gp: [N,k,chi] = [2925,2,Mod(1,2925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2925.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,1,0,5,0,0,-5,3,0,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
13 13 1 3
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 2925 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(2925)) S 2 n e w ( Γ 0 ( 2 9 2 5 ) ) :
T 2 3 − T 2 2 − 5 T 2 + 3 T_{2}^{3} - T_{2}^{2} - 5T_{2} + 3 T 2 3 − T 2 2 − 5 T 2 + 3
T2^3 - T2^2 - 5*T2 + 3
T 7 3 + 5 T 7 2 + 3 T 7 − 3 T_{7}^{3} + 5T_{7}^{2} + 3T_{7} - 3 T 7 3 + 5 T 7 2 + 3 T 7 − 3
T7^3 + 5*T7^2 + 3*T7 - 3
T 11 3 − T 11 2 − 11 T 11 + 9 T_{11}^{3} - T_{11}^{2} - 11T_{11} + 9 T 1 1 3 − T 1 1 2 − 1 1 T 1 1 + 9
T11^3 - T11^2 - 11*T11 + 9
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 − T 2 − 5 T + 3 T^{3} - T^{2} - 5T + 3 T 3 − T 2 − 5 T + 3
T^3 - T^2 - 5*T + 3
3 3 3
T 3 T^{3} T 3
T^3
5 5 5
T 3 T^{3} T 3
T^3
7 7 7
T 3 + 5 T 2 + ⋯ − 3 T^{3} + 5 T^{2} + \cdots - 3 T 3 + 5 T 2 + ⋯ − 3
T^3 + 5*T^2 + 3*T - 3
11 11 1 1
T 3 − T 2 − 11 T + 9 T^{3} - T^{2} - 11T + 9 T 3 − T 2 − 1 1 T + 9
T^3 - T^2 - 11*T + 9
13 13 1 3
( T + 1 ) 3 (T + 1)^{3} ( T + 1 ) 3
(T + 1)^3
17 17 1 7
T 3 − 7 T 2 + ⋯ + 27 T^{3} - 7 T^{2} + \cdots + 27 T 3 − 7 T 2 + ⋯ + 2 7
T^3 - 7*T^2 - 5*T + 27
19 19 1 9
T 3 − 6 T 2 + ⋯ + 4 T^{3} - 6 T^{2} + \cdots + 4 T 3 − 6 T 2 + ⋯ + 4
T^3 - 6*T^2 - 12*T + 4
23 23 2 3
T 3 − 4 T 2 + ⋯ − 36 T^{3} - 4 T^{2} + \cdots - 36 T 3 − 4 T 2 + ⋯ − 3 6
T^3 - 4*T^2 - 32*T - 36
29 29 2 9
T 3 − 13 T 2 + ⋯ + 129 T^{3} - 13 T^{2} + \cdots + 129 T 3 − 1 3 T 2 + ⋯ + 1 2 9
T^3 - 13*T^2 + 19*T + 129
31 31 3 1
T 3 − 7 T 2 + ⋯ + 223 T^{3} - 7 T^{2} + \cdots + 223 T 3 − 7 T 2 + ⋯ + 2 2 3
T^3 - 7*T^2 - 31*T + 223
37 37 3 7
T 3 + 2 T 2 + ⋯ − 108 T^{3} + 2 T^{2} + \cdots - 108 T 3 + 2 T 2 + ⋯ − 1 0 8
T^3 + 2*T^2 - 36*T - 108
41 41 4 1
T 3 − 24 T + 36 T^{3} - 24T + 36 T 3 − 2 4 T + 3 6
T^3 - 24*T + 36
43 43 4 3
T 3 − 84 T + 164 T^{3} - 84T + 164 T 3 − 8 4 T + 1 6 4
T^3 - 84*T + 164
47 47 4 7
T 3 + 7 T 2 + ⋯ − 909 T^{3} + 7 T^{2} + \cdots - 909 T 3 + 7 T 2 + ⋯ − 9 0 9
T^3 + 7*T^2 - 125*T - 909
53 53 5 3
T 3 − 9 T 2 + ⋯ + 81 T^{3} - 9 T^{2} + \cdots + 81 T 3 − 9 T 2 + ⋯ + 8 1
T^3 - 9*T^2 + 3*T + 81
59 59 5 9
T 3 + 3 T 2 + ⋯ − 117 T^{3} + 3 T^{2} + \cdots - 117 T 3 + 3 T 2 + ⋯ − 1 1 7
T^3 + 3*T^2 - 33*T - 117
61 61 6 1
T 3 + 5 T 2 + ⋯ − 113 T^{3} + 5 T^{2} + \cdots - 113 T 3 + 5 T 2 + ⋯ − 1 1 3
T^3 + 5*T^2 - 37*T - 113
67 67 6 7
T 3 − 3 T 2 + ⋯ + 863 T^{3} - 3 T^{2} + \cdots + 863 T 3 − 3 T 2 + ⋯ + 8 6 3
T^3 - 3*T^2 - 159*T + 863
71 71 7 1
T 3 − 18 T 2 + ⋯ − 36 T^{3} - 18 T^{2} + \cdots - 36 T 3 − 1 8 T 2 + ⋯ − 3 6
T^3 - 18*T^2 + 84*T - 36
73 73 7 3
T 3 + 26 T 2 + ⋯ + 564 T^{3} + 26 T^{2} + \cdots + 564 T 3 + 2 6 T 2 + ⋯ + 5 6 4
T^3 + 26*T^2 + 216*T + 564
79 79 7 9
T 3 − 4 T 2 + ⋯ − 164 T^{3} - 4 T^{2} + \cdots - 164 T 3 − 4 T 2 + ⋯ − 1 6 4
T^3 - 4*T^2 - 76*T - 164
83 83 8 3
T 3 − 13 T 2 + ⋯ + 339 T^{3} - 13 T^{2} + \cdots + 339 T 3 − 1 3 T 2 + ⋯ + 3 3 9
T^3 - 13*T^2 - 77*T + 339
89 89 8 9
T 3 − 16 T 2 + ⋯ − 48 T^{3} - 16 T^{2} + \cdots - 48 T 3 − 1 6 T 2 + ⋯ − 4 8
T^3 - 16*T^2 + 64*T - 48
97 97 9 7
T 3 + 26 T 2 + ⋯ + 216 T^{3} + 26 T^{2} + \cdots + 216 T 3 + 2 6 T 2 + ⋯ + 2 1 6
T^3 + 26*T^2 + 180*T + 216
show more
show less