Properties

Label 2925.2.a.bo
Level $2925$
Weight $2$
Character orbit 2925.a
Self dual yes
Analytic conductor $23.356$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2925,2,Mod(1,2925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.12730624.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} + 13x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 585)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{5} + \beta_{2} + 2) q^{7} + ( - \beta_{4} + \beta_{3} + \beta_1) q^{8} + ( - 2 \beta_{4} - \beta_{3} + \beta_1) q^{11} - q^{13} + (2 \beta_{3} + 4 \beta_1) q^{14}+ \cdots + ( - 2 \beta_{4} + 4 \beta_{3} + 11 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} + 10 q^{7} - 6 q^{13} + 4 q^{16} - 12 q^{19} + 32 q^{22} + 28 q^{28} - 8 q^{31} + 4 q^{34} + 18 q^{37} + 36 q^{43} + 20 q^{46} + 24 q^{49} - 4 q^{52} - 6 q^{61} + 56 q^{67} + 12 q^{73} - 32 q^{76}+ \cdots + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 8x^{4} + 13x^{2} - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 6\nu^{3} + \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 8\nu^{3} + 11\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{4} - 7\nu^{2} + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 7\beta_{2} + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -6\beta_{4} + 8\beta_{3} + 29\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.43255
−1.29632
−0.634243
0.634243
1.29632
2.43255
−2.43255 0 3.91729 0 0 4.51056 −4.66389 0 0
1.2 −1.29632 0 −0.319551 0 0 −2.25879 3.00688 0 0
1.3 −0.634243 0 −1.59774 0 0 2.74823 2.28184 0 0
1.4 0.634243 0 −1.59774 0 0 2.74823 −2.28184 0 0
1.5 1.29632 0 −0.319551 0 0 −2.25879 −3.00688 0 0
1.6 2.43255 0 3.91729 0 0 4.51056 4.66389 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.a.bo 6
3.b odd 2 1 inner 2925.2.a.bo 6
5.b even 2 1 2925.2.a.bn 6
5.c odd 4 2 585.2.c.d 12
15.d odd 2 1 2925.2.a.bn 6
15.e even 4 2 585.2.c.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.c.d 12 5.c odd 4 2
585.2.c.d 12 15.e even 4 2
2925.2.a.bn 6 5.b even 2 1
2925.2.a.bn 6 15.d odd 2 1
2925.2.a.bo 6 1.a even 1 1 trivial
2925.2.a.bo 6 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2925))\):

\( T_{2}^{6} - 8T_{2}^{4} + 13T_{2}^{2} - 4 \) Copy content Toggle raw display
\( T_{7}^{3} - 5T_{7}^{2} - 4T_{7} + 28 \) Copy content Toggle raw display
\( T_{11}^{6} - 65T_{11}^{4} + 1384T_{11}^{2} - 9604 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 8 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} - 5 T^{2} - 4 T + 28)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} - 65 T^{4} + \cdots - 9604 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 53 T^{4} + \cdots - 1024 \) Copy content Toggle raw display
$19$ \( (T^{3} + 6 T^{2} + \cdots - 104)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 21 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( (T^{3} + 4 T^{2} - 28 T + 16)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 9 T^{2} + \cdots + 364)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 137 T^{4} + \cdots - 196 \) Copy content Toggle raw display
$43$ \( (T^{3} - 18 T^{2} + \cdots + 56)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 152 T^{4} + \cdots - 99856 \) Copy content Toggle raw display
$53$ \( T^{6} - 261 T^{4} + \cdots - 652864 \) Copy content Toggle raw display
$59$ \( T^{6} - 228 T^{4} + \cdots - 12544 \) Copy content Toggle raw display
$61$ \( (T^{3} + 3 T^{2} + \cdots - 256)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} - 28 T^{2} + \cdots - 560)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 185 T^{4} + \cdots - 196 \) Copy content Toggle raw display
$73$ \( (T^{3} - 6 T^{2} - 148 T + 56)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 5 T^{2} + \cdots + 620)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 72 T^{4} + \cdots - 16 \) Copy content Toggle raw display
$89$ \( T^{6} - 129 T^{4} + \cdots - 70756 \) Copy content Toggle raw display
$97$ \( (T^{3} - 19 T^{2} + \cdots - 140)^{2} \) Copy content Toggle raw display
show more
show less