Properties

Label 2925.2.c.u.2224.4
Level 29252925
Weight 22
Character 2925.2224
Analytic conductor 23.35623.356
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2925,2,Mod(2224,2925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2925.2224");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2925=325213 2925 = 3^{2} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2925.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.356242591223.3562425912
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2224.4
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 2925.2224
Dual form 2925.2.c.u.2224.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.41421iq23.82843q42.82843iq74.41421iq8+2.00000q11+1.00000iq13+6.82843q14+3.00000q16+3.65685iq172.82843q19+4.82843iq224.00000iq232.41421q26+10.8284iq28+2.00000q296.82843q311.58579iq328.82843q34+3.65685iq376.82843iq3810.8284q419.65685iq437.65685q44+9.65685q46+0.343146iq471.00000q493.82843iq522.00000iq5312.4853q56+4.82843iq583.65685q599.31371q6116.4853iq62+9.82843q64+1.17157iq6714.0000iq682.00000q7111.6569iq738.82843q74+10.8284q765.65685iq7711.3137q7926.1421iq827.65685iq83+23.3137q868.82843iq88+9.17157q89+2.82843q91+15.3137iq920.828427q947.65685iq972.41421iq98+O(q100)q+2.41421i q^{2} -3.82843 q^{4} -2.82843i q^{7} -4.41421i q^{8} +2.00000 q^{11} +1.00000i q^{13} +6.82843 q^{14} +3.00000 q^{16} +3.65685i q^{17} -2.82843 q^{19} +4.82843i q^{22} -4.00000i q^{23} -2.41421 q^{26} +10.8284i q^{28} +2.00000 q^{29} -6.82843 q^{31} -1.58579i q^{32} -8.82843 q^{34} +3.65685i q^{37} -6.82843i q^{38} -10.8284 q^{41} -9.65685i q^{43} -7.65685 q^{44} +9.65685 q^{46} +0.343146i q^{47} -1.00000 q^{49} -3.82843i q^{52} -2.00000i q^{53} -12.4853 q^{56} +4.82843i q^{58} -3.65685 q^{59} -9.31371 q^{61} -16.4853i q^{62} +9.82843 q^{64} +1.17157i q^{67} -14.0000i q^{68} -2.00000 q^{71} -11.6569i q^{73} -8.82843 q^{74} +10.8284 q^{76} -5.65685i q^{77} -11.3137 q^{79} -26.1421i q^{82} -7.65685i q^{83} +23.3137 q^{86} -8.82843i q^{88} +9.17157 q^{89} +2.82843 q^{91} +15.3137i q^{92} -0.828427 q^{94} -7.65685i q^{97} -2.41421i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+8q11+16q14+12q164q26+8q2916q3124q3432q418q44+16q464q4916q56+8q59+8q61+28q648q7124q74++8q94+O(q100) 4 q - 4 q^{4} + 8 q^{11} + 16 q^{14} + 12 q^{16} - 4 q^{26} + 8 q^{29} - 16 q^{31} - 24 q^{34} - 32 q^{41} - 8 q^{44} + 16 q^{46} - 4 q^{49} - 16 q^{56} + 8 q^{59} + 8 q^{61} + 28 q^{64} - 8 q^{71} - 24 q^{74}+ \cdots + 8 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2925Z)×\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times.

nn 326326 352352 22512251
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.41421i 1.70711i 0.521005 + 0.853553i 0.325557π0.325557\pi
−0.521005 + 0.853553i 0.674443π0.674443\pi
33 0 0
44 −3.82843 −1.91421
55 0 0
66 0 0
77 − 2.82843i − 1.06904i −0.845154 0.534522i 0.820491π-0.820491\pi
0.845154 0.534522i 0.179509π-0.179509\pi
88 − 4.41421i − 1.56066i
99 0 0
1010 0 0
1111 2.00000 0.603023 0.301511 0.953463i 0.402509π-0.402509\pi
0.301511 + 0.953463i 0.402509π0.402509\pi
1212 0 0
1313 1.00000i 0.277350i
1414 6.82843 1.82497
1515 0 0
1616 3.00000 0.750000
1717 3.65685i 0.886917i 0.896295 + 0.443459i 0.146249π0.146249\pi
−0.896295 + 0.443459i 0.853751π0.853751\pi
1818 0 0
1919 −2.82843 −0.648886 −0.324443 0.945905i 0.605177π-0.605177\pi
−0.324443 + 0.945905i 0.605177π0.605177\pi
2020 0 0
2121 0 0
2222 4.82843i 1.02942i
2323 − 4.00000i − 0.834058i −0.908893 0.417029i 0.863071π-0.863071\pi
0.908893 0.417029i 0.136929π-0.136929\pi
2424 0 0
2525 0 0
2626 −2.41421 −0.473466
2727 0 0
2828 10.8284i 2.04638i
2929 2.00000 0.371391 0.185695 0.982607i 0.440546π-0.440546\pi
0.185695 + 0.982607i 0.440546π0.440546\pi
3030 0 0
3131 −6.82843 −1.22642 −0.613211 0.789919i 0.710122π-0.710122\pi
−0.613211 + 0.789919i 0.710122π0.710122\pi
3232 − 1.58579i − 0.280330i
3333 0 0
3434 −8.82843 −1.51406
3535 0 0
3636 0 0
3737 3.65685i 0.601183i 0.953753 + 0.300592i 0.0971841π0.0971841\pi
−0.953753 + 0.300592i 0.902816π0.902816\pi
3838 − 6.82843i − 1.10772i
3939 0 0
4040 0 0
4141 −10.8284 −1.69112 −0.845558 0.533883i 0.820732π-0.820732\pi
−0.845558 + 0.533883i 0.820732π0.820732\pi
4242 0 0
4343 − 9.65685i − 1.47266i −0.676625 0.736328i 0.736558π-0.736558\pi
0.676625 0.736328i 0.263442π-0.263442\pi
4444 −7.65685 −1.15431
4545 0 0
4646 9.65685 1.42383
4747 0.343146i 0.0500530i 0.999687 + 0.0250265i 0.00796701π0.00796701\pi
−0.999687 + 0.0250265i 0.992033π0.992033\pi
4848 0 0
4949 −1.00000 −0.142857
5050 0 0
5151 0 0
5252 − 3.82843i − 0.530907i
5353 − 2.00000i − 0.274721i −0.990521 0.137361i 0.956138π-0.956138\pi
0.990521 0.137361i 0.0438619π-0.0438619\pi
5454 0 0
5555 0 0
5656 −12.4853 −1.66842
5757 0 0
5858 4.82843i 0.634004i
5959 −3.65685 −0.476082 −0.238041 0.971255i 0.576505π-0.576505\pi
−0.238041 + 0.971255i 0.576505π0.576505\pi
6060 0 0
6161 −9.31371 −1.19250 −0.596249 0.802799i 0.703343π-0.703343\pi
−0.596249 + 0.802799i 0.703343π0.703343\pi
6262 − 16.4853i − 2.09363i
6363 0 0
6464 9.82843 1.22855
6565 0 0
6666 0 0
6767 1.17157i 0.143130i 0.997436 + 0.0715652i 0.0227994π0.0227994\pi
−0.997436 + 0.0715652i 0.977201π0.977201\pi
6868 − 14.0000i − 1.69775i
6969 0 0
7070 0 0
7171 −2.00000 −0.237356 −0.118678 0.992933i 0.537866π-0.537866\pi
−0.118678 + 0.992933i 0.537866π0.537866\pi
7272 0 0
7373 − 11.6569i − 1.36433i −0.731198 0.682166i 0.761038π-0.761038\pi
0.731198 0.682166i 0.238962π-0.238962\pi
7474 −8.82843 −1.02628
7575 0 0
7676 10.8284 1.24211
7777 − 5.65685i − 0.644658i
7878 0 0
7979 −11.3137 −1.27289 −0.636446 0.771321i 0.719596π-0.719596\pi
−0.636446 + 0.771321i 0.719596π0.719596\pi
8080 0 0
8181 0 0
8282 − 26.1421i − 2.88692i
8383 − 7.65685i − 0.840449i −0.907420 0.420224i 0.861951π-0.861951\pi
0.907420 0.420224i 0.138049π-0.138049\pi
8484 0 0
8585 0 0
8686 23.3137 2.51398
8787 0 0
8888 − 8.82843i − 0.941113i
8989 9.17157 0.972185 0.486092 0.873907i 0.338422π-0.338422\pi
0.486092 + 0.873907i 0.338422π0.338422\pi
9090 0 0
9191 2.82843 0.296500
9292 15.3137i 1.59656i
9393 0 0
9494 −0.828427 −0.0854457
9595 0 0
9696 0 0
9797 − 7.65685i − 0.777436i −0.921357 0.388718i 0.872918π-0.872918\pi
0.921357 0.388718i 0.127082π-0.127082\pi
9898 − 2.41421i − 0.243872i
9999 0 0
100100 0 0
101101 3.65685 0.363871 0.181935 0.983311i 0.441764π-0.441764\pi
0.181935 + 0.983311i 0.441764π0.441764\pi
102102 0 0
103103 − 13.6569i − 1.34565i −0.739802 0.672825i 0.765081π-0.765081\pi
0.739802 0.672825i 0.234919π-0.234919\pi
104104 4.41421 0.432849
105105 0 0
106106 4.82843 0.468978
107107 − 11.3137i − 1.09374i −0.837218 0.546869i 0.815820π-0.815820\pi
0.837218 0.546869i 0.184180π-0.184180\pi
108108 0 0
109109 17.3137 1.65835 0.829176 0.558987i 0.188810π-0.188810\pi
0.829176 + 0.558987i 0.188810π0.188810\pi
110110 0 0
111111 0 0
112112 − 8.48528i − 0.801784i
113113 17.3137i 1.62874i 0.580348 + 0.814368i 0.302916π0.302916\pi
−0.580348 + 0.814368i 0.697084π0.697084\pi
114114 0 0
115115 0 0
116116 −7.65685 −0.710921
117117 0 0
118118 − 8.82843i − 0.812723i
119119 10.3431 0.948155
120120 0 0
121121 −7.00000 −0.636364
122122 − 22.4853i − 2.03572i
123123 0 0
124124 26.1421 2.34763
125125 0 0
126126 0 0
127127 − 5.65685i − 0.501965i −0.967992 0.250982i 0.919246π-0.919246\pi
0.967992 0.250982i 0.0807536π-0.0807536\pi
128128 20.5563i 1.81694i
129129 0 0
130130 0 0
131131 8.00000 0.698963 0.349482 0.936943i 0.386358π-0.386358\pi
0.349482 + 0.936943i 0.386358π0.386358\pi
132132 0 0
133133 8.00000i 0.693688i
134134 −2.82843 −0.244339
135135 0 0
136136 16.1421 1.38418
137137 5.17157i 0.441837i 0.975292 + 0.220919i 0.0709055π0.0709055\pi
−0.975292 + 0.220919i 0.929094π0.929094\pi
138138 0 0
139139 −15.3137 −1.29889 −0.649446 0.760408i 0.724999π-0.724999\pi
−0.649446 + 0.760408i 0.724999π0.724999\pi
140140 0 0
141141 0 0
142142 − 4.82843i − 0.405193i
143143 2.00000i 0.167248i
144144 0 0
145145 0 0
146146 28.1421 2.32906
147147 0 0
148148 − 14.0000i − 1.15079i
149149 −14.8284 −1.21479 −0.607396 0.794399i 0.707786π-0.707786\pi
−0.607396 + 0.794399i 0.707786π0.707786\pi
150150 0 0
151151 −20.4853 −1.66707 −0.833534 0.552468i 0.813686π-0.813686\pi
−0.833534 + 0.552468i 0.813686π0.813686\pi
152152 12.4853i 1.01269i
153153 0 0
154154 13.6569 1.10050
155155 0 0
156156 0 0
157157 − 10.0000i − 0.798087i −0.916932 0.399043i 0.869342π-0.869342\pi
0.916932 0.399043i 0.130658π-0.130658\pi
158158 − 27.3137i − 2.17296i
159159 0 0
160160 0 0
161161 −11.3137 −0.891645
162162 0 0
163163 − 13.1716i − 1.03168i −0.856686 0.515839i 0.827480π-0.827480\pi
0.856686 0.515839i 0.172520π-0.172520\pi
164164 41.4558 3.23716
165165 0 0
166166 18.4853 1.43474
167167 − 7.65685i − 0.592505i −0.955110 0.296253i 0.904263π-0.904263\pi
0.955110 0.296253i 0.0957370π-0.0957370\pi
168168 0 0
169169 −1.00000 −0.0769231
170170 0 0
171171 0 0
172172 36.9706i 2.81898i
173173 − 0.343146i − 0.0260889i −0.999915 0.0130444i 0.995848π-0.995848\pi
0.999915 0.0130444i 0.00415229π-0.00415229\pi
174174 0 0
175175 0 0
176176 6.00000 0.452267
177177 0 0
178178 22.1421i 1.65962i
179179 −0.686292 −0.0512958 −0.0256479 0.999671i 0.508165π-0.508165\pi
−0.0256479 + 0.999671i 0.508165π0.508165\pi
180180 0 0
181181 14.0000 1.04061 0.520306 0.853980i 0.325818π-0.325818\pi
0.520306 + 0.853980i 0.325818π0.325818\pi
182182 6.82843i 0.506157i
183183 0 0
184184 −17.6569 −1.30168
185185 0 0
186186 0 0
187187 7.31371i 0.534831i
188188 − 1.31371i − 0.0958120i
189189 0 0
190190 0 0
191191 19.3137 1.39749 0.698745 0.715370i 0.253742π-0.253742\pi
0.698745 + 0.715370i 0.253742π0.253742\pi
192192 0 0
193193 17.3137i 1.24627i 0.782115 + 0.623134i 0.214141π0.214141\pi
−0.782115 + 0.623134i 0.785859π0.785859\pi
194194 18.4853 1.32717
195195 0 0
196196 3.82843 0.273459
197197 16.4853i 1.17453i 0.809396 + 0.587264i 0.199795π0.199795\pi
−0.809396 + 0.587264i 0.800205π0.800205\pi
198198 0 0
199199 −10.3431 −0.733206 −0.366603 0.930377i 0.619479π-0.619479\pi
−0.366603 + 0.930377i 0.619479π0.619479\pi
200200 0 0
201201 0 0
202202 8.82843i 0.621166i
203203 − 5.65685i − 0.397033i
204204 0 0
205205 0 0
206206 32.9706 2.29717
207207 0 0
208208 3.00000i 0.208013i
209209 −5.65685 −0.391293
210210 0 0
211211 −12.0000 −0.826114 −0.413057 0.910705i 0.635539π-0.635539\pi
−0.413057 + 0.910705i 0.635539π0.635539\pi
212212 7.65685i 0.525875i
213213 0 0
214214 27.3137 1.86713
215215 0 0
216216 0 0
217217 19.3137i 1.31110i
218218 41.7990i 2.83098i
219219 0 0
220220 0 0
221221 −3.65685 −0.245987
222222 0 0
223223 − 4.48528i − 0.300357i −0.988659 0.150178i 0.952015π-0.952015\pi
0.988659 0.150178i 0.0479848π-0.0479848\pi
224224 −4.48528 −0.299685
225225 0 0
226226 −41.7990 −2.78043
227227 − 5.31371i − 0.352683i −0.984329 0.176342i 0.943574π-0.943574\pi
0.984329 0.176342i 0.0564263π-0.0564263\pi
228228 0 0
229229 −21.3137 −1.40845 −0.704225 0.709977i 0.748705π-0.748705\pi
−0.704225 + 0.709977i 0.748705π0.748705\pi
230230 0 0
231231 0 0
232232 − 8.82843i − 0.579615i
233233 − 26.9706i − 1.76690i −0.468525 0.883450i 0.655214π-0.655214\pi
0.468525 0.883450i 0.344786π-0.344786\pi
234234 0 0
235235 0 0
236236 14.0000 0.911322
237237 0 0
238238 24.9706i 1.61860i
239239 2.00000 0.129369 0.0646846 0.997906i 0.479396π-0.479396\pi
0.0646846 + 0.997906i 0.479396π0.479396\pi
240240 0 0
241241 11.6569 0.750884 0.375442 0.926846i 0.377491π-0.377491\pi
0.375442 + 0.926846i 0.377491π0.377491\pi
242242 − 16.8995i − 1.08634i
243243 0 0
244244 35.6569 2.28270
245245 0 0
246246 0 0
247247 − 2.82843i − 0.179969i
248248 30.1421i 1.91403i
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 − 8.00000i − 0.502956i
254254 13.6569 0.856907
255255 0 0
256256 −29.9706 −1.87316
257257 15.6569i 0.976648i 0.872662 + 0.488324i 0.162392π0.162392\pi
−0.872662 + 0.488324i 0.837608π0.837608\pi
258258 0 0
259259 10.3431 0.642692
260260 0 0
261261 0 0
262262 19.3137i 1.19320i
263263 12.0000i 0.739952i 0.929041 + 0.369976i 0.120634π0.120634\pi
−0.929041 + 0.369976i 0.879366π0.879366\pi
264264 0 0
265265 0 0
266266 −19.3137 −1.18420
267267 0 0
268268 − 4.48528i − 0.273982i
269269 18.0000 1.09748 0.548740 0.835993i 0.315108π-0.315108\pi
0.548740 + 0.835993i 0.315108π0.315108\pi
270270 0 0
271271 11.7990 0.716738 0.358369 0.933580i 0.383333π-0.383333\pi
0.358369 + 0.933580i 0.383333π0.383333\pi
272272 10.9706i 0.665188i
273273 0 0
274274 −12.4853 −0.754263
275275 0 0
276276 0 0
277277 − 2.00000i − 0.120168i −0.998193 0.0600842i 0.980863π-0.980863\pi
0.998193 0.0600842i 0.0191369π-0.0191369\pi
278278 − 36.9706i − 2.21735i
279279 0 0
280280 0 0
281281 −26.8284 −1.60045 −0.800225 0.599700i 0.795287π-0.795287\pi
−0.800225 + 0.599700i 0.795287π0.795287\pi
282282 0 0
283283 4.97056i 0.295469i 0.989027 + 0.147735i 0.0471982π0.0471982\pi
−0.989027 + 0.147735i 0.952802π0.952802\pi
284284 7.65685 0.454351
285285 0 0
286286 −4.82843 −0.285511
287287 30.6274i 1.80788i
288288 0 0
289289 3.62742 0.213377
290290 0 0
291291 0 0
292292 44.6274i 2.61162i
293293 − 26.1421i − 1.52724i −0.645666 0.763620i 0.723420π-0.723420\pi
0.645666 0.763620i 0.276580π-0.276580\pi
294294 0 0
295295 0 0
296296 16.1421 0.938243
297297 0 0
298298 − 35.7990i − 2.07378i
299299 4.00000 0.231326
300300 0 0
301301 −27.3137 −1.57434
302302 − 49.4558i − 2.84586i
303303 0 0
304304 −8.48528 −0.486664
305305 0 0
306306 0 0
307307 − 17.1716i − 0.980033i −0.871713 0.490017i 0.836991π-0.836991\pi
0.871713 0.490017i 0.163009π-0.163009\pi
308308 21.6569i 1.23401i
309309 0 0
310310 0 0
311311 −34.6274 −1.96354 −0.981770 0.190071i 0.939128π-0.939128\pi
−0.981770 + 0.190071i 0.939128π0.939128\pi
312312 0 0
313313 − 6.00000i − 0.339140i −0.985518 0.169570i 0.945762π-0.945762\pi
0.985518 0.169570i 0.0542379π-0.0542379\pi
314314 24.1421 1.36242
315315 0 0
316316 43.3137 2.43659
317317 8.48528i 0.476581i 0.971194 + 0.238290i 0.0765870π0.0765870\pi
−0.971194 + 0.238290i 0.923413π0.923413\pi
318318 0 0
319319 4.00000 0.223957
320320 0 0
321321 0 0
322322 − 27.3137i − 1.52213i
323323 − 10.3431i − 0.575508i
324324 0 0
325325 0 0
326326 31.7990 1.76118
327327 0 0
328328 47.7990i 2.63926i
329329 0.970563 0.0535089
330330 0 0
331331 −2.14214 −0.117742 −0.0588712 0.998266i 0.518750π-0.518750\pi
−0.0588712 + 0.998266i 0.518750π0.518750\pi
332332 29.3137i 1.60880i
333333 0 0
334334 18.4853 1.01147
335335 0 0
336336 0 0
337337 − 13.3137i − 0.725244i −0.931936 0.362622i 0.881882π-0.881882\pi
0.931936 0.362622i 0.118118π-0.118118\pi
338338 − 2.41421i − 0.131316i
339339 0 0
340340 0 0
341341 −13.6569 −0.739560
342342 0 0
343343 − 16.9706i − 0.916324i
344344 −42.6274 −2.29832
345345 0 0
346346 0.828427 0.0445365
347347 31.3137i 1.68101i 0.541805 + 0.840504i 0.317741π0.317741\pi
−0.541805 + 0.840504i 0.682259π0.682259\pi
348348 0 0
349349 7.65685 0.409862 0.204931 0.978776i 0.434303π-0.434303\pi
0.204931 + 0.978776i 0.434303π0.434303\pi
350350 0 0
351351 0 0
352352 − 3.17157i − 0.169045i
353353 17.4558i 0.929081i 0.885552 + 0.464540i 0.153780π0.153780\pi
−0.885552 + 0.464540i 0.846220π0.846220\pi
354354 0 0
355355 0 0
356356 −35.1127 −1.86097
357357 0 0
358358 − 1.65685i − 0.0875675i
359359 1.02944 0.0543316 0.0271658 0.999631i 0.491352π-0.491352\pi
0.0271658 + 0.999631i 0.491352π0.491352\pi
360360 0 0
361361 −11.0000 −0.578947
362362 33.7990i 1.77644i
363363 0 0
364364 −10.8284 −0.567564
365365 0 0
366366 0 0
367367 − 24.0000i − 1.25279i −0.779506 0.626395i 0.784530π-0.784530\pi
0.779506 0.626395i 0.215470π-0.215470\pi
368368 − 12.0000i − 0.625543i
369369 0 0
370370 0 0
371371 −5.65685 −0.293689
372372 0 0
373373 − 10.0000i − 0.517780i −0.965907 0.258890i 0.916643π-0.916643\pi
0.965907 0.258890i 0.0833568π-0.0833568\pi
374374 −17.6569 −0.913014
375375 0 0
376376 1.51472 0.0781156
377377 2.00000i 0.103005i
378378 0 0
379379 16.4853 0.846792 0.423396 0.905945i 0.360838π-0.360838\pi
0.423396 + 0.905945i 0.360838π0.360838\pi
380380 0 0
381381 0 0
382382 46.6274i 2.38567i
383383 − 2.97056i − 0.151789i −0.997116 0.0758943i 0.975819π-0.975819\pi
0.997116 0.0758943i 0.0241812π-0.0241812\pi
384384 0 0
385385 0 0
386386 −41.7990 −2.12751
387387 0 0
388388 29.3137i 1.48818i
389389 6.97056 0.353422 0.176711 0.984263i 0.443454π-0.443454\pi
0.176711 + 0.984263i 0.443454π0.443454\pi
390390 0 0
391391 14.6274 0.739740
392392 4.41421i 0.222951i
393393 0 0
394394 −39.7990 −2.00504
395395 0 0
396396 0 0
397397 − 2.97056i − 0.149088i −0.997218 0.0745441i 0.976250π-0.976250\pi
0.997218 0.0745441i 0.0237502π-0.0237502\pi
398398 − 24.9706i − 1.25166i
399399 0 0
400400 0 0
401401 2.14214 0.106973 0.0534866 0.998569i 0.482967π-0.482967\pi
0.0534866 + 0.998569i 0.482967π0.482967\pi
402402 0 0
403403 − 6.82843i − 0.340148i
404404 −14.0000 −0.696526
405405 0 0
406406 13.6569 0.677778
407407 7.31371i 0.362527i
408408 0 0
409409 1.02944 0.0509024 0.0254512 0.999676i 0.491898π-0.491898\pi
0.0254512 + 0.999676i 0.491898π0.491898\pi
410410 0 0
411411 0 0
412412 52.2843i 2.57586i
413413 10.3431i 0.508953i
414414 0 0
415415 0 0
416416 1.58579 0.0777496
417417 0 0
418418 − 13.6569i − 0.667979i
419419 −30.6274 −1.49625 −0.748124 0.663559i 0.769045π-0.769045\pi
−0.748124 + 0.663559i 0.769045π0.769045\pi
420420 0 0
421421 14.6863 0.715766 0.357883 0.933766i 0.383499π-0.383499\pi
0.357883 + 0.933766i 0.383499π0.383499\pi
422422 − 28.9706i − 1.41026i
423423 0 0
424424 −8.82843 −0.428746
425425 0 0
426426 0 0
427427 26.3431i 1.27483i
428428 43.3137i 2.09365i
429429 0 0
430430 0 0
431431 −19.6569 −0.946837 −0.473419 0.880838i 0.656980π-0.656980\pi
−0.473419 + 0.880838i 0.656980π0.656980\pi
432432 0 0
433433 − 1.31371i − 0.0631328i −0.999502 0.0315664i 0.989950π-0.989950\pi
0.999502 0.0315664i 0.0100496π-0.0100496\pi
434434 −46.6274 −2.23819
435435 0 0
436436 −66.2843 −3.17444
437437 11.3137i 0.541208i
438438 0 0
439439 16.9706 0.809961 0.404980 0.914325i 0.367278π-0.367278\pi
0.404980 + 0.914325i 0.367278π0.367278\pi
440440 0 0
441441 0 0
442442 − 8.82843i − 0.419925i
443443 41.9411i 1.99268i 0.0854611 + 0.996342i 0.472764π0.472764\pi
−0.0854611 + 0.996342i 0.527236π0.527236\pi
444444 0 0
445445 0 0
446446 10.8284 0.512741
447447 0 0
448448 − 27.7990i − 1.31338i
449449 7.79899 0.368057 0.184029 0.982921i 0.441086π-0.441086\pi
0.184029 + 0.982921i 0.441086π0.441086\pi
450450 0 0
451451 −21.6569 −1.01978
452452 − 66.2843i − 3.11775i
453453 0 0
454454 12.8284 0.602068
455455 0 0
456456 0 0
457457 3.65685i 0.171060i 0.996336 + 0.0855302i 0.0272584π0.0272584\pi
−0.996336 + 0.0855302i 0.972742π0.972742\pi
458458 − 51.4558i − 2.40437i
459459 0 0
460460 0 0
461461 −10.8284 −0.504330 −0.252165 0.967684i 0.581143π-0.581143\pi
−0.252165 + 0.967684i 0.581143π0.581143\pi
462462 0 0
463463 7.51472i 0.349239i 0.984636 + 0.174619i 0.0558695π0.0558695\pi
−0.984636 + 0.174619i 0.944131π0.944131\pi
464464 6.00000 0.278543
465465 0 0
466466 65.1127 3.01629
467467 8.00000i 0.370196i 0.982720 + 0.185098i 0.0592602π0.0592602\pi
−0.982720 + 0.185098i 0.940740π0.940740\pi
468468 0 0
469469 3.31371 0.153013
470470 0 0
471471 0 0
472472 16.1421i 0.743002i
473473 − 19.3137i − 0.888045i
474474 0 0
475475 0 0
476476 −39.5980 −1.81497
477477 0 0
478478 4.82843i 0.220847i
479479 2.68629 0.122740 0.0613699 0.998115i 0.480453π-0.480453\pi
0.0613699 + 0.998115i 0.480453π0.480453\pi
480480 0 0
481481 −3.65685 −0.166738
482482 28.1421i 1.28184i
483483 0 0
484484 26.7990 1.21814
485485 0 0
486486 0 0
487487 31.7990i 1.44095i 0.693481 + 0.720475i 0.256076π0.256076\pi
−0.693481 + 0.720475i 0.743924π0.743924\pi
488488 41.1127i 1.86108i
489489 0 0
490490 0 0
491491 14.6274 0.660126 0.330063 0.943959i 0.392930π-0.392930\pi
0.330063 + 0.943959i 0.392930π0.392930\pi
492492 0 0
493493 7.31371i 0.329393i
494494 6.82843 0.307225
495495 0 0
496496 −20.4853 −0.919816
497497 5.65685i 0.253745i
498498 0 0
499499 2.14214 0.0958952 0.0479476 0.998850i 0.484732π-0.484732\pi
0.0479476 + 0.998850i 0.484732π0.484732\pi
500500 0 0
501501 0 0
502502 0 0
503503 15.3137i 0.682805i 0.939917 + 0.341402i 0.110902π0.110902\pi
−0.939917 + 0.341402i 0.889098π0.889098\pi
504504 0 0
505505 0 0
506506 19.3137 0.858599
507507 0 0
508508 21.6569i 0.960868i
509509 −27.7990 −1.23217 −0.616084 0.787680i 0.711282π-0.711282\pi
−0.616084 + 0.787680i 0.711282π0.711282\pi
510510 0 0
511511 −32.9706 −1.45853
512512 − 31.2426i − 1.38074i
513513 0 0
514514 −37.7990 −1.66724
515515 0 0
516516 0 0
517517 0.686292i 0.0301831i
518518 24.9706i 1.09714i
519519 0 0
520520 0 0
521521 −2.68629 −0.117689 −0.0588443 0.998267i 0.518742π-0.518742\pi
−0.0588443 + 0.998267i 0.518742π0.518742\pi
522522 0 0
523523 − 7.31371i − 0.319806i −0.987133 0.159903i 0.948882π-0.948882\pi
0.987133 0.159903i 0.0511182π-0.0511182\pi
524524 −30.6274 −1.33796
525525 0 0
526526 −28.9706 −1.26318
527527 − 24.9706i − 1.08773i
528528 0 0
529529 7.00000 0.304348
530530 0 0
531531 0 0
532532 − 30.6274i − 1.32787i
533533 − 10.8284i − 0.469031i
534534 0 0
535535 0 0
536536 5.17157 0.223378
537537 0 0
538538 43.4558i 1.87351i
539539 −2.00000 −0.0861461
540540 0 0
541541 10.0000 0.429934 0.214967 0.976621i 0.431036π-0.431036\pi
0.214967 + 0.976621i 0.431036π0.431036\pi
542542 28.4853i 1.22355i
543543 0 0
544544 5.79899 0.248630
545545 0 0
546546 0 0
547547 0.686292i 0.0293437i 0.999892 + 0.0146719i 0.00467036π0.00467036\pi
−0.999892 + 0.0146719i 0.995330π0.995330\pi
548548 − 19.7990i − 0.845771i
549549 0 0
550550 0 0
551551 −5.65685 −0.240990
552552 0 0
553553 32.0000i 1.36078i
554554 4.82843 0.205140
555555 0 0
556556 58.6274 2.48636
557557 − 31.7990i − 1.34737i −0.739020 0.673683i 0.764711π-0.764711\pi
0.739020 0.673683i 0.235289π-0.235289\pi
558558 0 0
559559 9.65685 0.408441
560560 0 0
561561 0 0
562562 − 64.7696i − 2.73214i
563563 4.00000i 0.168580i 0.996441 + 0.0842900i 0.0268622π0.0268622\pi
−0.996441 + 0.0842900i 0.973138π0.973138\pi
564564 0 0
565565 0 0
566566 −12.0000 −0.504398
567567 0 0
568568 8.82843i 0.370433i
569569 −9.02944 −0.378534 −0.189267 0.981926i 0.560611π-0.560611\pi
−0.189267 + 0.981926i 0.560611π0.560611\pi
570570 0 0
571571 20.9706 0.877591 0.438795 0.898587i 0.355405π-0.355405\pi
0.438795 + 0.898587i 0.355405π0.355405\pi
572572 − 7.65685i − 0.320149i
573573 0 0
574574 −73.9411 −3.08624
575575 0 0
576576 0 0
577577 35.9411i 1.49625i 0.663559 + 0.748124i 0.269045π0.269045\pi
−0.663559 + 0.748124i 0.730955π0.730955\pi
578578 8.75736i 0.364258i
579579 0 0
580580 0 0
581581 −21.6569 −0.898478
582582 0 0
583583 − 4.00000i − 0.165663i
584584 −51.4558 −2.12926
585585 0 0
586586 63.1127 2.60716
587587 − 22.9706i − 0.948097i −0.880499 0.474048i 0.842792π-0.842792\pi
0.880499 0.474048i 0.157208π-0.157208\pi
588588 0 0
589589 19.3137 0.795807
590590 0 0
591591 0 0
592592 10.9706i 0.450887i
593593 − 3.51472i − 0.144332i −0.997393 0.0721661i 0.977009π-0.977009\pi
0.997393 0.0721661i 0.0229912π-0.0229912\pi
594594 0 0
595595 0 0
596596 56.7696 2.32537
597597 0 0
598598 9.65685i 0.394898i
599599 −0.686292 −0.0280411 −0.0140206 0.999902i 0.504463π-0.504463\pi
−0.0140206 + 0.999902i 0.504463π0.504463\pi
600600 0 0
601601 44.6274 1.82039 0.910195 0.414180i 0.135931π-0.135931\pi
0.910195 + 0.414180i 0.135931π0.135931\pi
602602 − 65.9411i − 2.68756i
603603 0 0
604604 78.4264 3.19113
605605 0 0
606606 0 0
607607 − 25.9411i − 1.05292i −0.850201 0.526459i 0.823519π-0.823519\pi
0.850201 0.526459i 0.176481π-0.176481\pi
608608 4.48528i 0.181902i
609609 0 0
610610 0 0
611611 −0.343146 −0.0138822
612612 0 0
613613 36.3431i 1.46789i 0.679211 + 0.733943i 0.262322π0.262322\pi
−0.679211 + 0.733943i 0.737678π0.737678\pi
614614 41.4558 1.67302
615615 0 0
616616 −24.9706 −1.00609
617617 29.1716i 1.17440i 0.809441 + 0.587202i 0.199770π0.199770\pi
−0.809441 + 0.587202i 0.800230π0.800230\pi
618618 0 0
619619 15.7990 0.635015 0.317508 0.948256i 0.397154π-0.397154\pi
0.317508 + 0.948256i 0.397154π0.397154\pi
620620 0 0
621621 0 0
622622 − 83.5980i − 3.35197i
623623 − 25.9411i − 1.03931i
624624 0 0
625625 0 0
626626 14.4853 0.578948
627627 0 0
628628 38.2843i 1.52771i
629629 −13.3726 −0.533200
630630 0 0
631631 −19.1127 −0.760865 −0.380432 0.924809i 0.624225π-0.624225\pi
−0.380432 + 0.924809i 0.624225π0.624225\pi
632632 49.9411i 1.98655i
633633 0 0
634634 −20.4853 −0.813574
635635 0 0
636636 0 0
637637 − 1.00000i − 0.0396214i
638638 9.65685i 0.382319i
639639 0 0
640640 0 0
641641 26.2843 1.03817 0.519083 0.854724i 0.326273π-0.326273\pi
0.519083 + 0.854724i 0.326273π0.326273\pi
642642 0 0
643643 − 17.1716i − 0.677181i −0.940934 0.338590i 0.890050π-0.890050\pi
0.940934 0.338590i 0.109950π-0.109950\pi
644644 43.3137 1.70680
645645 0 0
646646 24.9706 0.982454
647647 11.3137i 0.444788i 0.974957 + 0.222394i 0.0713871π0.0713871\pi
−0.974957 + 0.222394i 0.928613π0.928613\pi
648648 0 0
649649 −7.31371 −0.287088
650650 0 0
651651 0 0
652652 50.4264i 1.97485i
653653 − 2.68629i − 0.105123i −0.998618 0.0525614i 0.983261π-0.983261\pi
0.998618 0.0525614i 0.0167385π-0.0167385\pi
654654 0 0
655655 0 0
656656 −32.4853 −1.26834
657657 0 0
658658 2.34315i 0.0913453i
659659 −24.6863 −0.961641 −0.480821 0.876819i 0.659661π-0.659661\pi
−0.480821 + 0.876819i 0.659661π0.659661\pi
660660 0 0
661661 −1.02944 −0.0400405 −0.0200202 0.999800i 0.506373π-0.506373\pi
−0.0200202 + 0.999800i 0.506373π0.506373\pi
662662 − 5.17157i − 0.200999i
663663 0 0
664664 −33.7990 −1.31166
665665 0 0
666666 0 0
667667 − 8.00000i − 0.309761i
668668 29.3137i 1.13418i
669669 0 0
670670 0 0
671671 −18.6274 −0.719103
672672 0 0
673673 28.6274i 1.10351i 0.834008 + 0.551753i 0.186041π0.186041\pi
−0.834008 + 0.551753i 0.813959π0.813959\pi
674674 32.1421 1.23807
675675 0 0
676676 3.82843 0.147247
677677 − 49.3137i − 1.89528i −0.319341 0.947640i 0.603462π-0.603462\pi
0.319341 0.947640i 0.396538π-0.396538\pi
678678 0 0
679679 −21.6569 −0.831114
680680 0 0
681681 0 0
682682 − 32.9706i − 1.26251i
683683 − 19.9411i − 0.763026i −0.924363 0.381513i 0.875403π-0.875403\pi
0.924363 0.381513i 0.124597π-0.124597\pi
684684 0 0
685685 0 0
686686 40.9706 1.56426
687687 0 0
688688 − 28.9706i − 1.10449i
689689 2.00000 0.0761939
690690 0 0
691691 −34.1421 −1.29883 −0.649414 0.760435i 0.724986π-0.724986\pi
−0.649414 + 0.760435i 0.724986π0.724986\pi
692692 1.31371i 0.0499397i
693693 0 0
694694 −75.5980 −2.86966
695695 0 0
696696 0 0
697697 − 39.5980i − 1.49988i
698698 18.4853i 0.699678i
699699 0 0
700700 0 0
701701 −38.9706 −1.47190 −0.735949 0.677037i 0.763264π-0.763264\pi
−0.735949 + 0.677037i 0.763264π0.763264\pi
702702 0 0
703703 − 10.3431i − 0.390099i
704704 19.6569 0.740846
705705 0 0
706706 −42.1421 −1.58604
707707 − 10.3431i − 0.388994i
708708 0 0
709709 −40.6274 −1.52579 −0.762897 0.646520i 0.776224π-0.776224\pi
−0.762897 + 0.646520i 0.776224π0.776224\pi
710710 0 0
711711 0 0
712712 − 40.4853i − 1.51725i
713713 27.3137i 1.02291i
714714 0 0
715715 0 0
716716 2.62742 0.0981912
717717 0 0
718718 2.48528i 0.0927499i
719719 37.9411 1.41497 0.707483 0.706731i 0.249831π-0.249831\pi
0.707483 + 0.706731i 0.249831π0.249831\pi
720720 0 0
721721 −38.6274 −1.43856
722722 − 26.5563i − 0.988325i
723723 0 0
724724 −53.5980 −1.99195
725725 0 0
726726 0 0
727727 − 21.6569i − 0.803208i −0.915813 0.401604i 0.868453π-0.868453\pi
0.915813 0.401604i 0.131547π-0.131547\pi
728728 − 12.4853i − 0.462735i
729729 0 0
730730 0 0
731731 35.3137 1.30612
732732 0 0
733733 − 8.62742i − 0.318661i −0.987225 0.159330i 0.949066π-0.949066\pi
0.987225 0.159330i 0.0509335π-0.0509335\pi
734734 57.9411 2.13865
735735 0 0
736736 −6.34315 −0.233811
737737 2.34315i 0.0863109i
738738 0 0
739739 −10.1421 −0.373084 −0.186542 0.982447i 0.559728π-0.559728\pi
−0.186542 + 0.982447i 0.559728π0.559728\pi
740740 0 0
741741 0 0
742742 − 13.6569i − 0.501359i
743743 2.00000i 0.0733729i 0.999327 + 0.0366864i 0.0116803π0.0116803\pi
−0.999327 + 0.0366864i 0.988320π0.988320\pi
744744 0 0
745745 0 0
746746 24.1421 0.883906
747747 0 0
748748 − 28.0000i − 1.02378i
749749 −32.0000 −1.16925
750750 0 0
751751 32.9706 1.20311 0.601556 0.798830i 0.294547π-0.294547\pi
0.601556 + 0.798830i 0.294547π0.294547\pi
752752 1.02944i 0.0375397i
753753 0 0
754754 −4.82843 −0.175841
755755 0 0
756756 0 0
757757 − 15.9411i − 0.579390i −0.957119 0.289695i 0.906446π-0.906446\pi
0.957119 0.289695i 0.0935539π-0.0935539\pi
758758 39.7990i 1.44556i
759759 0 0
760760 0 0
761761 −15.5147 −0.562408 −0.281204 0.959648i 0.590734π-0.590734\pi
−0.281204 + 0.959648i 0.590734π0.590734\pi
762762 0 0
763763 − 48.9706i − 1.77285i
764764 −73.9411 −2.67510
765765 0 0
766766 7.17157 0.259119
767767 − 3.65685i − 0.132041i
768768 0 0
769769 −42.0000 −1.51456 −0.757279 0.653091i 0.773472π-0.773472\pi
−0.757279 + 0.653091i 0.773472π0.773472\pi
770770 0 0
771771 0 0
772772 − 66.2843i − 2.38562i
773773 5.85786i 0.210693i 0.994436 + 0.105346i 0.0335951π0.0335951\pi
−0.994436 + 0.105346i 0.966405π0.966405\pi
774774 0 0
775775 0 0
776776 −33.7990 −1.21331
777777 0 0
778778 16.8284i 0.603328i
779779 30.6274 1.09734
780780 0 0
781781 −4.00000 −0.143131
782782 35.3137i 1.26282i
783783 0 0
784784 −3.00000 −0.107143
785785 0 0
786786 0 0
787787 32.7696i 1.16811i 0.811715 + 0.584054i 0.198534π0.198534\pi
−0.811715 + 0.584054i 0.801466π0.801466\pi
788788 − 63.1127i − 2.24830i
789789 0 0
790790 0 0
791791 48.9706 1.74119
792792 0 0
793793 − 9.31371i − 0.330739i
794794 7.17157 0.254510
795795 0 0
796796 39.5980 1.40351
797797 − 35.6569i − 1.26303i −0.775363 0.631515i 0.782433π-0.782433\pi
0.775363 0.631515i 0.217567π-0.217567\pi
798798 0 0
799799 −1.25483 −0.0443928
800800 0 0
801801 0 0
802802 5.17157i 0.182615i
803803 − 23.3137i − 0.822723i
804804 0 0
805805 0 0
806806 16.4853 0.580669
807807 0 0
808808 − 16.1421i − 0.567878i
809809 41.3137 1.45251 0.726256 0.687424i 0.241259π-0.241259\pi
0.726256 + 0.687424i 0.241259π0.241259\pi
810810 0 0
811811 −1.85786 −0.0652384 −0.0326192 0.999468i 0.510385π-0.510385\pi
−0.0326192 + 0.999468i 0.510385π0.510385\pi
812812 21.6569i 0.760007i
813813 0 0
814814 −17.6569 −0.618872
815815 0 0
816816 0 0
817817 27.3137i 0.955586i
818818 2.48528i 0.0868958i
819819 0 0
820820 0 0
821821 −15.7990 −0.551389 −0.275694 0.961245i 0.588908π-0.588908\pi
−0.275694 + 0.961245i 0.588908π0.588908\pi
822822 0 0
823823 − 48.9706i − 1.70701i −0.521088 0.853503i 0.674473π-0.674473\pi
0.521088 0.853503i 0.325527π-0.325527\pi
824824 −60.2843 −2.10010
825825 0 0
826826 −24.9706 −0.868837
827827 26.0000i 0.904109i 0.891990 + 0.452054i 0.149309π0.149309\pi
−0.891990 + 0.452054i 0.850691π0.850691\pi
828828 0 0
829829 −5.31371 −0.184553 −0.0922764 0.995733i 0.529414π-0.529414\pi
−0.0922764 + 0.995733i 0.529414π0.529414\pi
830830 0 0
831831 0 0
832832 9.82843i 0.340739i
833833 − 3.65685i − 0.126702i
834834 0 0
835835 0 0
836836 21.6569 0.749018
837837 0 0
838838 − 73.9411i − 2.55425i
839839 −47.2548 −1.63142 −0.815709 0.578462i 0.803653π-0.803653\pi
−0.815709 + 0.578462i 0.803653π0.803653\pi
840840 0 0
841841 −25.0000 −0.862069
842842 35.4558i 1.22189i
843843 0 0
844844 45.9411 1.58136
845845 0 0
846846 0 0
847847 19.7990i 0.680301i
848848 − 6.00000i − 0.206041i
849849 0 0
850850 0 0
851851 14.6274 0.501421
852852 0 0
853853 7.65685i 0.262166i 0.991371 + 0.131083i 0.0418454π0.0418454\pi
−0.991371 + 0.131083i 0.958155π0.958155\pi
854854 −63.5980 −2.17628
855855 0 0
856856 −49.9411 −1.70695
857857 − 29.5980i − 1.01105i −0.862813 0.505524i 0.831299π-0.831299\pi
0.862813 0.505524i 0.168701π-0.168701\pi
858858 0 0
859859 23.3137 0.795453 0.397727 0.917504i 0.369799π-0.369799\pi
0.397727 + 0.917504i 0.369799π0.369799\pi
860860 0 0
861861 0 0
862862 − 47.4558i − 1.61635i
863863 − 39.6569i − 1.34994i −0.737847 0.674968i 0.764158π-0.764158\pi
0.737847 0.674968i 0.235842π-0.235842\pi
864864 0 0
865865 0 0
866866 3.17157 0.107774
867867 0 0
868868 − 73.9411i − 2.50973i
869869 −22.6274 −0.767583
870870 0 0
871871 −1.17157 −0.0396972
872872 − 76.4264i − 2.58812i
873873 0 0
874874 −27.3137 −0.923900
875875 0 0
876876 0 0
877877 − 14.2843i − 0.482346i −0.970482 0.241173i 0.922468π-0.922468\pi
0.970482 0.241173i 0.0775321π-0.0775321\pi
878878 40.9706i 1.38269i
879879 0 0
880880 0 0
881881 −53.5980 −1.80576 −0.902881 0.429891i 0.858552π-0.858552\pi
−0.902881 + 0.429891i 0.858552π0.858552\pi
882882 0 0
883883 51.5980i 1.73641i 0.496205 + 0.868205i 0.334726π0.334726\pi
−0.496205 + 0.868205i 0.665274π0.665274\pi
884884 14.0000 0.470871
885885 0 0
886886 −101.255 −3.40172
887887 8.00000i 0.268614i 0.990940 + 0.134307i 0.0428808π0.0428808\pi
−0.990940 + 0.134307i 0.957119π0.957119\pi
888888 0 0
889889 −16.0000 −0.536623
890890 0 0
891891 0 0
892892 17.1716i 0.574947i
893893 − 0.970563i − 0.0324786i
894894 0 0
895895 0 0
896896 58.1421 1.94239
897897 0 0
898898 18.8284i 0.628313i
899899 −13.6569 −0.455482
900900 0 0
901901 7.31371 0.243655
902902 − 52.2843i − 1.74088i
903903 0 0
904904 76.4264 2.54190
905905 0 0
906906 0 0
907907 20.9706i 0.696316i 0.937436 + 0.348158i 0.113193π0.113193\pi
−0.937436 + 0.348158i 0.886807π0.886807\pi
908908 20.3431i 0.675111i
909909 0 0
910910 0 0
911911 40.0000 1.32526 0.662630 0.748947i 0.269440π-0.269440\pi
0.662630 + 0.748947i 0.269440π0.269440\pi
912912 0 0
913913 − 15.3137i − 0.506810i
914914 −8.82843 −0.292018
915915 0 0
916916 81.5980 2.69607
917917 − 22.6274i − 0.747223i
918918 0 0
919919 19.3137 0.637100 0.318550 0.947906i 0.396804π-0.396804\pi
0.318550 + 0.947906i 0.396804π0.396804\pi
920920 0 0
921921 0 0
922922 − 26.1421i − 0.860945i
923923 − 2.00000i − 0.0658308i
924924 0 0
925925 0 0
926926 −18.1421 −0.596188
927927 0 0
928928 − 3.17157i − 0.104112i
929929 −27.7990 −0.912055 −0.456028 0.889966i 0.650728π-0.650728\pi
−0.456028 + 0.889966i 0.650728π0.650728\pi
930930 0 0
931931 2.82843 0.0926980
932932 103.255i 3.38222i
933933 0 0
934934 −19.3137 −0.631964
935935 0 0
936936 0 0
937937 1.31371i 0.0429170i 0.999770 + 0.0214585i 0.00683097π0.00683097\pi
−0.999770 + 0.0214585i 0.993169π0.993169\pi
938938 8.00000i 0.261209i
939939 0 0
940940 0 0
941941 −5.85786 −0.190961 −0.0954805 0.995431i 0.530439π-0.530439\pi
−0.0954805 + 0.995431i 0.530439π0.530439\pi
942942 0 0
943943 43.3137i 1.41049i
944944 −10.9706 −0.357061
945945 0 0
946946 46.6274 1.51599
947947 54.9706i 1.78630i 0.449756 + 0.893152i 0.351511π0.351511\pi
−0.449756 + 0.893152i 0.648489π0.648489\pi
948948 0 0
949949 11.6569 0.378398
950950 0 0
951951 0 0
952952 − 45.6569i − 1.47975i
953953 51.6569i 1.67333i 0.547715 + 0.836665i 0.315498π0.315498\pi
−0.547715 + 0.836665i 0.684502π0.684502\pi
954954 0 0
955955 0 0
956956 −7.65685 −0.247640
957957 0 0
958958 6.48528i 0.209530i
959959 14.6274 0.472344
960960 0 0
961961 15.6274 0.504110
962962 − 8.82843i − 0.284640i
963963 0 0
964964 −44.6274 −1.43735
965965 0 0
966966 0 0
967967 − 10.1421i − 0.326149i −0.986614 0.163075i 0.947859π-0.947859\pi
0.986614 0.163075i 0.0521411π-0.0521411\pi
968968 30.8995i 0.993147i
969969 0 0
970970 0 0
971971 −7.31371 −0.234708 −0.117354 0.993090i 0.537441π-0.537441\pi
−0.117354 + 0.993090i 0.537441π0.537441\pi
972972 0 0
973973 43.3137i 1.38857i
974974 −76.7696 −2.45986
975975 0 0
976976 −27.9411 −0.894374
977977 − 13.8579i − 0.443352i −0.975120 0.221676i 0.928847π-0.928847\pi
0.975120 0.221676i 0.0711528π-0.0711528\pi
978978 0 0
979979 18.3431 0.586249
980980 0 0
981981 0 0
982982 35.3137i 1.12691i
983983 2.68629i 0.0856794i 0.999082 + 0.0428397i 0.0136405π0.0136405\pi
−0.999082 + 0.0428397i 0.986360π0.986360\pi
984984 0 0
985985 0 0
986986 −17.6569 −0.562309
987987 0 0
988988 10.8284i 0.344498i
989989 −38.6274 −1.22828
990990 0 0
991991 27.3137 0.867649 0.433824 0.900998i 0.357164π-0.357164\pi
0.433824 + 0.900998i 0.357164π0.357164\pi
992992 10.8284i 0.343803i
993993 0 0
994994 −13.6569 −0.433169
995995 0 0
996996 0 0
997997 51.2548i 1.62326i 0.584174 + 0.811628i 0.301419π0.301419\pi
−0.584174 + 0.811628i 0.698581π0.698581\pi
998998 5.17157i 0.163703i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2925.2.c.u.2224.4 4
3.2 odd 2 975.2.c.h.274.1 4
5.2 odd 4 2925.2.a.v.1.1 2
5.3 odd 4 117.2.a.c.1.2 2
5.4 even 2 inner 2925.2.c.u.2224.1 4
15.2 even 4 975.2.a.l.1.2 2
15.8 even 4 39.2.a.b.1.1 2
15.14 odd 2 975.2.c.h.274.4 4
20.3 even 4 1872.2.a.w.1.1 2
35.13 even 4 5733.2.a.u.1.2 2
40.3 even 4 7488.2.a.co.1.2 2
40.13 odd 4 7488.2.a.cl.1.2 2
45.13 odd 12 1053.2.e.e.703.1 4
45.23 even 12 1053.2.e.m.703.2 4
45.38 even 12 1053.2.e.m.352.2 4
45.43 odd 12 1053.2.e.e.352.1 4
60.23 odd 4 624.2.a.k.1.2 2
65.8 even 4 1521.2.b.j.1351.4 4
65.18 even 4 1521.2.b.j.1351.1 4
65.38 odd 4 1521.2.a.f.1.1 2
105.83 odd 4 1911.2.a.h.1.1 2
120.53 even 4 2496.2.a.bf.1.1 2
120.83 odd 4 2496.2.a.bi.1.1 2
165.98 odd 4 4719.2.a.p.1.2 2
195.8 odd 4 507.2.b.e.337.1 4
195.23 even 12 507.2.e.d.22.1 4
195.38 even 4 507.2.a.h.1.2 2
195.68 even 12 507.2.e.h.22.2 4
195.83 odd 4 507.2.b.e.337.4 4
195.98 odd 12 507.2.j.f.361.1 8
195.113 even 12 507.2.e.h.484.2 4
195.128 odd 12 507.2.j.f.316.4 8
195.158 odd 12 507.2.j.f.316.1 8
195.173 even 12 507.2.e.d.484.1 4
195.188 odd 12 507.2.j.f.361.4 8
780.623 odd 4 8112.2.a.bm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.a.b.1.1 2 15.8 even 4
117.2.a.c.1.2 2 5.3 odd 4
507.2.a.h.1.2 2 195.38 even 4
507.2.b.e.337.1 4 195.8 odd 4
507.2.b.e.337.4 4 195.83 odd 4
507.2.e.d.22.1 4 195.23 even 12
507.2.e.d.484.1 4 195.173 even 12
507.2.e.h.22.2 4 195.68 even 12
507.2.e.h.484.2 4 195.113 even 12
507.2.j.f.316.1 8 195.158 odd 12
507.2.j.f.316.4 8 195.128 odd 12
507.2.j.f.361.1 8 195.98 odd 12
507.2.j.f.361.4 8 195.188 odd 12
624.2.a.k.1.2 2 60.23 odd 4
975.2.a.l.1.2 2 15.2 even 4
975.2.c.h.274.1 4 3.2 odd 2
975.2.c.h.274.4 4 15.14 odd 2
1053.2.e.e.352.1 4 45.43 odd 12
1053.2.e.e.703.1 4 45.13 odd 12
1053.2.e.m.352.2 4 45.38 even 12
1053.2.e.m.703.2 4 45.23 even 12
1521.2.a.f.1.1 2 65.38 odd 4
1521.2.b.j.1351.1 4 65.18 even 4
1521.2.b.j.1351.4 4 65.8 even 4
1872.2.a.w.1.1 2 20.3 even 4
1911.2.a.h.1.1 2 105.83 odd 4
2496.2.a.bf.1.1 2 120.53 even 4
2496.2.a.bi.1.1 2 120.83 odd 4
2925.2.a.v.1.1 2 5.2 odd 4
2925.2.c.u.2224.1 4 5.4 even 2 inner
2925.2.c.u.2224.4 4 1.1 even 1 trivial
4719.2.a.p.1.2 2 165.98 odd 4
5733.2.a.u.1.2 2 35.13 even 4
7488.2.a.cl.1.2 2 40.13 odd 4
7488.2.a.co.1.2 2 40.3 even 4
8112.2.a.bm.1.1 2 780.623 odd 4