Properties

Label 2925.2.c.u.2224.4
Level $2925$
Weight $2$
Character 2925.2224
Analytic conductor $23.356$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2925,2,Mod(2224,2925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2925.2224");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2224.4
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2925.2224
Dual form 2925.2.c.u.2224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421i q^{2} -3.82843 q^{4} -2.82843i q^{7} -4.41421i q^{8} +2.00000 q^{11} +1.00000i q^{13} +6.82843 q^{14} +3.00000 q^{16} +3.65685i q^{17} -2.82843 q^{19} +4.82843i q^{22} -4.00000i q^{23} -2.41421 q^{26} +10.8284i q^{28} +2.00000 q^{29} -6.82843 q^{31} -1.58579i q^{32} -8.82843 q^{34} +3.65685i q^{37} -6.82843i q^{38} -10.8284 q^{41} -9.65685i q^{43} -7.65685 q^{44} +9.65685 q^{46} +0.343146i q^{47} -1.00000 q^{49} -3.82843i q^{52} -2.00000i q^{53} -12.4853 q^{56} +4.82843i q^{58} -3.65685 q^{59} -9.31371 q^{61} -16.4853i q^{62} +9.82843 q^{64} +1.17157i q^{67} -14.0000i q^{68} -2.00000 q^{71} -11.6569i q^{73} -8.82843 q^{74} +10.8284 q^{76} -5.65685i q^{77} -11.3137 q^{79} -26.1421i q^{82} -7.65685i q^{83} +23.3137 q^{86} -8.82843i q^{88} +9.17157 q^{89} +2.82843 q^{91} +15.3137i q^{92} -0.828427 q^{94} -7.65685i q^{97} -2.41421i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 8 q^{11} + 16 q^{14} + 12 q^{16} - 4 q^{26} + 8 q^{29} - 16 q^{31} - 24 q^{34} - 32 q^{41} - 8 q^{44} + 16 q^{46} - 4 q^{49} - 16 q^{56} + 8 q^{59} + 8 q^{61} + 28 q^{64} - 8 q^{71} - 24 q^{74}+ \cdots + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421i 1.70711i 0.521005 + 0.853553i \(0.325557\pi\)
−0.521005 + 0.853553i \(0.674443\pi\)
\(3\) 0 0
\(4\) −3.82843 −1.91421
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.82843i − 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) − 4.41421i − 1.56066i
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 6.82843 1.82497
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 3.65685i 0.886917i 0.896295 + 0.443459i \(0.146249\pi\)
−0.896295 + 0.443459i \(0.853751\pi\)
\(18\) 0 0
\(19\) −2.82843 −0.648886 −0.324443 0.945905i \(-0.605177\pi\)
−0.324443 + 0.945905i \(0.605177\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.82843i 1.02942i
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.41421 −0.473466
\(27\) 0 0
\(28\) 10.8284i 2.04638i
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −6.82843 −1.22642 −0.613211 0.789919i \(-0.710122\pi\)
−0.613211 + 0.789919i \(0.710122\pi\)
\(32\) − 1.58579i − 0.280330i
\(33\) 0 0
\(34\) −8.82843 −1.51406
\(35\) 0 0
\(36\) 0 0
\(37\) 3.65685i 0.601183i 0.953753 + 0.300592i \(0.0971841\pi\)
−0.953753 + 0.300592i \(0.902816\pi\)
\(38\) − 6.82843i − 1.10772i
\(39\) 0 0
\(40\) 0 0
\(41\) −10.8284 −1.69112 −0.845558 0.533883i \(-0.820732\pi\)
−0.845558 + 0.533883i \(0.820732\pi\)
\(42\) 0 0
\(43\) − 9.65685i − 1.47266i −0.676625 0.736328i \(-0.736558\pi\)
0.676625 0.736328i \(-0.263442\pi\)
\(44\) −7.65685 −1.15431
\(45\) 0 0
\(46\) 9.65685 1.42383
\(47\) 0.343146i 0.0500530i 0.999687 + 0.0250265i \(0.00796701\pi\)
−0.999687 + 0.0250265i \(0.992033\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) − 3.82843i − 0.530907i
\(53\) − 2.00000i − 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.4853 −1.66842
\(57\) 0 0
\(58\) 4.82843i 0.634004i
\(59\) −3.65685 −0.476082 −0.238041 0.971255i \(-0.576505\pi\)
−0.238041 + 0.971255i \(0.576505\pi\)
\(60\) 0 0
\(61\) −9.31371 −1.19250 −0.596249 0.802799i \(-0.703343\pi\)
−0.596249 + 0.802799i \(0.703343\pi\)
\(62\) − 16.4853i − 2.09363i
\(63\) 0 0
\(64\) 9.82843 1.22855
\(65\) 0 0
\(66\) 0 0
\(67\) 1.17157i 0.143130i 0.997436 + 0.0715652i \(0.0227994\pi\)
−0.997436 + 0.0715652i \(0.977201\pi\)
\(68\) − 14.0000i − 1.69775i
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) − 11.6569i − 1.36433i −0.731198 0.682166i \(-0.761038\pi\)
0.731198 0.682166i \(-0.238962\pi\)
\(74\) −8.82843 −1.02628
\(75\) 0 0
\(76\) 10.8284 1.24211
\(77\) − 5.65685i − 0.644658i
\(78\) 0 0
\(79\) −11.3137 −1.27289 −0.636446 0.771321i \(-0.719596\pi\)
−0.636446 + 0.771321i \(0.719596\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 26.1421i − 2.88692i
\(83\) − 7.65685i − 0.840449i −0.907420 0.420224i \(-0.861951\pi\)
0.907420 0.420224i \(-0.138049\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 23.3137 2.51398
\(87\) 0 0
\(88\) − 8.82843i − 0.941113i
\(89\) 9.17157 0.972185 0.486092 0.873907i \(-0.338422\pi\)
0.486092 + 0.873907i \(0.338422\pi\)
\(90\) 0 0
\(91\) 2.82843 0.296500
\(92\) 15.3137i 1.59656i
\(93\) 0 0
\(94\) −0.828427 −0.0854457
\(95\) 0 0
\(96\) 0 0
\(97\) − 7.65685i − 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(98\) − 2.41421i − 0.243872i
\(99\) 0 0
\(100\) 0 0
\(101\) 3.65685 0.363871 0.181935 0.983311i \(-0.441764\pi\)
0.181935 + 0.983311i \(0.441764\pi\)
\(102\) 0 0
\(103\) − 13.6569i − 1.34565i −0.739802 0.672825i \(-0.765081\pi\)
0.739802 0.672825i \(-0.234919\pi\)
\(104\) 4.41421 0.432849
\(105\) 0 0
\(106\) 4.82843 0.468978
\(107\) − 11.3137i − 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) 0 0
\(109\) 17.3137 1.65835 0.829176 0.558987i \(-0.188810\pi\)
0.829176 + 0.558987i \(0.188810\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 8.48528i − 0.801784i
\(113\) 17.3137i 1.62874i 0.580348 + 0.814368i \(0.302916\pi\)
−0.580348 + 0.814368i \(0.697084\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −7.65685 −0.710921
\(117\) 0 0
\(118\) − 8.82843i − 0.812723i
\(119\) 10.3431 0.948155
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) − 22.4853i − 2.03572i
\(123\) 0 0
\(124\) 26.1421 2.34763
\(125\) 0 0
\(126\) 0 0
\(127\) − 5.65685i − 0.501965i −0.967992 0.250982i \(-0.919246\pi\)
0.967992 0.250982i \(-0.0807536\pi\)
\(128\) 20.5563i 1.81694i
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) −2.82843 −0.244339
\(135\) 0 0
\(136\) 16.1421 1.38418
\(137\) 5.17157i 0.441837i 0.975292 + 0.220919i \(0.0709055\pi\)
−0.975292 + 0.220919i \(0.929094\pi\)
\(138\) 0 0
\(139\) −15.3137 −1.29889 −0.649446 0.760408i \(-0.724999\pi\)
−0.649446 + 0.760408i \(0.724999\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 4.82843i − 0.405193i
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 0 0
\(146\) 28.1421 2.32906
\(147\) 0 0
\(148\) − 14.0000i − 1.15079i
\(149\) −14.8284 −1.21479 −0.607396 0.794399i \(-0.707786\pi\)
−0.607396 + 0.794399i \(0.707786\pi\)
\(150\) 0 0
\(151\) −20.4853 −1.66707 −0.833534 0.552468i \(-0.813686\pi\)
−0.833534 + 0.552468i \(0.813686\pi\)
\(152\) 12.4853i 1.01269i
\(153\) 0 0
\(154\) 13.6569 1.10050
\(155\) 0 0
\(156\) 0 0
\(157\) − 10.0000i − 0.798087i −0.916932 0.399043i \(-0.869342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(158\) − 27.3137i − 2.17296i
\(159\) 0 0
\(160\) 0 0
\(161\) −11.3137 −0.891645
\(162\) 0 0
\(163\) − 13.1716i − 1.03168i −0.856686 0.515839i \(-0.827480\pi\)
0.856686 0.515839i \(-0.172520\pi\)
\(164\) 41.4558 3.23716
\(165\) 0 0
\(166\) 18.4853 1.43474
\(167\) − 7.65685i − 0.592505i −0.955110 0.296253i \(-0.904263\pi\)
0.955110 0.296253i \(-0.0957370\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 36.9706i 2.81898i
\(173\) − 0.343146i − 0.0260889i −0.999915 0.0130444i \(-0.995848\pi\)
0.999915 0.0130444i \(-0.00415229\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) 22.1421i 1.65962i
\(179\) −0.686292 −0.0512958 −0.0256479 0.999671i \(-0.508165\pi\)
−0.0256479 + 0.999671i \(0.508165\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 6.82843i 0.506157i
\(183\) 0 0
\(184\) −17.6569 −1.30168
\(185\) 0 0
\(186\) 0 0
\(187\) 7.31371i 0.534831i
\(188\) − 1.31371i − 0.0958120i
\(189\) 0 0
\(190\) 0 0
\(191\) 19.3137 1.39749 0.698745 0.715370i \(-0.253742\pi\)
0.698745 + 0.715370i \(0.253742\pi\)
\(192\) 0 0
\(193\) 17.3137i 1.24627i 0.782115 + 0.623134i \(0.214141\pi\)
−0.782115 + 0.623134i \(0.785859\pi\)
\(194\) 18.4853 1.32717
\(195\) 0 0
\(196\) 3.82843 0.273459
\(197\) 16.4853i 1.17453i 0.809396 + 0.587264i \(0.199795\pi\)
−0.809396 + 0.587264i \(0.800205\pi\)
\(198\) 0 0
\(199\) −10.3431 −0.733206 −0.366603 0.930377i \(-0.619479\pi\)
−0.366603 + 0.930377i \(0.619479\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 8.82843i 0.621166i
\(203\) − 5.65685i − 0.397033i
\(204\) 0 0
\(205\) 0 0
\(206\) 32.9706 2.29717
\(207\) 0 0
\(208\) 3.00000i 0.208013i
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 7.65685i 0.525875i
\(213\) 0 0
\(214\) 27.3137 1.86713
\(215\) 0 0
\(216\) 0 0
\(217\) 19.3137i 1.31110i
\(218\) 41.7990i 2.83098i
\(219\) 0 0
\(220\) 0 0
\(221\) −3.65685 −0.245987
\(222\) 0 0
\(223\) − 4.48528i − 0.300357i −0.988659 0.150178i \(-0.952015\pi\)
0.988659 0.150178i \(-0.0479848\pi\)
\(224\) −4.48528 −0.299685
\(225\) 0 0
\(226\) −41.7990 −2.78043
\(227\) − 5.31371i − 0.352683i −0.984329 0.176342i \(-0.943574\pi\)
0.984329 0.176342i \(-0.0564263\pi\)
\(228\) 0 0
\(229\) −21.3137 −1.40845 −0.704225 0.709977i \(-0.748705\pi\)
−0.704225 + 0.709977i \(0.748705\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 8.82843i − 0.579615i
\(233\) − 26.9706i − 1.76690i −0.468525 0.883450i \(-0.655214\pi\)
0.468525 0.883450i \(-0.344786\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.0000 0.911322
\(237\) 0 0
\(238\) 24.9706i 1.61860i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 11.6569 0.750884 0.375442 0.926846i \(-0.377491\pi\)
0.375442 + 0.926846i \(0.377491\pi\)
\(242\) − 16.8995i − 1.08634i
\(243\) 0 0
\(244\) 35.6569 2.28270
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.82843i − 0.179969i
\(248\) 30.1421i 1.91403i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) − 8.00000i − 0.502956i
\(254\) 13.6569 0.856907
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 15.6569i 0.976648i 0.872662 + 0.488324i \(0.162392\pi\)
−0.872662 + 0.488324i \(0.837608\pi\)
\(258\) 0 0
\(259\) 10.3431 0.642692
\(260\) 0 0
\(261\) 0 0
\(262\) 19.3137i 1.19320i
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −19.3137 −1.18420
\(267\) 0 0
\(268\) − 4.48528i − 0.273982i
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 11.7990 0.716738 0.358369 0.933580i \(-0.383333\pi\)
0.358369 + 0.933580i \(0.383333\pi\)
\(272\) 10.9706i 0.665188i
\(273\) 0 0
\(274\) −12.4853 −0.754263
\(275\) 0 0
\(276\) 0 0
\(277\) − 2.00000i − 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) − 36.9706i − 2.21735i
\(279\) 0 0
\(280\) 0 0
\(281\) −26.8284 −1.60045 −0.800225 0.599700i \(-0.795287\pi\)
−0.800225 + 0.599700i \(0.795287\pi\)
\(282\) 0 0
\(283\) 4.97056i 0.295469i 0.989027 + 0.147735i \(0.0471982\pi\)
−0.989027 + 0.147735i \(0.952802\pi\)
\(284\) 7.65685 0.454351
\(285\) 0 0
\(286\) −4.82843 −0.285511
\(287\) 30.6274i 1.80788i
\(288\) 0 0
\(289\) 3.62742 0.213377
\(290\) 0 0
\(291\) 0 0
\(292\) 44.6274i 2.61162i
\(293\) − 26.1421i − 1.52724i −0.645666 0.763620i \(-0.723420\pi\)
0.645666 0.763620i \(-0.276580\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 16.1421 0.938243
\(297\) 0 0
\(298\) − 35.7990i − 2.07378i
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −27.3137 −1.57434
\(302\) − 49.4558i − 2.84586i
\(303\) 0 0
\(304\) −8.48528 −0.486664
\(305\) 0 0
\(306\) 0 0
\(307\) − 17.1716i − 0.980033i −0.871713 0.490017i \(-0.836991\pi\)
0.871713 0.490017i \(-0.163009\pi\)
\(308\) 21.6569i 1.23401i
\(309\) 0 0
\(310\) 0 0
\(311\) −34.6274 −1.96354 −0.981770 0.190071i \(-0.939128\pi\)
−0.981770 + 0.190071i \(0.939128\pi\)
\(312\) 0 0
\(313\) − 6.00000i − 0.339140i −0.985518 0.169570i \(-0.945762\pi\)
0.985518 0.169570i \(-0.0542379\pi\)
\(314\) 24.1421 1.36242
\(315\) 0 0
\(316\) 43.3137 2.43659
\(317\) 8.48528i 0.476581i 0.971194 + 0.238290i \(0.0765870\pi\)
−0.971194 + 0.238290i \(0.923413\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) − 27.3137i − 1.52213i
\(323\) − 10.3431i − 0.575508i
\(324\) 0 0
\(325\) 0 0
\(326\) 31.7990 1.76118
\(327\) 0 0
\(328\) 47.7990i 2.63926i
\(329\) 0.970563 0.0535089
\(330\) 0 0
\(331\) −2.14214 −0.117742 −0.0588712 0.998266i \(-0.518750\pi\)
−0.0588712 + 0.998266i \(0.518750\pi\)
\(332\) 29.3137i 1.60880i
\(333\) 0 0
\(334\) 18.4853 1.01147
\(335\) 0 0
\(336\) 0 0
\(337\) − 13.3137i − 0.725244i −0.931936 0.362622i \(-0.881882\pi\)
0.931936 0.362622i \(-0.118118\pi\)
\(338\) − 2.41421i − 0.131316i
\(339\) 0 0
\(340\) 0 0
\(341\) −13.6569 −0.739560
\(342\) 0 0
\(343\) − 16.9706i − 0.916324i
\(344\) −42.6274 −2.29832
\(345\) 0 0
\(346\) 0.828427 0.0445365
\(347\) 31.3137i 1.68101i 0.541805 + 0.840504i \(0.317741\pi\)
−0.541805 + 0.840504i \(0.682259\pi\)
\(348\) 0 0
\(349\) 7.65685 0.409862 0.204931 0.978776i \(-0.434303\pi\)
0.204931 + 0.978776i \(0.434303\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 3.17157i − 0.169045i
\(353\) 17.4558i 0.929081i 0.885552 + 0.464540i \(0.153780\pi\)
−0.885552 + 0.464540i \(0.846220\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −35.1127 −1.86097
\(357\) 0 0
\(358\) − 1.65685i − 0.0875675i
\(359\) 1.02944 0.0543316 0.0271658 0.999631i \(-0.491352\pi\)
0.0271658 + 0.999631i \(0.491352\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 33.7990i 1.77644i
\(363\) 0 0
\(364\) −10.8284 −0.567564
\(365\) 0 0
\(366\) 0 0
\(367\) − 24.0000i − 1.25279i −0.779506 0.626395i \(-0.784530\pi\)
0.779506 0.626395i \(-0.215470\pi\)
\(368\) − 12.0000i − 0.625543i
\(369\) 0 0
\(370\) 0 0
\(371\) −5.65685 −0.293689
\(372\) 0 0
\(373\) − 10.0000i − 0.517780i −0.965907 0.258890i \(-0.916643\pi\)
0.965907 0.258890i \(-0.0833568\pi\)
\(374\) −17.6569 −0.913014
\(375\) 0 0
\(376\) 1.51472 0.0781156
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 16.4853 0.846792 0.423396 0.905945i \(-0.360838\pi\)
0.423396 + 0.905945i \(0.360838\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 46.6274i 2.38567i
\(383\) − 2.97056i − 0.151789i −0.997116 0.0758943i \(-0.975819\pi\)
0.997116 0.0758943i \(-0.0241812\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −41.7990 −2.12751
\(387\) 0 0
\(388\) 29.3137i 1.48818i
\(389\) 6.97056 0.353422 0.176711 0.984263i \(-0.443454\pi\)
0.176711 + 0.984263i \(0.443454\pi\)
\(390\) 0 0
\(391\) 14.6274 0.739740
\(392\) 4.41421i 0.222951i
\(393\) 0 0
\(394\) −39.7990 −2.00504
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.97056i − 0.149088i −0.997218 0.0745441i \(-0.976250\pi\)
0.997218 0.0745441i \(-0.0237502\pi\)
\(398\) − 24.9706i − 1.25166i
\(399\) 0 0
\(400\) 0 0
\(401\) 2.14214 0.106973 0.0534866 0.998569i \(-0.482967\pi\)
0.0534866 + 0.998569i \(0.482967\pi\)
\(402\) 0 0
\(403\) − 6.82843i − 0.340148i
\(404\) −14.0000 −0.696526
\(405\) 0 0
\(406\) 13.6569 0.677778
\(407\) 7.31371i 0.362527i
\(408\) 0 0
\(409\) 1.02944 0.0509024 0.0254512 0.999676i \(-0.491898\pi\)
0.0254512 + 0.999676i \(0.491898\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 52.2843i 2.57586i
\(413\) 10.3431i 0.508953i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.58579 0.0777496
\(417\) 0 0
\(418\) − 13.6569i − 0.667979i
\(419\) −30.6274 −1.49625 −0.748124 0.663559i \(-0.769045\pi\)
−0.748124 + 0.663559i \(0.769045\pi\)
\(420\) 0 0
\(421\) 14.6863 0.715766 0.357883 0.933766i \(-0.383499\pi\)
0.357883 + 0.933766i \(0.383499\pi\)
\(422\) − 28.9706i − 1.41026i
\(423\) 0 0
\(424\) −8.82843 −0.428746
\(425\) 0 0
\(426\) 0 0
\(427\) 26.3431i 1.27483i
\(428\) 43.3137i 2.09365i
\(429\) 0 0
\(430\) 0 0
\(431\) −19.6569 −0.946837 −0.473419 0.880838i \(-0.656980\pi\)
−0.473419 + 0.880838i \(0.656980\pi\)
\(432\) 0 0
\(433\) − 1.31371i − 0.0631328i −0.999502 0.0315664i \(-0.989950\pi\)
0.999502 0.0315664i \(-0.0100496\pi\)
\(434\) −46.6274 −2.23819
\(435\) 0 0
\(436\) −66.2843 −3.17444
\(437\) 11.3137i 0.541208i
\(438\) 0 0
\(439\) 16.9706 0.809961 0.404980 0.914325i \(-0.367278\pi\)
0.404980 + 0.914325i \(0.367278\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 8.82843i − 0.419925i
\(443\) 41.9411i 1.99268i 0.0854611 + 0.996342i \(0.472764\pi\)
−0.0854611 + 0.996342i \(0.527236\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10.8284 0.512741
\(447\) 0 0
\(448\) − 27.7990i − 1.31338i
\(449\) 7.79899 0.368057 0.184029 0.982921i \(-0.441086\pi\)
0.184029 + 0.982921i \(0.441086\pi\)
\(450\) 0 0
\(451\) −21.6569 −1.01978
\(452\) − 66.2843i − 3.11775i
\(453\) 0 0
\(454\) 12.8284 0.602068
\(455\) 0 0
\(456\) 0 0
\(457\) 3.65685i 0.171060i 0.996336 + 0.0855302i \(0.0272584\pi\)
−0.996336 + 0.0855302i \(0.972742\pi\)
\(458\) − 51.4558i − 2.40437i
\(459\) 0 0
\(460\) 0 0
\(461\) −10.8284 −0.504330 −0.252165 0.967684i \(-0.581143\pi\)
−0.252165 + 0.967684i \(0.581143\pi\)
\(462\) 0 0
\(463\) 7.51472i 0.349239i 0.984636 + 0.174619i \(0.0558695\pi\)
−0.984636 + 0.174619i \(0.944131\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 65.1127 3.01629
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 0 0
\(469\) 3.31371 0.153013
\(470\) 0 0
\(471\) 0 0
\(472\) 16.1421i 0.743002i
\(473\) − 19.3137i − 0.888045i
\(474\) 0 0
\(475\) 0 0
\(476\) −39.5980 −1.81497
\(477\) 0 0
\(478\) 4.82843i 0.220847i
\(479\) 2.68629 0.122740 0.0613699 0.998115i \(-0.480453\pi\)
0.0613699 + 0.998115i \(0.480453\pi\)
\(480\) 0 0
\(481\) −3.65685 −0.166738
\(482\) 28.1421i 1.28184i
\(483\) 0 0
\(484\) 26.7990 1.21814
\(485\) 0 0
\(486\) 0 0
\(487\) 31.7990i 1.44095i 0.693481 + 0.720475i \(0.256076\pi\)
−0.693481 + 0.720475i \(0.743924\pi\)
\(488\) 41.1127i 1.86108i
\(489\) 0 0
\(490\) 0 0
\(491\) 14.6274 0.660126 0.330063 0.943959i \(-0.392930\pi\)
0.330063 + 0.943959i \(0.392930\pi\)
\(492\) 0 0
\(493\) 7.31371i 0.329393i
\(494\) 6.82843 0.307225
\(495\) 0 0
\(496\) −20.4853 −0.919816
\(497\) 5.65685i 0.253745i
\(498\) 0 0
\(499\) 2.14214 0.0958952 0.0479476 0.998850i \(-0.484732\pi\)
0.0479476 + 0.998850i \(0.484732\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.3137i 0.682805i 0.939917 + 0.341402i \(0.110902\pi\)
−0.939917 + 0.341402i \(0.889098\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 19.3137 0.858599
\(507\) 0 0
\(508\) 21.6569i 0.960868i
\(509\) −27.7990 −1.23217 −0.616084 0.787680i \(-0.711282\pi\)
−0.616084 + 0.787680i \(0.711282\pi\)
\(510\) 0 0
\(511\) −32.9706 −1.45853
\(512\) − 31.2426i − 1.38074i
\(513\) 0 0
\(514\) −37.7990 −1.66724
\(515\) 0 0
\(516\) 0 0
\(517\) 0.686292i 0.0301831i
\(518\) 24.9706i 1.09714i
\(519\) 0 0
\(520\) 0 0
\(521\) −2.68629 −0.117689 −0.0588443 0.998267i \(-0.518742\pi\)
−0.0588443 + 0.998267i \(0.518742\pi\)
\(522\) 0 0
\(523\) − 7.31371i − 0.319806i −0.987133 0.159903i \(-0.948882\pi\)
0.987133 0.159903i \(-0.0511182\pi\)
\(524\) −30.6274 −1.33796
\(525\) 0 0
\(526\) −28.9706 −1.26318
\(527\) − 24.9706i − 1.08773i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) − 30.6274i − 1.32787i
\(533\) − 10.8284i − 0.469031i
\(534\) 0 0
\(535\) 0 0
\(536\) 5.17157 0.223378
\(537\) 0 0
\(538\) 43.4558i 1.87351i
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 28.4853i 1.22355i
\(543\) 0 0
\(544\) 5.79899 0.248630
\(545\) 0 0
\(546\) 0 0
\(547\) 0.686292i 0.0293437i 0.999892 + 0.0146719i \(0.00467036\pi\)
−0.999892 + 0.0146719i \(0.995330\pi\)
\(548\) − 19.7990i − 0.845771i
\(549\) 0 0
\(550\) 0 0
\(551\) −5.65685 −0.240990
\(552\) 0 0
\(553\) 32.0000i 1.36078i
\(554\) 4.82843 0.205140
\(555\) 0 0
\(556\) 58.6274 2.48636
\(557\) − 31.7990i − 1.34737i −0.739020 0.673683i \(-0.764711\pi\)
0.739020 0.673683i \(-0.235289\pi\)
\(558\) 0 0
\(559\) 9.65685 0.408441
\(560\) 0 0
\(561\) 0 0
\(562\) − 64.7696i − 2.73214i
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −12.0000 −0.504398
\(567\) 0 0
\(568\) 8.82843i 0.370433i
\(569\) −9.02944 −0.378534 −0.189267 0.981926i \(-0.560611\pi\)
−0.189267 + 0.981926i \(0.560611\pi\)
\(570\) 0 0
\(571\) 20.9706 0.877591 0.438795 0.898587i \(-0.355405\pi\)
0.438795 + 0.898587i \(0.355405\pi\)
\(572\) − 7.65685i − 0.320149i
\(573\) 0 0
\(574\) −73.9411 −3.08624
\(575\) 0 0
\(576\) 0 0
\(577\) 35.9411i 1.49625i 0.663559 + 0.748124i \(0.269045\pi\)
−0.663559 + 0.748124i \(0.730955\pi\)
\(578\) 8.75736i 0.364258i
\(579\) 0 0
\(580\) 0 0
\(581\) −21.6569 −0.898478
\(582\) 0 0
\(583\) − 4.00000i − 0.165663i
\(584\) −51.4558 −2.12926
\(585\) 0 0
\(586\) 63.1127 2.60716
\(587\) − 22.9706i − 0.948097i −0.880499 0.474048i \(-0.842792\pi\)
0.880499 0.474048i \(-0.157208\pi\)
\(588\) 0 0
\(589\) 19.3137 0.795807
\(590\) 0 0
\(591\) 0 0
\(592\) 10.9706i 0.450887i
\(593\) − 3.51472i − 0.144332i −0.997393 0.0721661i \(-0.977009\pi\)
0.997393 0.0721661i \(-0.0229912\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 56.7696 2.32537
\(597\) 0 0
\(598\) 9.65685i 0.394898i
\(599\) −0.686292 −0.0280411 −0.0140206 0.999902i \(-0.504463\pi\)
−0.0140206 + 0.999902i \(0.504463\pi\)
\(600\) 0 0
\(601\) 44.6274 1.82039 0.910195 0.414180i \(-0.135931\pi\)
0.910195 + 0.414180i \(0.135931\pi\)
\(602\) − 65.9411i − 2.68756i
\(603\) 0 0
\(604\) 78.4264 3.19113
\(605\) 0 0
\(606\) 0 0
\(607\) − 25.9411i − 1.05292i −0.850201 0.526459i \(-0.823519\pi\)
0.850201 0.526459i \(-0.176481\pi\)
\(608\) 4.48528i 0.181902i
\(609\) 0 0
\(610\) 0 0
\(611\) −0.343146 −0.0138822
\(612\) 0 0
\(613\) 36.3431i 1.46789i 0.679211 + 0.733943i \(0.262322\pi\)
−0.679211 + 0.733943i \(0.737678\pi\)
\(614\) 41.4558 1.67302
\(615\) 0 0
\(616\) −24.9706 −1.00609
\(617\) 29.1716i 1.17440i 0.809441 + 0.587202i \(0.199770\pi\)
−0.809441 + 0.587202i \(0.800230\pi\)
\(618\) 0 0
\(619\) 15.7990 0.635015 0.317508 0.948256i \(-0.397154\pi\)
0.317508 + 0.948256i \(0.397154\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 83.5980i − 3.35197i
\(623\) − 25.9411i − 1.03931i
\(624\) 0 0
\(625\) 0 0
\(626\) 14.4853 0.578948
\(627\) 0 0
\(628\) 38.2843i 1.52771i
\(629\) −13.3726 −0.533200
\(630\) 0 0
\(631\) −19.1127 −0.760865 −0.380432 0.924809i \(-0.624225\pi\)
−0.380432 + 0.924809i \(0.624225\pi\)
\(632\) 49.9411i 1.98655i
\(633\) 0 0
\(634\) −20.4853 −0.813574
\(635\) 0 0
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) 9.65685i 0.382319i
\(639\) 0 0
\(640\) 0 0
\(641\) 26.2843 1.03817 0.519083 0.854724i \(-0.326273\pi\)
0.519083 + 0.854724i \(0.326273\pi\)
\(642\) 0 0
\(643\) − 17.1716i − 0.677181i −0.940934 0.338590i \(-0.890050\pi\)
0.940934 0.338590i \(-0.109950\pi\)
\(644\) 43.3137 1.70680
\(645\) 0 0
\(646\) 24.9706 0.982454
\(647\) 11.3137i 0.444788i 0.974957 + 0.222394i \(0.0713871\pi\)
−0.974957 + 0.222394i \(0.928613\pi\)
\(648\) 0 0
\(649\) −7.31371 −0.287088
\(650\) 0 0
\(651\) 0 0
\(652\) 50.4264i 1.97485i
\(653\) − 2.68629i − 0.105123i −0.998618 0.0525614i \(-0.983261\pi\)
0.998618 0.0525614i \(-0.0167385\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −32.4853 −1.26834
\(657\) 0 0
\(658\) 2.34315i 0.0913453i
\(659\) −24.6863 −0.961641 −0.480821 0.876819i \(-0.659661\pi\)
−0.480821 + 0.876819i \(0.659661\pi\)
\(660\) 0 0
\(661\) −1.02944 −0.0400405 −0.0200202 0.999800i \(-0.506373\pi\)
−0.0200202 + 0.999800i \(0.506373\pi\)
\(662\) − 5.17157i − 0.200999i
\(663\) 0 0
\(664\) −33.7990 −1.31166
\(665\) 0 0
\(666\) 0 0
\(667\) − 8.00000i − 0.309761i
\(668\) 29.3137i 1.13418i
\(669\) 0 0
\(670\) 0 0
\(671\) −18.6274 −0.719103
\(672\) 0 0
\(673\) 28.6274i 1.10351i 0.834008 + 0.551753i \(0.186041\pi\)
−0.834008 + 0.551753i \(0.813959\pi\)
\(674\) 32.1421 1.23807
\(675\) 0 0
\(676\) 3.82843 0.147247
\(677\) − 49.3137i − 1.89528i −0.319341 0.947640i \(-0.603462\pi\)
0.319341 0.947640i \(-0.396538\pi\)
\(678\) 0 0
\(679\) −21.6569 −0.831114
\(680\) 0 0
\(681\) 0 0
\(682\) − 32.9706i − 1.26251i
\(683\) − 19.9411i − 0.763026i −0.924363 0.381513i \(-0.875403\pi\)
0.924363 0.381513i \(-0.124597\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 40.9706 1.56426
\(687\) 0 0
\(688\) − 28.9706i − 1.10449i
\(689\) 2.00000 0.0761939
\(690\) 0 0
\(691\) −34.1421 −1.29883 −0.649414 0.760435i \(-0.724986\pi\)
−0.649414 + 0.760435i \(0.724986\pi\)
\(692\) 1.31371i 0.0499397i
\(693\) 0 0
\(694\) −75.5980 −2.86966
\(695\) 0 0
\(696\) 0 0
\(697\) − 39.5980i − 1.49988i
\(698\) 18.4853i 0.699678i
\(699\) 0 0
\(700\) 0 0
\(701\) −38.9706 −1.47190 −0.735949 0.677037i \(-0.763264\pi\)
−0.735949 + 0.677037i \(0.763264\pi\)
\(702\) 0 0
\(703\) − 10.3431i − 0.390099i
\(704\) 19.6569 0.740846
\(705\) 0 0
\(706\) −42.1421 −1.58604
\(707\) − 10.3431i − 0.388994i
\(708\) 0 0
\(709\) −40.6274 −1.52579 −0.762897 0.646520i \(-0.776224\pi\)
−0.762897 + 0.646520i \(0.776224\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 40.4853i − 1.51725i
\(713\) 27.3137i 1.02291i
\(714\) 0 0
\(715\) 0 0
\(716\) 2.62742 0.0981912
\(717\) 0 0
\(718\) 2.48528i 0.0927499i
\(719\) 37.9411 1.41497 0.707483 0.706731i \(-0.249831\pi\)
0.707483 + 0.706731i \(0.249831\pi\)
\(720\) 0 0
\(721\) −38.6274 −1.43856
\(722\) − 26.5563i − 0.988325i
\(723\) 0 0
\(724\) −53.5980 −1.99195
\(725\) 0 0
\(726\) 0 0
\(727\) − 21.6569i − 0.803208i −0.915813 0.401604i \(-0.868453\pi\)
0.915813 0.401604i \(-0.131547\pi\)
\(728\) − 12.4853i − 0.462735i
\(729\) 0 0
\(730\) 0 0
\(731\) 35.3137 1.30612
\(732\) 0 0
\(733\) − 8.62742i − 0.318661i −0.987225 0.159330i \(-0.949066\pi\)
0.987225 0.159330i \(-0.0509335\pi\)
\(734\) 57.9411 2.13865
\(735\) 0 0
\(736\) −6.34315 −0.233811
\(737\) 2.34315i 0.0863109i
\(738\) 0 0
\(739\) −10.1421 −0.373084 −0.186542 0.982447i \(-0.559728\pi\)
−0.186542 + 0.982447i \(0.559728\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 13.6569i − 0.501359i
\(743\) 2.00000i 0.0733729i 0.999327 + 0.0366864i \(0.0116803\pi\)
−0.999327 + 0.0366864i \(0.988320\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 24.1421 0.883906
\(747\) 0 0
\(748\) − 28.0000i − 1.02378i
\(749\) −32.0000 −1.16925
\(750\) 0 0
\(751\) 32.9706 1.20311 0.601556 0.798830i \(-0.294547\pi\)
0.601556 + 0.798830i \(0.294547\pi\)
\(752\) 1.02944i 0.0375397i
\(753\) 0 0
\(754\) −4.82843 −0.175841
\(755\) 0 0
\(756\) 0 0
\(757\) − 15.9411i − 0.579390i −0.957119 0.289695i \(-0.906446\pi\)
0.957119 0.289695i \(-0.0935539\pi\)
\(758\) 39.7990i 1.44556i
\(759\) 0 0
\(760\) 0 0
\(761\) −15.5147 −0.562408 −0.281204 0.959648i \(-0.590734\pi\)
−0.281204 + 0.959648i \(0.590734\pi\)
\(762\) 0 0
\(763\) − 48.9706i − 1.77285i
\(764\) −73.9411 −2.67510
\(765\) 0 0
\(766\) 7.17157 0.259119
\(767\) − 3.65685i − 0.132041i
\(768\) 0 0
\(769\) −42.0000 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 66.2843i − 2.38562i
\(773\) 5.85786i 0.210693i 0.994436 + 0.105346i \(0.0335951\pi\)
−0.994436 + 0.105346i \(0.966405\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −33.7990 −1.21331
\(777\) 0 0
\(778\) 16.8284i 0.603328i
\(779\) 30.6274 1.09734
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 35.3137i 1.26282i
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 32.7696i 1.16811i 0.811715 + 0.584054i \(0.198534\pi\)
−0.811715 + 0.584054i \(0.801466\pi\)
\(788\) − 63.1127i − 2.24830i
\(789\) 0 0
\(790\) 0 0
\(791\) 48.9706 1.74119
\(792\) 0 0
\(793\) − 9.31371i − 0.330739i
\(794\) 7.17157 0.254510
\(795\) 0 0
\(796\) 39.5980 1.40351
\(797\) − 35.6569i − 1.26303i −0.775363 0.631515i \(-0.782433\pi\)
0.775363 0.631515i \(-0.217567\pi\)
\(798\) 0 0
\(799\) −1.25483 −0.0443928
\(800\) 0 0
\(801\) 0 0
\(802\) 5.17157i 0.182615i
\(803\) − 23.3137i − 0.822723i
\(804\) 0 0
\(805\) 0 0
\(806\) 16.4853 0.580669
\(807\) 0 0
\(808\) − 16.1421i − 0.567878i
\(809\) 41.3137 1.45251 0.726256 0.687424i \(-0.241259\pi\)
0.726256 + 0.687424i \(0.241259\pi\)
\(810\) 0 0
\(811\) −1.85786 −0.0652384 −0.0326192 0.999468i \(-0.510385\pi\)
−0.0326192 + 0.999468i \(0.510385\pi\)
\(812\) 21.6569i 0.760007i
\(813\) 0 0
\(814\) −17.6569 −0.618872
\(815\) 0 0
\(816\) 0 0
\(817\) 27.3137i 0.955586i
\(818\) 2.48528i 0.0868958i
\(819\) 0 0
\(820\) 0 0
\(821\) −15.7990 −0.551389 −0.275694 0.961245i \(-0.588908\pi\)
−0.275694 + 0.961245i \(0.588908\pi\)
\(822\) 0 0
\(823\) − 48.9706i − 1.70701i −0.521088 0.853503i \(-0.674473\pi\)
0.521088 0.853503i \(-0.325527\pi\)
\(824\) −60.2843 −2.10010
\(825\) 0 0
\(826\) −24.9706 −0.868837
\(827\) 26.0000i 0.904109i 0.891990 + 0.452054i \(0.149309\pi\)
−0.891990 + 0.452054i \(0.850691\pi\)
\(828\) 0 0
\(829\) −5.31371 −0.184553 −0.0922764 0.995733i \(-0.529414\pi\)
−0.0922764 + 0.995733i \(0.529414\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 9.82843i 0.340739i
\(833\) − 3.65685i − 0.126702i
\(834\) 0 0
\(835\) 0 0
\(836\) 21.6569 0.749018
\(837\) 0 0
\(838\) − 73.9411i − 2.55425i
\(839\) −47.2548 −1.63142 −0.815709 0.578462i \(-0.803653\pi\)
−0.815709 + 0.578462i \(0.803653\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 35.4558i 1.22189i
\(843\) 0 0
\(844\) 45.9411 1.58136
\(845\) 0 0
\(846\) 0 0
\(847\) 19.7990i 0.680301i
\(848\) − 6.00000i − 0.206041i
\(849\) 0 0
\(850\) 0 0
\(851\) 14.6274 0.501421
\(852\) 0 0
\(853\) 7.65685i 0.262166i 0.991371 + 0.131083i \(0.0418454\pi\)
−0.991371 + 0.131083i \(0.958155\pi\)
\(854\) −63.5980 −2.17628
\(855\) 0 0
\(856\) −49.9411 −1.70695
\(857\) − 29.5980i − 1.01105i −0.862813 0.505524i \(-0.831299\pi\)
0.862813 0.505524i \(-0.168701\pi\)
\(858\) 0 0
\(859\) 23.3137 0.795453 0.397727 0.917504i \(-0.369799\pi\)
0.397727 + 0.917504i \(0.369799\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 47.4558i − 1.61635i
\(863\) − 39.6569i − 1.34994i −0.737847 0.674968i \(-0.764158\pi\)
0.737847 0.674968i \(-0.235842\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 3.17157 0.107774
\(867\) 0 0
\(868\) − 73.9411i − 2.50973i
\(869\) −22.6274 −0.767583
\(870\) 0 0
\(871\) −1.17157 −0.0396972
\(872\) − 76.4264i − 2.58812i
\(873\) 0 0
\(874\) −27.3137 −0.923900
\(875\) 0 0
\(876\) 0 0
\(877\) − 14.2843i − 0.482346i −0.970482 0.241173i \(-0.922468\pi\)
0.970482 0.241173i \(-0.0775321\pi\)
\(878\) 40.9706i 1.38269i
\(879\) 0 0
\(880\) 0 0
\(881\) −53.5980 −1.80576 −0.902881 0.429891i \(-0.858552\pi\)
−0.902881 + 0.429891i \(0.858552\pi\)
\(882\) 0 0
\(883\) 51.5980i 1.73641i 0.496205 + 0.868205i \(0.334726\pi\)
−0.496205 + 0.868205i \(0.665274\pi\)
\(884\) 14.0000 0.470871
\(885\) 0 0
\(886\) −101.255 −3.40172
\(887\) 8.00000i 0.268614i 0.990940 + 0.134307i \(0.0428808\pi\)
−0.990940 + 0.134307i \(0.957119\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) 17.1716i 0.574947i
\(893\) − 0.970563i − 0.0324786i
\(894\) 0 0
\(895\) 0 0
\(896\) 58.1421 1.94239
\(897\) 0 0
\(898\) 18.8284i 0.628313i
\(899\) −13.6569 −0.455482
\(900\) 0 0
\(901\) 7.31371 0.243655
\(902\) − 52.2843i − 1.74088i
\(903\) 0 0
\(904\) 76.4264 2.54190
\(905\) 0 0
\(906\) 0 0
\(907\) 20.9706i 0.696316i 0.937436 + 0.348158i \(0.113193\pi\)
−0.937436 + 0.348158i \(0.886807\pi\)
\(908\) 20.3431i 0.675111i
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) − 15.3137i − 0.506810i
\(914\) −8.82843 −0.292018
\(915\) 0 0
\(916\) 81.5980 2.69607
\(917\) − 22.6274i − 0.747223i
\(918\) 0 0
\(919\) 19.3137 0.637100 0.318550 0.947906i \(-0.396804\pi\)
0.318550 + 0.947906i \(0.396804\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 26.1421i − 0.860945i
\(923\) − 2.00000i − 0.0658308i
\(924\) 0 0
\(925\) 0 0
\(926\) −18.1421 −0.596188
\(927\) 0 0
\(928\) − 3.17157i − 0.104112i
\(929\) −27.7990 −0.912055 −0.456028 0.889966i \(-0.650728\pi\)
−0.456028 + 0.889966i \(0.650728\pi\)
\(930\) 0 0
\(931\) 2.82843 0.0926980
\(932\) 103.255i 3.38222i
\(933\) 0 0
\(934\) −19.3137 −0.631964
\(935\) 0 0
\(936\) 0 0
\(937\) 1.31371i 0.0429170i 0.999770 + 0.0214585i \(0.00683097\pi\)
−0.999770 + 0.0214585i \(0.993169\pi\)
\(938\) 8.00000i 0.261209i
\(939\) 0 0
\(940\) 0 0
\(941\) −5.85786 −0.190961 −0.0954805 0.995431i \(-0.530439\pi\)
−0.0954805 + 0.995431i \(0.530439\pi\)
\(942\) 0 0
\(943\) 43.3137i 1.41049i
\(944\) −10.9706 −0.357061
\(945\) 0 0
\(946\) 46.6274 1.51599
\(947\) 54.9706i 1.78630i 0.449756 + 0.893152i \(0.351511\pi\)
−0.449756 + 0.893152i \(0.648489\pi\)
\(948\) 0 0
\(949\) 11.6569 0.378398
\(950\) 0 0
\(951\) 0 0
\(952\) − 45.6569i − 1.47975i
\(953\) 51.6569i 1.67333i 0.547715 + 0.836665i \(0.315498\pi\)
−0.547715 + 0.836665i \(0.684502\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −7.65685 −0.247640
\(957\) 0 0
\(958\) 6.48528i 0.209530i
\(959\) 14.6274 0.472344
\(960\) 0 0
\(961\) 15.6274 0.504110
\(962\) − 8.82843i − 0.284640i
\(963\) 0 0
\(964\) −44.6274 −1.43735
\(965\) 0 0
\(966\) 0 0
\(967\) − 10.1421i − 0.326149i −0.986614 0.163075i \(-0.947859\pi\)
0.986614 0.163075i \(-0.0521411\pi\)
\(968\) 30.8995i 0.993147i
\(969\) 0 0
\(970\) 0 0
\(971\) −7.31371 −0.234708 −0.117354 0.993090i \(-0.537441\pi\)
−0.117354 + 0.993090i \(0.537441\pi\)
\(972\) 0 0
\(973\) 43.3137i 1.38857i
\(974\) −76.7696 −2.45986
\(975\) 0 0
\(976\) −27.9411 −0.894374
\(977\) − 13.8579i − 0.443352i −0.975120 0.221676i \(-0.928847\pi\)
0.975120 0.221676i \(-0.0711528\pi\)
\(978\) 0 0
\(979\) 18.3431 0.586249
\(980\) 0 0
\(981\) 0 0
\(982\) 35.3137i 1.12691i
\(983\) 2.68629i 0.0856794i 0.999082 + 0.0428397i \(0.0136405\pi\)
−0.999082 + 0.0428397i \(0.986360\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −17.6569 −0.562309
\(987\) 0 0
\(988\) 10.8284i 0.344498i
\(989\) −38.6274 −1.22828
\(990\) 0 0
\(991\) 27.3137 0.867649 0.433824 0.900998i \(-0.357164\pi\)
0.433824 + 0.900998i \(0.357164\pi\)
\(992\) 10.8284i 0.343803i
\(993\) 0 0
\(994\) −13.6569 −0.433169
\(995\) 0 0
\(996\) 0 0
\(997\) 51.2548i 1.62326i 0.584174 + 0.811628i \(0.301419\pi\)
−0.584174 + 0.811628i \(0.698581\pi\)
\(998\) 5.17157i 0.163703i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2925.2.c.u.2224.4 4
3.2 odd 2 975.2.c.h.274.1 4
5.2 odd 4 2925.2.a.v.1.1 2
5.3 odd 4 117.2.a.c.1.2 2
5.4 even 2 inner 2925.2.c.u.2224.1 4
15.2 even 4 975.2.a.l.1.2 2
15.8 even 4 39.2.a.b.1.1 2
15.14 odd 2 975.2.c.h.274.4 4
20.3 even 4 1872.2.a.w.1.1 2
35.13 even 4 5733.2.a.u.1.2 2
40.3 even 4 7488.2.a.co.1.2 2
40.13 odd 4 7488.2.a.cl.1.2 2
45.13 odd 12 1053.2.e.e.703.1 4
45.23 even 12 1053.2.e.m.703.2 4
45.38 even 12 1053.2.e.m.352.2 4
45.43 odd 12 1053.2.e.e.352.1 4
60.23 odd 4 624.2.a.k.1.2 2
65.8 even 4 1521.2.b.j.1351.4 4
65.18 even 4 1521.2.b.j.1351.1 4
65.38 odd 4 1521.2.a.f.1.1 2
105.83 odd 4 1911.2.a.h.1.1 2
120.53 even 4 2496.2.a.bf.1.1 2
120.83 odd 4 2496.2.a.bi.1.1 2
165.98 odd 4 4719.2.a.p.1.2 2
195.8 odd 4 507.2.b.e.337.1 4
195.23 even 12 507.2.e.d.22.1 4
195.38 even 4 507.2.a.h.1.2 2
195.68 even 12 507.2.e.h.22.2 4
195.83 odd 4 507.2.b.e.337.4 4
195.98 odd 12 507.2.j.f.361.1 8
195.113 even 12 507.2.e.h.484.2 4
195.128 odd 12 507.2.j.f.316.4 8
195.158 odd 12 507.2.j.f.316.1 8
195.173 even 12 507.2.e.d.484.1 4
195.188 odd 12 507.2.j.f.361.4 8
780.623 odd 4 8112.2.a.bm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.a.b.1.1 2 15.8 even 4
117.2.a.c.1.2 2 5.3 odd 4
507.2.a.h.1.2 2 195.38 even 4
507.2.b.e.337.1 4 195.8 odd 4
507.2.b.e.337.4 4 195.83 odd 4
507.2.e.d.22.1 4 195.23 even 12
507.2.e.d.484.1 4 195.173 even 12
507.2.e.h.22.2 4 195.68 even 12
507.2.e.h.484.2 4 195.113 even 12
507.2.j.f.316.1 8 195.158 odd 12
507.2.j.f.316.4 8 195.128 odd 12
507.2.j.f.361.1 8 195.98 odd 12
507.2.j.f.361.4 8 195.188 odd 12
624.2.a.k.1.2 2 60.23 odd 4
975.2.a.l.1.2 2 15.2 even 4
975.2.c.h.274.1 4 3.2 odd 2
975.2.c.h.274.4 4 15.14 odd 2
1053.2.e.e.352.1 4 45.43 odd 12
1053.2.e.e.703.1 4 45.13 odd 12
1053.2.e.m.352.2 4 45.38 even 12
1053.2.e.m.703.2 4 45.23 even 12
1521.2.a.f.1.1 2 65.38 odd 4
1521.2.b.j.1351.1 4 65.18 even 4
1521.2.b.j.1351.4 4 65.8 even 4
1872.2.a.w.1.1 2 20.3 even 4
1911.2.a.h.1.1 2 105.83 odd 4
2496.2.a.bf.1.1 2 120.53 even 4
2496.2.a.bi.1.1 2 120.83 odd 4
2925.2.a.v.1.1 2 5.2 odd 4
2925.2.c.u.2224.1 4 5.4 even 2 inner
2925.2.c.u.2224.4 4 1.1 even 1 trivial
4719.2.a.p.1.2 2 165.98 odd 4
5733.2.a.u.1.2 2 35.13 even 4
7488.2.a.cl.1.2 2 40.13 odd 4
7488.2.a.co.1.2 2 40.3 even 4
8112.2.a.bm.1.1 2 780.623 odd 4