Properties

Label 2925.2.c.a
Level $2925$
Weight $2$
Character orbit 2925.c
Analytic conductor $23.356$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2925,2,Mod(2224,2925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2925.2224");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} - 2 q^{4} + i q^{7} - 5 q^{11} - i q^{13} - 2 q^{14} - 4 q^{16} - 7 i q^{17} + 6 q^{19} - 10 i q^{22} - 3 i q^{23} + 2 q^{26} - 2 i q^{28} + 2 q^{29} + 2 q^{31} - 8 i q^{32} + 14 q^{34} - 7 i q^{37} + \cdots + 12 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 10 q^{11} - 4 q^{14} - 8 q^{16} + 12 q^{19} + 4 q^{26} + 4 q^{29} + 4 q^{31} + 28 q^{34} - 18 q^{41} + 20 q^{44} + 12 q^{46} + 12 q^{49} + 10 q^{61} + 16 q^{64} - 18 q^{71} + 28 q^{74} - 24 q^{76}+ \cdots - 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2224.1
1.00000i
1.00000i
2.00000i 0 −2.00000 0 0 1.00000i 0 0 0
2224.2 2.00000i 0 −2.00000 0 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.c.a 2
3.b odd 2 1 975.2.c.c 2
5.b even 2 1 inner 2925.2.c.a 2
5.c odd 4 1 585.2.a.c 1
5.c odd 4 1 2925.2.a.s 1
15.d odd 2 1 975.2.c.c 2
15.e even 4 1 195.2.a.c 1
15.e even 4 1 975.2.a.a 1
20.e even 4 1 9360.2.a.bv 1
60.l odd 4 1 3120.2.a.d 1
65.h odd 4 1 7605.2.a.t 1
105.k odd 4 1 9555.2.a.u 1
195.s even 4 1 2535.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.a.c 1 15.e even 4 1
585.2.a.c 1 5.c odd 4 1
975.2.a.a 1 15.e even 4 1
975.2.c.c 2 3.b odd 2 1
975.2.c.c 2 15.d odd 2 1
2535.2.a.d 1 195.s even 4 1
2925.2.a.s 1 5.c odd 4 1
2925.2.c.a 2 1.a even 1 1 trivial
2925.2.c.a 2 5.b even 2 1 inner
3120.2.a.d 1 60.l odd 4 1
7605.2.a.t 1 65.h odd 4 1
9360.2.a.bv 1 20.e even 4 1
9555.2.a.u 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2925, [\chi])\):

\( T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T + 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1 \) Copy content Toggle raw display
$17$ \( T^{2} + 49 \) Copy content Toggle raw display
$19$ \( (T - 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 9 \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 49 \) Copy content Toggle raw display
$41$ \( (T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 100 \) Copy content Toggle raw display
$53$ \( T^{2} + 25 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 5)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T + 9)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( (T - 3)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( (T - 11)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 121 \) Copy content Toggle raw display
show more
show less