Properties

Label 294.3.b.f
Level 294294
Weight 33
Character orbit 294.b
Analytic conductor 8.0118.011
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,3,Mod(197,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.197");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 294.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.010919772198.01091977219
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2+3β1q32q48β1q5+3β3q6+2β2q89q98β3q10+5β2q116β1q1215β3q13+24q15+45β2q99+O(q100) q - \beta_{2} q^{2} + 3 \beta_1 q^{3} - 2 q^{4} - 8 \beta_1 q^{5} + 3 \beta_{3} q^{6} + 2 \beta_{2} q^{8} - 9 q^{9} - 8 \beta_{3} q^{10} + 5 \beta_{2} q^{11} - 6 \beta_1 q^{12} - 15 \beta_{3} q^{13} + 24 q^{15}+ \cdots - 45 \beta_{2} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q436q9+96q15+16q16+40q22156q25+72q36200q37+80q43+104q46+240q51160q58192q6032q64+240q67360q78+320q79+80q88+O(q100) 4 q - 8 q^{4} - 36 q^{9} + 96 q^{15} + 16 q^{16} + 40 q^{22} - 156 q^{25} + 72 q^{36} - 200 q^{37} + 80 q^{43} + 104 q^{46} + 240 q^{51} - 160 q^{58} - 192 q^{60} - 32 q^{64} + 240 q^{67} - 360 q^{78} + 320 q^{79}+ \cdots - 80 q^{88}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ82 \zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ8 \zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== ζ83+ζ8 -\zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+β2)/2 ( -\beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/294Z)×\left(\mathbb{Z}/294\mathbb{Z}\right)^\times.

nn 197197 199199
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
197.1
−0.707107 + 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
1.41421i 3.00000i −2.00000 8.00000i −4.24264 0 2.82843i −9.00000 11.3137
197.2 1.41421i 3.00000i −2.00000 8.00000i 4.24264 0 2.82843i −9.00000 −11.3137
197.3 1.41421i 3.00000i −2.00000 8.00000i 4.24264 0 2.82843i −9.00000 −11.3137
197.4 1.41421i 3.00000i −2.00000 8.00000i −4.24264 0 2.82843i −9.00000 11.3137
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.3.b.f 4
3.b odd 2 1 inner 294.3.b.f 4
7.b odd 2 1 inner 294.3.b.f 4
7.c even 3 2 294.3.h.f 8
7.d odd 6 2 294.3.h.f 8
21.c even 2 1 inner 294.3.b.f 4
21.g even 6 2 294.3.h.f 8
21.h odd 6 2 294.3.h.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.3.b.f 4 1.a even 1 1 trivial
294.3.b.f 4 3.b odd 2 1 inner
294.3.b.f 4 7.b odd 2 1 inner
294.3.b.f 4 21.c even 2 1 inner
294.3.h.f 8 7.c even 3 2
294.3.h.f 8 7.d odd 6 2
294.3.h.f 8 21.g even 6 2
294.3.h.f 8 21.h odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(294,[χ])S_{3}^{\mathrm{new}}(294, [\chi]):

T52+64 T_{5}^{2} + 64 Copy content Toggle raw display
T132450 T_{13}^{2} - 450 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
33 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
55 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2+50)2 (T^{2} + 50)^{2} Copy content Toggle raw display
1313 (T2450)2 (T^{2} - 450)^{2} Copy content Toggle raw display
1717 (T2+400)2 (T^{2} + 400)^{2} Copy content Toggle raw display
1919 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
2323 (T2+338)2 (T^{2} + 338)^{2} Copy content Toggle raw display
2929 (T2+800)2 (T^{2} + 800)^{2} Copy content Toggle raw display
3131 (T22592)2 (T^{2} - 2592)^{2} Copy content Toggle raw display
3737 (T+50)4 (T + 50)^{4} Copy content Toggle raw display
4141 (T2+400)2 (T^{2} + 400)^{2} Copy content Toggle raw display
4343 (T20)4 (T - 20)^{4} Copy content Toggle raw display
4747 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
5353 (T2+128)2 (T^{2} + 128)^{2} Copy content Toggle raw display
5959 (T2+6400)2 (T^{2} + 6400)^{2} Copy content Toggle raw display
6161 (T24802)2 (T^{2} - 4802)^{2} Copy content Toggle raw display
6767 (T60)4 (T - 60)^{4} Copy content Toggle raw display
7171 (T2+4050)2 (T^{2} + 4050)^{2} Copy content Toggle raw display
7373 (T21250)2 (T^{2} - 1250)^{2} Copy content Toggle raw display
7979 (T80)4 (T - 80)^{4} Copy content Toggle raw display
8383 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
8989 (T2+400)2 (T^{2} + 400)^{2} Copy content Toggle raw display
9797 (T28450)2 (T^{2} - 8450)^{2} Copy content Toggle raw display
show more
show less