\) 0 0
\(191\) 23.1613 1.67589 0.837946 0.545753i \(-0.183756\pi\)
0.837946 + 0.545753i \(0.183756\pi\)
\(192\) 0 0
\(193\) 14.8845i 1.07141i −0.844406 0.535703i \(-0.820047\pi\)
0.844406 0.535703i \(-0.179953\pi\)
\(194\) 0 0
\(195\) 37.0173 + 14.8734i 2.65087 + 1.06511i
\(196\) 0 0
\(197\) 12.6033i 0.897949i −0.893545 0.448974i \(-0.851789\pi\)
0.893545 0.448974i \(-0.148211\pi\)
\(198\) 0 0
\(199\) 8.55932 0.606754 0.303377 0.952871i \(-0.401886\pi\)
0.303377 + 0.952871i \(0.401886\pi\)
\(200\) 0 0
\(201\) 45.5994i 3.21633i
\(202\) 0 0
\(203\) 1.25616i 0.0881652i
\(204\) 0 0
\(205\) 19.8387 1.38560
\(206\) 0 0
\(207\) 9.72817 0.676154
\(208\) 0 0
\(209\) 20.6822 1.43062
\(210\) 0 0
\(211\) −14.1372 −0.973248 −0.486624 0.873611i \(-0.661772\pi\)
−0.486624 + 0.873611i \(0.661772\pi\)
\(212\) 0 0
\(213\) 8.48389i 0.581306i
\(214\) 0 0
\(215\) 41.8111i 2.85149i
\(216\) 0 0
\(217\) −0.621770 −0.0422085
\(218\) 0 0
\(219\) 11.8164i 0.798480i
\(220\) 0 0
\(221\) 6.37382 15.8633i 0.428749 1.06708i
\(222\) 0 0
\(223\) 0.302897i 0.0202835i −0.999949 0.0101417i \(-0.996772\pi\)
0.999949 0.0101417i \(-0.00322827\pi\)
\(224\) 0 0
\(225\) −51.6346 −3.44231
\(226\) 0 0
\(227\) 27.3442i 1.81490i −0.420160 0.907450i \(-0.638026\pi\)
0.420160 0.907450i \(-0.361974\pi\)
\(228\) 0 0
\(229\) 13.6499i 0.902009i −0.892522 0.451004i \(-0.851066\pi\)
0.892522 0.451004i \(-0.148934\pi\)
\(230\) 0 0
\(231\) 17.0541 1.12208
\(232\) 0 0
\(233\) −21.2997 −1.39539 −0.697694 0.716396i \(-0.745791\pi\)
−0.697694 + 0.716396i \(0.745791\pi\)
\(234\) 0 0
\(235\) 16.2526 1.06020
\(236\) 0 0
\(237\) −27.5620 −1.79034
\(238\) 0 0
\(239\) 21.9819i 1.42189i −0.703246 0.710947i \(-0.748267\pi\)
0.703246 0.710947i \(-0.251733\pi\)
\(240\) 0 0
\(241\) 16.2846i 1.04898i −0.851416 0.524492i \(-0.824255\pi\)
0.851416 0.524492i \(-0.175745\pi\)
\(242\) 0 0
\(243\) −0.769477 −0.0493620
\(244\) 0 0
\(245\) 3.69704i 0.236195i
\(246\) 0 0
\(247\) −12.1428 4.87891i −0.772625 0.310438i
\(248\) 0 0
\(249\) 9.85265i 0.624386i
\(250\) 0 0
\(251\) 12.5122 0.789762 0.394881 0.918732i \(-0.370786\pi\)
0.394881 + 0.918732i \(0.370786\pi\)
\(252\) 0 0
\(253\) 9.30609i 0.585069i
\(254\) 0 0
\(255\) 52.4629i 3.28536i
\(256\) 0 0
\(257\) −1.65213 −0.103057 −0.0515284 0.998672i \(-0.516409\pi\)
−0.0515284 + 0.998672i \(0.516409\pi\)
\(258\) 0 0
\(259\) 10.6273 0.660345
\(260\) 0 0
\(261\) −7.48275 −0.463170
\(262\) 0 0
\(263\) 13.4712 0.830669 0.415335 0.909669i \(-0.363665\pi\)
0.415335 + 0.909669i \(0.363665\pi\)
\(264\) 0 0
\(265\) 36.6461i 2.25115i
\(266\) 0 0
\(267\) 35.4462i 2.16927i
\(268\) 0 0
\(269\) −1.22799 −0.0748720 −0.0374360 0.999299i \(-0.511919\pi\)
−0.0374360 + 0.999299i \(0.511919\pi\)
\(270\) 0 0
\(271\) 19.4724i 1.18287i 0.806354 + 0.591433i \(0.201438\pi\)
−0.806354 + 0.591433i \(0.798562\pi\)
\(272\) 0 0
\(273\) −10.0127 4.02306i −0.605995 0.243487i
\(274\) 0 0
\(275\) 49.3944i 2.97859i
\(276\) 0 0
\(277\) 27.4751 1.65082 0.825410 0.564534i \(-0.190944\pi\)
0.825410 + 0.564534i \(0.190944\pi\)
\(278\) 0 0
\(279\) 3.70378i 0.221740i
\(280\) 0 0
\(281\) 22.3246i 1.33178i −0.746051 0.665888i \(-0.768053\pi\)
0.746051 0.665888i \(-0.231947\pi\)
\(282\) 0 0
\(283\) 14.6496 0.870829 0.435414 0.900230i \(-0.356602\pi\)
0.435414 + 0.900230i \(0.356602\pi\)
\(284\) 0 0
\(285\) 40.1583 2.37877
\(286\) 0 0
\(287\) −5.36611 −0.316752
\(288\) 0 0
\(289\) 5.48232 0.322490
\(290\) 0 0
\(291\) 1.65861i 0.0972296i
\(292\) 0 0
\(293\) 9.49575i 0.554748i 0.960762 + 0.277374i \(0.0894641\pi\)
−0.960762 + 0.277374i \(0.910536\pi\)
\(294\) 0 0
\(295\) −1.03229 −0.0601021
\(296\) 0 0
\(297\) 50.4263i 2.92603i
\(298\) 0 0
\(299\) 2.19530 5.46372i 0.126958 0.315975i
\(300\) 0 0
\(301\) 11.3093i 0.651859i
\(302\) 0 0
\(303\) 7.89603 0.453615
\(304\) 0 0
\(305\) 51.9704i 2.97582i
\(306\) 0 0
\(307\) 6.03718i 0.344560i 0.985048 + 0.172280i \(0.0551134\pi\)
−0.985048 + 0.172280i \(0.944887\pi\)
\(308\) 0 0
\(309\) 19.9813 1.13670
\(310\) 0 0
\(311\) 0.856441 0.0485643 0.0242821 0.999705i \(-0.492270\pi\)
0.0242821 + 0.999705i \(0.492270\pi\)
\(312\) 0 0
\(313\) 25.3748 1.43427 0.717135 0.696935i \(-0.245453\pi\)
0.717135 + 0.696935i \(0.245453\pi\)
\(314\) 0 0
\(315\) 22.0227 1.24084
\(316\) 0 0
\(317\) 7.01047i 0.393747i −0.980429 0.196874i \(-0.936921\pi\)
0.980429 0.196874i \(-0.0630789\pi\)
\(318\) 0 0
\(319\) 7.15809i 0.400776i
\(320\) 0 0
\(321\) 43.5827 2.43255
\(322\) 0 0
\(323\) 17.2093i 0.957554i
\(324\) 0 0
\(325\) −11.6521 + 29.0000i −0.646343 + 1.60863i
\(326\) 0 0
\(327\) 13.9753i 0.772834i
\(328\) 0 0
\(329\) −4.39611 −0.242366
\(330\) 0 0
\(331\) 12.7027i 0.698203i −0.937085 0.349101i \(-0.886487\pi\)
0.937085 0.349101i \(-0.113513\pi\)
\(332\) 0 0
\(333\) 63.3048i 3.46908i
\(334\) 0 0
\(335\) −56.3295 −3.07761
\(336\) 0 0
\(337\) −30.1177 −1.64061 −0.820307 0.571924i \(-0.806197\pi\)
−0.820307 + 0.571924i \(0.806197\pi\)
\(338\) 0 0
\(339\) 1.41123 0.0766475
\(340\) 0 0
\(341\) 3.54309 0.191869
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 18.0695i 0.972831i
\(346\) 0 0
\(347\) 2.81659 0.151203 0.0756013 0.997138i \(-0.475912\pi\)
0.0756013 + 0.997138i \(0.475912\pi\)
\(348\) 0 0
\(349\) 28.1480i 1.50673i −0.657604 0.753364i \(-0.728430\pi\)
0.657604 0.753364i \(-0.271570\pi\)
\(350\) 0 0
\(351\) 11.8955 29.6059i 0.634937 1.58025i
\(352\) 0 0
\(353\) 26.4799i 1.40938i 0.709513 + 0.704692i \(0.248915\pi\)
−0.709513 + 0.704692i \(0.751085\pi\)
\(354\) 0 0
\(355\) −10.4803 −0.556235
\(356\) 0 0
\(357\) 14.1905i 0.751041i
\(358\) 0 0
\(359\) 7.63333i 0.402872i −0.979502 0.201436i \(-0.935439\pi\)
0.979502 0.201436i \(-0.0645608\pi\)
\(360\) 0 0
\(361\) 5.82691 0.306680
\(362\) 0 0
\(363\) −64.2603 −3.37279
\(364\) 0 0
\(365\) 14.5970 0.764042
\(366\) 0 0
\(367\) −3.64874 −0.190463 −0.0952314 0.995455i \(-0.530359\pi\)
−0.0952314 + 0.995455i \(0.530359\pi\)
\(368\) 0 0
\(369\) 31.9651i 1.66403i
\(370\) 0 0
\(371\) 9.91227i 0.514619i
\(372\) 0 0
\(373\) 24.4979 1.26845 0.634226 0.773148i \(-0.281319\pi\)
0.634226 + 0.773148i \(0.281319\pi\)
\(374\) 0 0
\(375\) 40.5860i 2.09585i
\(376\) 0 0
\(377\) −1.68859 + 4.20260i −0.0869668 + 0.216445i
\(378\) 0 0
\(379\) 25.3988i 1.30465i 0.757940 + 0.652324i \(0.226206\pi\)
−0.757940 + 0.652324i \(0.773794\pi\)
\(380\) 0 0
\(381\) −14.8860 −0.762632
\(382\) 0 0
\(383\) 16.0037i 0.817753i 0.912590 + 0.408876i \(0.134079\pi\)
−0.912590 + 0.408876i \(0.865921\pi\)
\(384\) 0 0
\(385\) 21.0672i 1.07368i
\(386\) 0 0
\(387\) 67.3678 3.42450
\(388\) 0 0
\(389\) 9.18460 0.465678 0.232839 0.972515i \(-0.425199\pi\)
0.232839 + 0.972515i \(0.425199\pi\)
\(390\) 0 0
\(391\) 7.74347 0.391604
\(392\) 0 0
\(393\) −40.3110 −2.03342
\(394\) 0 0
\(395\) 34.0477i 1.71312i
\(396\) 0 0
\(397\) 35.2963i 1.77147i −0.464193 0.885734i \(-0.653656\pi\)
0.464193 0.885734i \(-0.346344\pi\)
\(398\) 0 0
\(399\) −10.8623 −0.543794
\(400\) 0 0
\(401\) 24.0256i 1.19978i −0.800082 0.599890i \(-0.795211\pi\)
0.800082 0.599890i \(-0.204789\pi\)
\(402\) 0 0
\(403\) −2.08019 0.835812i −0.103622 0.0416348i
\(404\) 0 0
\(405\) 31.8441i 1.58235i
\(406\) 0 0
\(407\) −60.5582 −3.00176
\(408\) 0 0
\(409\) 6.55368i 0.324059i 0.986786 + 0.162029i \(0.0518039\pi\)
−0.986786 + 0.162029i \(0.948196\pi\)
\(410\) 0 0
\(411\) 33.7461i 1.66457i
\(412\) 0 0
\(413\) 0.279220 0.0137395
\(414\) 0 0
\(415\) 12.1711 0.597456
\(416\) 0 0
\(417\) −5.86541 −0.287231
\(418\) 0 0
\(419\) 2.37134 0.115848 0.0579238 0.998321i \(-0.481552\pi\)
0.0579238 + 0.998321i \(0.481552\pi\)
\(420\) 0 0
\(421\) 10.5690i 0.515103i 0.966265 + 0.257551i \(0.0829156\pi\)
−0.966265 + 0.257551i \(0.917084\pi\)
\(422\) 0 0
\(423\) 26.1869i 1.27325i
\(424\) 0 0
\(425\) −41.1004 −1.99366
\(426\) 0 0
\(427\) 14.0573i 0.680280i
\(428\) 0 0
\(429\) 57.0562 + 22.9250i 2.75470 + 1.10683i
\(430\) 0 0
\(431\) 31.4671i 1.51572i 0.652418 + 0.757859i \(0.273755\pi\)
−0.652418 + 0.757859i \(0.726245\pi\)
\(432\) 0 0
\(433\) −27.4309 −1.31824 −0.659121 0.752037i \(-0.729072\pi\)
−0.659121 + 0.752037i \(0.729072\pi\)
\(434\) 0 0
\(435\) 13.8988i 0.666396i
\(436\) 0 0
\(437\) 5.92733i 0.283543i
\(438\) 0 0
\(439\) 20.1063 0.959623 0.479811 0.877372i \(-0.340705\pi\)
0.479811 + 0.877372i \(0.340705\pi\)
\(440\) 0 0
\(441\) −5.95684 −0.283659
\(442\) 0 0
\(443\) −22.1527 −1.05251 −0.526253 0.850328i \(-0.676404\pi\)
−0.526253 + 0.850328i \(0.676404\pi\)
\(444\) 0 0
\(445\) 43.7871 2.07571
\(446\) 0 0
\(447\) 0.227308i 0.0107513i
\(448\) 0 0
\(449\) 11.0867i 0.523215i 0.965174 + 0.261608i \(0.0842526\pi\)
−0.965174 + 0.261608i \(0.915747\pi\)
\(450\) 0 0
\(451\) 30.5782 1.43987
\(452\) 0 0
\(453\) 2.42513i 0.113943i
\(454\) 0 0
\(455\) 4.96974 12.3688i 0.232985 0.579859i
\(456\) 0 0
\(457\) 18.1977i 0.851254i 0.904899 + 0.425627i \(0.139946\pi\)
−0.904899 + 0.425627i \(0.860054\pi\)
\(458\) 0 0
\(459\) 41.9590 1.95848
\(460\) 0 0
\(461\) 15.2150i 0.708635i 0.935125 + 0.354317i \(0.115287\pi\)
−0.935125 + 0.354317i \(0.884713\pi\)
\(462\) 0 0
\(463\) 5.95248i 0.276635i 0.990388 + 0.138318i \(0.0441695\pi\)
−0.990388 + 0.138318i \(0.955831\pi\)
\(464\) 0 0
\(465\) 6.87957 0.319033
\(466\) 0 0
\(467\) 18.9812 0.878344 0.439172 0.898403i \(-0.355272\pi\)
0.439172 + 0.898403i \(0.355272\pi\)
\(468\) 0 0
\(469\) 15.2364 0.703550
\(470\) 0 0
\(471\) 26.2383 1.20900
\(472\) 0 0
\(473\) 64.4449i 2.96318i
\(474\) 0 0
\(475\) 31.4608i 1.44352i
\(476\) 0 0
\(477\) −59.0458 −2.70352
\(478\) 0 0
\(479\) 30.0014i 1.37080i 0.728167 + 0.685400i \(0.240373\pi\)
−0.728167 + 0.685400i \(0.759627\pi\)
\(480\) 0 0
\(481\) 35.5545 + 14.2857i 1.62114 + 0.651370i
\(482\) 0 0
\(483\) 4.88756i 0.222392i
\(484\) 0 0
\(485\) 2.04891 0.0930361
\(486\) 0 0
\(487\) 12.3387i 0.559122i −0.960128 0.279561i \(-0.909811\pi\)
0.960128 0.279561i \(-0.0901888\pi\)
\(488\) 0 0
\(489\) 48.5373i 2.19493i
\(490\) 0 0
\(491\) 32.6905 1.47530 0.737651 0.675182i \(-0.235935\pi\)
0.737651 + 0.675182i \(0.235935\pi\)
\(492\) 0 0
\(493\) −5.95615 −0.268252
\(494\) 0 0
\(495\) −125.494 −5.64053
\(496\) 0 0
\(497\) 2.83477 0.127157
\(498\) 0 0
\(499\) 4.59993i 0.205921i −0.994685 0.102961i \(-0.967168\pi\)
0.994685 0.102961i \(-0.0328316\pi\)
\(500\) 0 0
\(501\) 56.3851i 2.51910i
\(502\) 0 0
\(503\) 19.1629 0.854430 0.427215 0.904150i \(-0.359495\pi\)
0.427215 + 0.904150i \(0.359495\pi\)
\(504\) 0 0
\(505\) 9.75407i 0.434050i
\(506\) 0 0
\(507\) −28.0904 26.9190i −1.24754 1.19552i
\(508\) 0 0
\(509\) 14.0308i 0.621902i 0.950426 + 0.310951i \(0.100648\pi\)
−0.950426 + 0.310951i \(0.899352\pi\)
\(510\) 0 0
\(511\) −3.94829 −0.174662
\(512\) 0 0
\(513\) 32.1180i 1.41805i
\(514\) 0 0
\(515\) 24.6832i 1.08767i
\(516\) 0 0
\(517\) 25.0508 1.10173
\(518\) 0 0
\(519\) 43.6377 1.91548
\(520\) 0 0
\(521\) 2.99771 0.131332 0.0656661 0.997842i \(-0.479083\pi\)
0.0656661 + 0.997842i \(0.479083\pi\)
\(522\) 0 0
\(523\) −21.4666 −0.938669 −0.469335 0.883020i \(-0.655506\pi\)
−0.469335 + 0.883020i \(0.655506\pi\)
\(524\) 0 0
\(525\) 25.9420i 1.13220i
\(526\) 0 0
\(527\) 2.94815i 0.128424i
\(528\) 0 0
\(529\) −20.3330 −0.884042
\(530\) 0 0
\(531\) 1.66327i 0.0721796i
\(532\) 0 0
\(533\) −17.9528 7.21338i −0.777624 0.312446i
\(534\) 0 0
\(535\) 53.8383i 2.32763i
\(536\) 0 0
\(537\) 21.6601 0.934702
\(538\) 0 0
\(539\) 5.69839i 0.245447i
\(540\) 0 0
\(541\) 35.3946i 1.52173i −0.648909 0.760866i \(-0.724774\pi\)
0.648909 0.760866i \(-0.275226\pi\)
\(542\) 0 0
\(543\) −70.1838 −3.01187
\(544\) 0 0
\(545\) 17.2638 0.739502
\(546\) 0 0
\(547\) −22.5940 −0.966051 −0.483025 0.875606i \(-0.660462\pi\)
−0.483025 + 0.875606i \(0.660462\pi\)
\(548\) 0 0
\(549\) −83.7371 −3.57381
\(550\) 0 0
\(551\) 4.55920i 0.194229i
\(552\) 0 0
\(553\) 9.20943i 0.391625i
\(554\) 0 0
\(555\) −117.585 −4.99122
\(556\) 0 0
\(557\) 12.6895i 0.537672i 0.963186 + 0.268836i \(0.0866390\pi\)
−0.963186 + 0.268836i \(0.913361\pi\)
\(558\) 0 0
\(559\) 15.2025 37.8364i 0.642998 1.60031i
\(560\) 0 0
\(561\) 80.8631i 3.41404i
\(562\) 0 0
\(563\) 11.0819 0.467045 0.233522 0.972351i \(-0.424975\pi\)
0.233522 + 0.972351i \(0.424975\pi\)
\(564\) 0 0
\(565\) 1.74331i 0.0733417i
\(566\) 0 0
\(567\) 8.61340i 0.361729i
\(568\) 0 0
\(569\) 24.7801 1.03884 0.519418 0.854520i \(-0.326149\pi\)
0.519418 + 0.854520i \(0.326149\pi\)
\(570\) 0 0
\(571\) −26.6916 −1.11701 −0.558505 0.829501i \(-0.688625\pi\)
−0.558505 + 0.829501i \(0.688625\pi\)
\(572\) 0 0
\(573\) 69.3171 2.89576
\(574\) 0 0
\(575\) −14.1560 −0.590346
\(576\) 0 0
\(577\) 0.572724i 0.0238428i 0.999929 + 0.0119214i \(0.00379479\pi\)
−0.999929 + 0.0119214i \(0.996205\pi\)
\(578\) 0 0
\(579\) 44.5462i 1.85128i
\(580\) 0 0
\(581\) −3.29212 −0.136580
\(582\) 0 0
\(583\) 56.4840i 2.33933i
\(584\) 0 0
\(585\) 73.6790 + 29.6039i 3.04625 + 1.22397i
\(586\) 0 0
\(587\) 18.9809i 0.783427i −0.920087 0.391713i \(-0.871883\pi\)
0.920087 0.391713i \(-0.128117\pi\)
\(588\) 0 0
\(589\) −2.25670 −0.0929856
\(590\) 0 0
\(591\) 37.7192i 1.55156i
\(592\) 0 0
\(593\) 0.244025i 0.0100209i −0.999987 0.00501045i \(-0.998405\pi\)
0.999987 0.00501045i \(-0.00159488\pi\)
\(594\) 0 0
\(595\) 17.5297 0.718649
\(596\) 0 0
\(597\) 25.6163 1.04841
\(598\) 0 0
\(599\) 35.0043 1.43024 0.715119 0.699003i \(-0.246372\pi\)
0.715119 + 0.699003i \(0.246372\pi\)
\(600\) 0 0
\(601\) −39.3378 −1.60462 −0.802311 0.596906i \(-0.796396\pi\)
−0.802311 + 0.596906i \(0.796396\pi\)
\(602\) 0 0
\(603\) 90.7606i 3.69606i
\(604\) 0 0
\(605\) 79.3816i 3.22732i
\(606\) 0 0
\(607\) −33.2454 −1.34939 −0.674695 0.738097i \(-0.735725\pi\)
−0.674695 + 0.738097i \(0.735725\pi\)
\(608\) 0 0
\(609\) 3.75943i 0.152340i
\(610\) 0 0
\(611\) −14.7076 5.90946i −0.595006 0.239071i
\(612\) 0 0
\(613\) 20.8329i 0.841434i −0.907192 0.420717i \(-0.861778\pi\)
0.907192 0.420717i \(-0.138222\pi\)
\(614\) 0 0
\(615\) 59.3734 2.39417
\(616\) 0 0
\(617\) 21.5407i 0.867197i −0.901106 0.433598i \(-0.857244\pi\)
0.901106 0.433598i \(-0.142756\pi\)
\(618\) 0 0
\(619\) 10.6047i 0.426237i −0.977026 0.213119i \(-0.931638\pi\)
0.977026 0.213119i \(-0.0683621\pi\)
\(620\) 0 0
\(621\) 14.4517 0.579928
\(622\) 0 0
\(623\) −11.8438 −0.474513
\(624\) 0 0
\(625\) 6.79582 0.271833
\(626\) 0 0
\(627\) 61.8975 2.47195
\(628\) 0 0
\(629\) 50.3897i 2.00917i
\(630\) 0 0
\(631\) 17.6795i 0.703810i 0.936036 + 0.351905i \(0.114466\pi\)
−0.936036 + 0.351905i \(0.885534\pi\)
\(632\) 0 0
\(633\) −42.3099 −1.68167
\(634\) 0 0
\(635\) 18.3889i 0.729740i
\(636\) 0 0
\(637\) −1.34425 + 3.34559i −0.0532610 + 0.132557i
\(638\) 0 0
\(639\) 16.8863i 0.668010i
\(640\) 0 0
\(641\) −28.2221 −1.11470 −0.557352 0.830276i \(-0.688183\pi\)
−0.557352 + 0.830276i \(0.688183\pi\)
\(642\) 0 0
\(643\) 36.6547i 1.44552i −0.691099 0.722760i \(-0.742873\pi\)
0.691099 0.722760i \(-0.257127\pi\)
\(644\) 0 0
\(645\) 125.132i 4.92707i
\(646\) 0 0
\(647\) −3.52087 −0.138420 −0.0692099 0.997602i \(-0.522048\pi\)
−0.0692099 + 0.997602i \(0.522048\pi\)
\(648\) 0 0
\(649\) −1.59110 −0.0624562
\(650\) 0 0
\(651\) −1.86083 −0.0729317
\(652\) 0 0
\(653\) −10.8670 −0.425257 −0.212628 0.977133i \(-0.568202\pi\)
−0.212628 + 0.977133i \(0.568202\pi\)
\(654\) 0 0
\(655\) 49.7967i 1.94572i
\(656\) 0 0
\(657\) 23.5193i 0.917576i
\(658\) 0 0
\(659\) −19.1972 −0.747818 −0.373909 0.927465i \(-0.621983\pi\)
−0.373909 + 0.927465i \(0.621983\pi\)
\(660\) 0 0
\(661\) 26.0169i 1.01194i −0.862551 0.505971i \(-0.831134\pi\)
0.862551 0.505971i \(-0.168866\pi\)
\(662\) 0 0
\(663\) 19.0755 47.4757i 0.740833 1.84380i
\(664\) 0 0
\(665\) 13.4183i 0.520340i
\(666\) 0 0
\(667\) −2.05145 −0.0794324
\(668\) 0 0
\(669\) 0.906508i 0.0350476i
\(670\) 0 0
\(671\) 80.1040i 3.09238i
\(672\) 0 0
\(673\) 25.4897 0.982555 0.491278 0.871003i \(-0.336530\pi\)
0.491278 + 0.871003i \(0.336530\pi\)
\(674\) 0 0
\(675\) −76.7062 −2.95242
\(676\) 0 0
\(677\) −20.0074 −0.768948 −0.384474 0.923136i \(-0.625617\pi\)
−0.384474 + 0.923136i \(0.625617\pi\)
\(678\) 0 0
\(679\) −0.554202 −0.0212683
\(680\) 0 0
\(681\) 81.8357i 3.13595i
\(682\) 0 0
\(683\) 41.4205i 1.58491i 0.609929 + 0.792456i \(0.291198\pi\)
−0.609929 + 0.792456i \(0.708802\pi\)
\(684\) 0 0
\(685\) −41.6870 −1.59278
\(686\) 0 0
\(687\) 40.8513i 1.55857i
\(688\) 0 0
\(689\) −13.3245 + 33.1624i −0.507624 + 1.26339i
\(690\) 0 0
\(691\) 2.22077i 0.0844823i −0.999107 0.0422411i \(-0.986550\pi\)
0.999107 0.0422411i \(-0.0134498\pi\)
\(692\) 0 0
\(693\) 33.9444 1.28944
\(694\) 0 0
\(695\) 7.24563i 0.274842i
\(696\) 0 0
\(697\) 25.4437i 0.963749i
\(698\) 0 0
\(699\) −63.7456 −2.41108
\(700\) 0 0
\(701\) −20.5299 −0.775405 −0.387703 0.921785i \(-0.626731\pi\)
−0.387703 + 0.921785i \(0.626731\pi\)
\(702\) 0 0
\(703\) 38.5714 1.45475
\(704\) 0 0
\(705\) 48.6408 1.83192
\(706\) 0 0
\(707\) 2.63834i 0.0992251i
\(708\) 0 0
\(709\) 35.4308i 1.33063i −0.746562 0.665315i \(-0.768297\pi\)
0.746562 0.665315i \(-0.231703\pi\)
\(710\) 0 0
\(711\) −54.8591 −2.05738
\(712\) 0 0
\(713\) 1.01542i 0.0380277i
\(714\) 0 0
\(715\) −28.3195 + 70.4823i −1.05909 + 2.63589i
\(716\) 0 0
\(717\) 65.7875i 2.45688i
\(718\) 0 0
\(719\) 7.91900 0.295329 0.147664 0.989038i \(-0.452824\pi\)
0.147664 + 0.989038i \(0.452824\pi\)
\(720\) 0 0
\(721\) 6.67648i 0.248645i
\(722\) 0 0
\(723\) 48.7365i 1.81253i
\(724\) 0 0
\(725\) 10.8886 0.404391
\(726\) 0 0
\(727\) −27.7392 −1.02879 −0.514394 0.857554i \(-0.671983\pi\)
−0.514394 + 0.857554i \(0.671983\pi\)
\(728\) 0 0
\(729\) −28.1431 −1.04234
\(730\) 0 0
\(731\) 53.6238 1.98335
\(732\) 0 0
\(733\) 13.8074i 0.509989i 0.966943 + 0.254994i \(0.0820736\pi\)
−0.966943 + 0.254994i \(0.917926\pi\)
\(734\) 0 0
\(735\) 11.0645i 0.408120i
\(736\) 0 0
\(737\) −86.8228 −3.19816
\(738\) 0 0
\(739\) 35.4197i 1.30294i 0.758676 + 0.651468i \(0.225846\pi\)
−0.758676 + 0.651468i \(0.774154\pi\)
\(740\) 0 0
\(741\) −36.3408 14.6016i −1.33501 0.536403i
\(742\) 0 0
\(743\) 3.58383i 0.131478i 0.997837 + 0.0657391i \(0.0209405\pi\)
−0.997837 + 0.0657391i \(0.979060\pi\)
\(744\) 0 0
\(745\) 0.280797 0.0102876
\(746\) 0 0
\(747\) 19.6106i 0.717515i
\(748\) 0 0
\(749\) 14.5625i 0.532103i
\(750\) 0 0
\(751\) 28.6407 1.04512 0.522558 0.852604i \(-0.324978\pi\)
0.522558 + 0.852604i \(0.324978\pi\)
\(752\) 0 0
\(753\) 37.4465 1.36462
\(754\) 0 0
\(755\) 2.99580 0.109028
\(756\) 0 0
\(757\) −42.8398 −1.55704 −0.778519 0.627621i \(-0.784029\pi\)
−0.778519 + 0.627621i \(0.784029\pi\)
\(758\) 0 0
\(759\) 27.8513i 1.01094i
\(760\) 0 0
\(761\) 5.07675i 0.184032i 0.995758 + 0.0920160i \(0.0293311\pi\)
−0.995758 + 0.0920160i \(0.970669\pi\)
\(762\) 0 0
\(763\) −4.66963 −0.169052
\(764\) 0 0
\(765\) 104.422i 3.77538i
\(766\) 0 0
\(767\) 0.934155 + 0.375340i 0.0337304 + 0.0135527i
\(768\) 0 0
\(769\) 2.71257i 0.0978177i −0.998803 0.0489088i \(-0.984426\pi\)
0.998803 0.0489088i \(-0.0155744\pi\)
\(770\) 0 0
\(771\) −4.94448 −0.178071
\(772\) 0 0
\(773\) 34.3409i 1.23516i 0.786509 + 0.617579i \(0.211886\pi\)
−0.786509 + 0.617579i \(0.788114\pi\)
\(774\) 0 0
\(775\) 5.38958i 0.193599i
\(776\) 0 0
\(777\) 31.8052 1.14101
\(778\) 0 0
\(779\) −19.4762 −0.697806
\(780\) 0 0
\(781\) −16.1536 −0.578022
\(782\) 0 0
\(783\) −11.1160 −0.397255
\(784\) 0 0
\(785\) 32.4125i 1.15685i
\(786\) 0 0
\(787\) 6.58178i 0.234615i −0.993096 0.117308i \(-0.962574\pi\)
0.993096 0.117308i \(-0.0374263\pi\)
\(788\) 0 0
\(789\) 40.3165 1.43531
\(790\) 0 0
\(791\) 0.471542i 0.0167661i
\(792\) 0 0
\(793\) −18.8965 + 47.0300i −0.671034 + 1.67009i
\(794\) 0 0
\(795\) 109.674i 3.88975i
\(796\) 0 0
\(797\) 10.6858 0.378509 0.189255 0.981928i \(-0.439393\pi\)
0.189255 + 0.981928i \(0.439393\pi\)
\(798\) 0 0
\(799\) 20.8444i 0.737422i
\(800\) 0 0
\(801\) 70.5517i 2.49282i
\(802\) 0 0
\(803\) 22.4989 0.793969
\(804\) 0 0
\(805\) 6.03767 0.212800
\(806\) 0 0
\(807\) −3.67513 −0.129371
\(808\) 0 0
\(809\) −6.25918 −0.220061 −0.110031 0.993928i \(-0.535095\pi\)
−0.110031 + 0.993928i \(0.535095\pi\)
\(810\) 0 0
\(811\) 47.7514i 1.67678i 0.545073 + 0.838389i \(0.316502\pi\)
−0.545073 + 0.838389i \(0.683498\pi\)
\(812\) 0 0
\(813\) 58.2771i 2.04387i
\(814\) 0 0
\(815\) −59.9587 −2.10026
\(816\) 0 0
\(817\) 41.0469i 1.43605i
\(818\) 0 0
\(819\) −19.9292 8.00746i −0.696381 0.279803i
\(820\) 0 0
\(821\) 16.4692i 0.574780i −0.957814 0.287390i \(-0.907212\pi\)
0.957814 0.287390i \(-0.0927875\pi\)
\(822\) 0 0
\(823\) 53.5016 1.86495 0.932474 0.361238i \(-0.117646\pi\)
0.932474 + 0.361238i \(0.117646\pi\)
\(824\) 0 0
\(825\) 147.827i 5.14669i
\(826\) 0 0
\(827\) 36.9341i 1.28432i −0.766569 0.642162i \(-0.778038\pi\)
0.766569 0.642162i \(-0.221962\pi\)
\(828\) 0 0
\(829\) 14.5279 0.504574 0.252287 0.967652i \(-0.418817\pi\)
0.252287 + 0.967652i \(0.418817\pi\)
\(830\) 0 0
\(831\) 82.2275 2.85244
\(832\) 0 0
\(833\) −4.74155 −0.164285
\(834\) 0 0
\(835\) 69.6532 2.41045
\(836\) 0 0
\(837\) 5.50218i 0.190183i
\(838\) 0 0
\(839\) 7.57108i 0.261383i −0.991423 0.130691i \(-0.958280\pi\)
0.991423 0.130691i \(-0.0417197\pi\)
\(840\) 0 0
\(841\) −27.4221 −0.945588
\(842\) 0 0
\(843\) 66.8131i 2.30117i
\(844\) 0 0
\(845\) 33.2535 34.7005i 1.14395 1.19373i
\(846\) 0 0
\(847\) 21.4717i 0.737775i
\(848\) 0 0
\(849\) 43.8433 1.50470
\(850\) 0 0
\(851\) 17.3555i 0.594938i
\(852\) 0 0
\(853\) 19.4050i 0.664416i 0.943206 + 0.332208i \(0.107794\pi\)
−0.943206 + 0.332208i \(0.892206\pi\)
\(854\) 0 0
\(855\) 79.9308 2.73358
\(856\) 0 0
\(857\) −30.4706 −1.04085 −0.520427 0.853906i \(-0.674227\pi\)
−0.520427 + 0.853906i \(0.674227\pi\)
\(858\) 0 0
\(859\) 1.02714 0.0350455 0.0175227 0.999846i \(-0.494422\pi\)
0.0175227 + 0.999846i \(0.494422\pi\)
\(860\) 0 0
\(861\) −16.0597 −0.547313
\(862\) 0 0
\(863\) 6.55731i 0.223213i 0.993752 + 0.111607i \(0.0355997\pi\)
−0.993752 + 0.111607i \(0.964400\pi\)
\(864\) 0 0
\(865\) 53.9063i 1.83287i
\(866\) 0 0
\(867\) 16.4075 0.557227
\(868\) 0 0
\(869\) 52.4789i 1.78023i
\(870\) 0 0
\(871\) 50.9747 + 20.4814i 1.72721 + 0.693987i
\(872\) 0 0
\(873\) 3.30129i 0.111732i
\(874\) 0 0
\(875\) −13.5612 −0.458453
\(876\) 0 0
\(877\) 1.19761i 0.0404405i 0.999796 + 0.0202202i \(0.00643674\pi\)
−0.999796 + 0.0202202i \(0.993563\pi\)
\(878\) 0 0
\(879\) 28.4189i 0.958545i
\(880\) 0 0
\(881\) 37.9071 1.27712 0.638561 0.769571i \(-0.279530\pi\)
0.638561 + 0.769571i \(0.279530\pi\)
\(882\) 0 0
\(883\) 13.2224 0.444970 0.222485 0.974936i \(-0.428583\pi\)
0.222485 + 0.974936i \(0.428583\pi\)
\(884\) 0 0
\(885\) −3.08943 −0.103850
\(886\) 0 0
\(887\) 14.1449 0.474939 0.237469 0.971395i \(-0.423682\pi\)
0.237469 + 0.971395i \(0.423682\pi\)
\(888\) 0 0
\(889\) 4.97394i 0.166821i
\(890\) 0 0
\(891\) 49.0825i 1.64433i
\(892\) 0 0
\(893\) −15.9556 −0.533933
\(894\) 0 0
\(895\) 26.7570i 0.894388i
\(896\) 0 0
\(897\) 6.57009 16.3518i 0.219369 0.545971i
\(898\) 0 0
\(899\) 0.781043i 0.0260492i
\(900\) 0 0
\(901\) −46.9995 −1.56578
\(902\) 0 0
\(903\) 33.8465i 1.12634i
\(904\) 0 0
\(905\) 86.6989i 2.88197i
\(906\) 0 0
\(907\) 5.66341 0.188050 0.0940252 0.995570i \(-0.470027\pi\)
0.0940252 + 0.995570i \(0.470027\pi\)
\(908\) 0 0
\(909\) 15.7162 0.521273
\(910\) 0 0
\(911\) −47.3493 −1.56875 −0.784376 0.620285i \(-0.787017\pi\)
−0.784376 + 0.620285i \(0.787017\pi\)
\(912\) 0 0
\(913\) 18.7598 0.620858
\(914\) 0 0
\(915\) 155.537i 5.14190i
\(916\) 0 0
\(917\) 13.4693i 0.444796i
\(918\) 0 0
\(919\) 34.8875 1.15083 0.575417 0.817860i \(-0.304840\pi\)
0.575417 + 0.817860i \(0.304840\pi\)
\(920\) 0 0
\(921\) 18.0681i 0.595363i
\(922\) 0 0
\(923\) 9.48398 + 3.81063i 0.312169 + 0.125428i
\(924\) 0 0
\(925\) 92.1184i 3.02883i
\(926\) 0 0
\(927\) 39.7707 1.30624
\(928\) 0 0
\(929\) 22.7956i 0.747898i −0.927449 0.373949i \(-0.878003\pi\)
0.927449 0.373949i \(-0.121997\pi\)
\(930\) 0 0
\(931\) 3.62948i 0.118951i
\(932\) 0 0
\(933\) 2.56315 0.0839139
\(934\) 0 0
\(935\) −99.8912 −3.26679
\(936\) 0 0
\(937\) −18.3968 −0.600997 −0.300499 0.953782i \(-0.597153\pi\)
−0.300499 + 0.953782i \(0.597153\pi\)
\(938\) 0 0
\(939\) 75.9417 2.47826
\(940\) 0 0
\(941\) 1.85031i 0.0603183i 0.999545 + 0.0301592i \(0.00960142\pi\)
−0.999545 + 0.0301592i \(0.990399\pi\)
\(942\) 0 0
\(943\) 8.76345i 0.285377i
\(944\) 0 0
\(945\) 32.7159 1.06425
\(946\) 0 0
\(947\) 3.22237i 0.104713i 0.998628 + 0.0523565i \(0.0166732\pi\)
−0.998628 + 0.0523565i \(0.983327\pi\)
\(948\) 0 0
\(949\) −13.2094 5.30747i −0.428794 0.172288i
\(950\) 0 0
\(951\) 20.9809i 0.680353i
\(952\) 0 0
\(953\) 41.2811 1.33723 0.668614 0.743610i \(-0.266888\pi\)
0.668614 + 0.743610i \(0.266888\pi\)
\(954\) 0 0
\(955\) 85.6283i 2.77087i
\(956\) 0 0
\(957\) 21.4227i 0.692498i
\(958\) 0 0
\(959\) 11.2758 0.364113
\(960\) 0 0
\(961\) 30.6134 0.987529
\(962\) 0 0
\(963\) 86.7465 2.79537
\(964\) 0 0
\(965\) 55.0285 1.77143
\(966\) 0 0
\(967\) 15.0129i 0.482784i 0.970428 + 0.241392i \(0.0776039\pi\)
−0.970428 + 0.241392i \(0.922396\pi\)
\(968\) 0 0
\(969\) 51.5041i 1.65455i
\(970\) 0 0
\(971\) −16.3347 −0.524206 −0.262103 0.965040i \(-0.584416\pi\)
−0.262103 + 0.965040i \(0.584416\pi\)
\(972\) 0 0
\(973\) 1.95984i 0.0628297i
\(974\) 0 0
\(975\) −34.8724 + 86.7913i −1.11681 + 2.77954i
\(976\) 0 0
\(977\) 24.0507i 0.769450i 0.923031 + 0.384725i \(0.125704\pi\)
−0.923031 + 0.384725i \(0.874296\pi\)
\(978\) 0 0
\(979\) 67.4907 2.15701
\(980\) 0 0
\(981\) 27.8162i 0.888104i
\(982\) 0 0
\(983\) 21.2826i 0.678810i −0.940640 0.339405i \(-0.889774\pi\)
0.940640 0.339405i \(-0.110226\pi\)
\(984\) 0 0
\(985\) 46.5950 1.48464
\(986\) 0 0
\(987\) −13.1567 −0.418782
\(988\) 0 0
\(989\) 18.4694 0.587291
\(990\) 0 0
\(991\) −13.5680 −0.431002 −0.215501 0.976504i \(-0.569138\pi\)
−0.215501 + 0.976504i \(0.569138\pi\)
\(992\) 0 0
\(993\) 38.0166i 1.20642i
\(994\) 0 0
\(995\) 31.6442i 1.00319i
\(996\) 0 0
\(997\) 29.8893 0.946604 0.473302 0.880900i \(-0.343062\pi\)
0.473302 + 0.880900i \(0.343062\pi\)
\(998\) 0 0
\(999\) 94.0429i 2.97539i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.k.i.1793.14 yes 14
4.3 odd 2 2912.2.k.j.1793.2 yes 14
13.12 even 2 inner 2912.2.k.i.1793.13 14
52.51 odd 2 2912.2.k.j.1793.1 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.k.i.1793.13 14 13.12 even 2 inner
2912.2.k.i.1793.14 yes 14 1.1 even 1 trivial
2912.2.k.j.1793.1 yes 14 52.51 odd 2
2912.2.k.j.1793.2 yes 14 4.3 odd 2