Properties

Label 2925.2.a.bi
Level 29252925
Weight 22
Character orbit 2925.a
Self dual yes
Analytic conductor 23.35623.356
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2925,2,Mod(1,2925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2925=325213 2925 = 3^{2} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 23.356242591223.3562425912
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x25x+3 x^{3} - x^{2} - 5x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 975)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+2)q4+(β12)q7+(β2+β1+1)q8+(β2β1+1)q11q13+(β22β1+4)q14+(2β1+1)q16++(3β2+2β115)q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + (\beta_1 - 2) q^{7} + (\beta_{2} + \beta_1 + 1) q^{8} + (\beta_{2} - \beta_1 + 1) q^{11} - q^{13} + (\beta_{2} - 2 \beta_1 + 4) q^{14} + (2 \beta_1 + 1) q^{16}+ \cdots + ( - 3 \beta_{2} + 2 \beta_1 - 15) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+q2+5q45q7+3q8+q113q13+9q14+5q16+7q17+6q197q22+4q23q265q28+13q29+7q31+17q3219q342q37+40q98+O(q100) 3 q + q^{2} + 5 q^{4} - 5 q^{7} + 3 q^{8} + q^{11} - 3 q^{13} + 9 q^{14} + 5 q^{16} + 7 q^{17} + 6 q^{19} - 7 q^{22} + 4 q^{23} - q^{26} - 5 q^{28} + 13 q^{29} + 7 q^{31} + 17 q^{32} - 19 q^{34} - 2 q^{37}+ \cdots - 40 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x25x+3 x^{3} - x^{2} - 5x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.08613
0.571993
2.51414
−2.08613 0 2.35194 0 0 −4.08613 −0.734191 0 0
1.2 0.571993 0 −1.67282 0 0 −1.42801 −2.10083 0 0
1.3 2.51414 0 4.32088 0 0 0.514137 5.83502 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.a.bi 3
3.b odd 2 1 975.2.a.n 3
5.b even 2 1 2925.2.a.bg 3
5.c odd 4 2 2925.2.c.x 6
15.d odd 2 1 975.2.a.p yes 3
15.e even 4 2 975.2.c.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.a.n 3 3.b odd 2 1
975.2.a.p yes 3 15.d odd 2 1
975.2.c.j 6 15.e even 4 2
2925.2.a.bg 3 5.b even 2 1
2925.2.a.bi 3 1.a even 1 1 trivial
2925.2.c.x 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2925))S_{2}^{\mathrm{new}}(\Gamma_0(2925)):

T23T225T2+3 T_{2}^{3} - T_{2}^{2} - 5T_{2} + 3 Copy content Toggle raw display
T73+5T72+3T73 T_{7}^{3} + 5T_{7}^{2} + 3T_{7} - 3 Copy content Toggle raw display
T113T11211T11+9 T_{11}^{3} - T_{11}^{2} - 11T_{11} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3T25T+3 T^{3} - T^{2} - 5T + 3 Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3+5T2+3 T^{3} + 5 T^{2} + \cdots - 3 Copy content Toggle raw display
1111 T3T211T+9 T^{3} - T^{2} - 11T + 9 Copy content Toggle raw display
1313 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
1717 T37T2++27 T^{3} - 7 T^{2} + \cdots + 27 Copy content Toggle raw display
1919 T36T2++4 T^{3} - 6 T^{2} + \cdots + 4 Copy content Toggle raw display
2323 T34T2+36 T^{3} - 4 T^{2} + \cdots - 36 Copy content Toggle raw display
2929 T313T2++129 T^{3} - 13 T^{2} + \cdots + 129 Copy content Toggle raw display
3131 T37T2++223 T^{3} - 7 T^{2} + \cdots + 223 Copy content Toggle raw display
3737 T3+2T2+108 T^{3} + 2 T^{2} + \cdots - 108 Copy content Toggle raw display
4141 T324T+36 T^{3} - 24T + 36 Copy content Toggle raw display
4343 T384T+164 T^{3} - 84T + 164 Copy content Toggle raw display
4747 T3+7T2+909 T^{3} + 7 T^{2} + \cdots - 909 Copy content Toggle raw display
5353 T39T2++81 T^{3} - 9 T^{2} + \cdots + 81 Copy content Toggle raw display
5959 T3+3T2+117 T^{3} + 3 T^{2} + \cdots - 117 Copy content Toggle raw display
6161 T3+5T2+113 T^{3} + 5 T^{2} + \cdots - 113 Copy content Toggle raw display
6767 T33T2++863 T^{3} - 3 T^{2} + \cdots + 863 Copy content Toggle raw display
7171 T318T2+36 T^{3} - 18 T^{2} + \cdots - 36 Copy content Toggle raw display
7373 T3+26T2++564 T^{3} + 26 T^{2} + \cdots + 564 Copy content Toggle raw display
7979 T34T2+164 T^{3} - 4 T^{2} + \cdots - 164 Copy content Toggle raw display
8383 T313T2++339 T^{3} - 13 T^{2} + \cdots + 339 Copy content Toggle raw display
8989 T316T2+48 T^{3} - 16 T^{2} + \cdots - 48 Copy content Toggle raw display
9797 T3+26T2++216 T^{3} + 26 T^{2} + \cdots + 216 Copy content Toggle raw display
show more
show less