Properties

Label 2925.2.c.a
Level 29252925
Weight 22
Character orbit 2925.c
Analytic conductor 23.35623.356
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2925,2,Mod(2224,2925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2925.2224"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2925=325213 2925 = 3^{2} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2925.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,0,0,0,0,0,0,-10,0,0,-4,0,-8,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.356242591223.3562425912
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2iq22q4+iq75q11iq132q144q167iq17+6q1910iq223iq23+2q262iq28+2q29+2q318iq32+14q347iq37++12iq98+O(q100) q + 2 i q^{2} - 2 q^{4} + i q^{7} - 5 q^{11} - i q^{13} - 2 q^{14} - 4 q^{16} - 7 i q^{17} + 6 q^{19} - 10 i q^{22} - 3 i q^{23} + 2 q^{26} - 2 i q^{28} + 2 q^{29} + 2 q^{31} - 8 i q^{32} + 14 q^{34} - 7 i q^{37} + \cdots + 12 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q410q114q148q16+12q19+4q26+4q29+4q31+28q3418q41+20q44+12q46+12q49+10q61+16q6418q71+28q7424q76+40q94+O(q100) 2 q - 4 q^{4} - 10 q^{11} - 4 q^{14} - 8 q^{16} + 12 q^{19} + 4 q^{26} + 4 q^{29} + 4 q^{31} + 28 q^{34} - 18 q^{41} + 20 q^{44} + 12 q^{46} + 12 q^{49} + 10 q^{61} + 16 q^{64} - 18 q^{71} + 28 q^{74} - 24 q^{76}+ \cdots - 40 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2925Z)×\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times.

nn 326326 352352 22512251
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2224.1
1.00000i
1.00000i
2.00000i 0 −2.00000 0 0 1.00000i 0 0 0
2224.2 2.00000i 0 −2.00000 0 0 1.00000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.c.a 2
3.b odd 2 1 975.2.c.c 2
5.b even 2 1 inner 2925.2.c.a 2
5.c odd 4 1 585.2.a.c 1
5.c odd 4 1 2925.2.a.s 1
15.d odd 2 1 975.2.c.c 2
15.e even 4 1 195.2.a.c 1
15.e even 4 1 975.2.a.a 1
20.e even 4 1 9360.2.a.bv 1
60.l odd 4 1 3120.2.a.d 1
65.h odd 4 1 7605.2.a.t 1
105.k odd 4 1 9555.2.a.u 1
195.s even 4 1 2535.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.a.c 1 15.e even 4 1
585.2.a.c 1 5.c odd 4 1
975.2.a.a 1 15.e even 4 1
975.2.c.c 2 3.b odd 2 1
975.2.c.c 2 15.d odd 2 1
2535.2.a.d 1 195.s even 4 1
2925.2.a.s 1 5.c odd 4 1
2925.2.c.a 2 1.a even 1 1 trivial
2925.2.c.a 2 5.b even 2 1 inner
3120.2.a.d 1 60.l odd 4 1
7605.2.a.t 1 65.h odd 4 1
9360.2.a.bv 1 20.e even 4 1
9555.2.a.u 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2925,[χ])S_{2}^{\mathrm{new}}(2925, [\chi]):

T22+4 T_{2}^{2} + 4 Copy content Toggle raw display
T72+1 T_{7}^{2} + 1 Copy content Toggle raw display
T11+5 T_{11} + 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2+49 T^{2} + 49 Copy content Toggle raw display
1919 (T6)2 (T - 6)^{2} Copy content Toggle raw display
2323 T2+9 T^{2} + 9 Copy content Toggle raw display
2929 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3131 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3737 T2+49 T^{2} + 49 Copy content Toggle raw display
4141 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
4343 T2+64 T^{2} + 64 Copy content Toggle raw display
4747 T2+100 T^{2} + 100 Copy content Toggle raw display
5353 T2+25 T^{2} + 25 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T5)2 (T - 5)^{2} Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
7373 T2+36 T^{2} + 36 Copy content Toggle raw display
7979 (T3)2 (T - 3)^{2} Copy content Toggle raw display
8383 T2+16 T^{2} + 16 Copy content Toggle raw display
8989 (T11)2 (T - 11)^{2} Copy content Toggle raw display
9797 T2+121 T^{2} + 121 Copy content Toggle raw display
show more
show less