Properties

Label 294.4.a.a.1.1
Level $294$
Weight $4$
Character 294.1
Self dual yes
Analytic conductor $17.347$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,4,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -15.0000 q^{5} +6.00000 q^{6} -8.00000 q^{8} +9.00000 q^{9} +30.0000 q^{10} -9.00000 q^{11} -12.0000 q^{12} -88.0000 q^{13} +45.0000 q^{15} +16.0000 q^{16} -84.0000 q^{17} -18.0000 q^{18} +104.000 q^{19} -60.0000 q^{20} +18.0000 q^{22} -84.0000 q^{23} +24.0000 q^{24} +100.000 q^{25} +176.000 q^{26} -27.0000 q^{27} +51.0000 q^{29} -90.0000 q^{30} +185.000 q^{31} -32.0000 q^{32} +27.0000 q^{33} +168.000 q^{34} +36.0000 q^{36} +44.0000 q^{37} -208.000 q^{38} +264.000 q^{39} +120.000 q^{40} -168.000 q^{41} +326.000 q^{43} -36.0000 q^{44} -135.000 q^{45} +168.000 q^{46} -138.000 q^{47} -48.0000 q^{48} -200.000 q^{50} +252.000 q^{51} -352.000 q^{52} +639.000 q^{53} +54.0000 q^{54} +135.000 q^{55} -312.000 q^{57} -102.000 q^{58} +159.000 q^{59} +180.000 q^{60} +722.000 q^{61} -370.000 q^{62} +64.0000 q^{64} +1320.00 q^{65} -54.0000 q^{66} -166.000 q^{67} -336.000 q^{68} +252.000 q^{69} +1086.00 q^{71} -72.0000 q^{72} +218.000 q^{73} -88.0000 q^{74} -300.000 q^{75} +416.000 q^{76} -528.000 q^{78} -583.000 q^{79} -240.000 q^{80} +81.0000 q^{81} +336.000 q^{82} -597.000 q^{83} +1260.00 q^{85} -652.000 q^{86} -153.000 q^{87} +72.0000 q^{88} -1038.00 q^{89} +270.000 q^{90} -336.000 q^{92} -555.000 q^{93} +276.000 q^{94} -1560.00 q^{95} +96.0000 q^{96} -169.000 q^{97} -81.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) −15.0000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 6.00000 0.408248
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) 30.0000 0.948683
\(11\) −9.00000 −0.246691 −0.123346 0.992364i \(-0.539362\pi\)
−0.123346 + 0.992364i \(0.539362\pi\)
\(12\) −12.0000 −0.288675
\(13\) −88.0000 −1.87745 −0.938723 0.344671i \(-0.887990\pi\)
−0.938723 + 0.344671i \(0.887990\pi\)
\(14\) 0 0
\(15\) 45.0000 0.774597
\(16\) 16.0000 0.250000
\(17\) −84.0000 −1.19841 −0.599206 0.800595i \(-0.704517\pi\)
−0.599206 + 0.800595i \(0.704517\pi\)
\(18\) −18.0000 −0.235702
\(19\) 104.000 1.25575 0.627875 0.778314i \(-0.283925\pi\)
0.627875 + 0.778314i \(0.283925\pi\)
\(20\) −60.0000 −0.670820
\(21\) 0 0
\(22\) 18.0000 0.174437
\(23\) −84.0000 −0.761531 −0.380765 0.924672i \(-0.624339\pi\)
−0.380765 + 0.924672i \(0.624339\pi\)
\(24\) 24.0000 0.204124
\(25\) 100.000 0.800000
\(26\) 176.000 1.32756
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 51.0000 0.326568 0.163284 0.986579i \(-0.447791\pi\)
0.163284 + 0.986579i \(0.447791\pi\)
\(30\) −90.0000 −0.547723
\(31\) 185.000 1.07184 0.535919 0.844269i \(-0.319965\pi\)
0.535919 + 0.844269i \(0.319965\pi\)
\(32\) −32.0000 −0.176777
\(33\) 27.0000 0.142427
\(34\) 168.000 0.847405
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 44.0000 0.195501 0.0977507 0.995211i \(-0.468835\pi\)
0.0977507 + 0.995211i \(0.468835\pi\)
\(38\) −208.000 −0.887949
\(39\) 264.000 1.08394
\(40\) 120.000 0.474342
\(41\) −168.000 −0.639932 −0.319966 0.947429i \(-0.603671\pi\)
−0.319966 + 0.947429i \(0.603671\pi\)
\(42\) 0 0
\(43\) 326.000 1.15615 0.578076 0.815983i \(-0.303804\pi\)
0.578076 + 0.815983i \(0.303804\pi\)
\(44\) −36.0000 −0.123346
\(45\) −135.000 −0.447214
\(46\) 168.000 0.538484
\(47\) −138.000 −0.428284 −0.214142 0.976802i \(-0.568696\pi\)
−0.214142 + 0.976802i \(0.568696\pi\)
\(48\) −48.0000 −0.144338
\(49\) 0 0
\(50\) −200.000 −0.565685
\(51\) 252.000 0.691903
\(52\) −352.000 −0.938723
\(53\) 639.000 1.65610 0.828051 0.560653i \(-0.189450\pi\)
0.828051 + 0.560653i \(0.189450\pi\)
\(54\) 54.0000 0.136083
\(55\) 135.000 0.330971
\(56\) 0 0
\(57\) −312.000 −0.725007
\(58\) −102.000 −0.230918
\(59\) 159.000 0.350848 0.175424 0.984493i \(-0.443870\pi\)
0.175424 + 0.984493i \(0.443870\pi\)
\(60\) 180.000 0.387298
\(61\) 722.000 1.51545 0.757726 0.652572i \(-0.226310\pi\)
0.757726 + 0.652572i \(0.226310\pi\)
\(62\) −370.000 −0.757904
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 1320.00 2.51886
\(66\) −54.0000 −0.100711
\(67\) −166.000 −0.302688 −0.151344 0.988481i \(-0.548360\pi\)
−0.151344 + 0.988481i \(0.548360\pi\)
\(68\) −336.000 −0.599206
\(69\) 252.000 0.439670
\(70\) 0 0
\(71\) 1086.00 1.81527 0.907637 0.419755i \(-0.137884\pi\)
0.907637 + 0.419755i \(0.137884\pi\)
\(72\) −72.0000 −0.117851
\(73\) 218.000 0.349520 0.174760 0.984611i \(-0.444085\pi\)
0.174760 + 0.984611i \(0.444085\pi\)
\(74\) −88.0000 −0.138240
\(75\) −300.000 −0.461880
\(76\) 416.000 0.627875
\(77\) 0 0
\(78\) −528.000 −0.766464
\(79\) −583.000 −0.830286 −0.415143 0.909756i \(-0.636269\pi\)
−0.415143 + 0.909756i \(0.636269\pi\)
\(80\) −240.000 −0.335410
\(81\) 81.0000 0.111111
\(82\) 336.000 0.452500
\(83\) −597.000 −0.789509 −0.394755 0.918787i \(-0.629170\pi\)
−0.394755 + 0.918787i \(0.629170\pi\)
\(84\) 0 0
\(85\) 1260.00 1.60784
\(86\) −652.000 −0.817523
\(87\) −153.000 −0.188544
\(88\) 72.0000 0.0872185
\(89\) −1038.00 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(90\) 270.000 0.316228
\(91\) 0 0
\(92\) −336.000 −0.380765
\(93\) −555.000 −0.618826
\(94\) 276.000 0.302843
\(95\) −1560.00 −1.68476
\(96\) 96.0000 0.102062
\(97\) −169.000 −0.176901 −0.0884503 0.996081i \(-0.528191\pi\)
−0.0884503 + 0.996081i \(0.528191\pi\)
\(98\) 0 0
\(99\) −81.0000 −0.0822304
\(100\) 400.000 0.400000
\(101\) 642.000 0.632489 0.316244 0.948678i \(-0.397578\pi\)
0.316244 + 0.948678i \(0.397578\pi\)
\(102\) −504.000 −0.489249
\(103\) 464.000 0.443876 0.221938 0.975061i \(-0.428762\pi\)
0.221938 + 0.975061i \(0.428762\pi\)
\(104\) 704.000 0.663778
\(105\) 0 0
\(106\) −1278.00 −1.17104
\(107\) 393.000 0.355072 0.177536 0.984114i \(-0.443187\pi\)
0.177536 + 0.984114i \(0.443187\pi\)
\(108\) −108.000 −0.0962250
\(109\) 14.0000 0.0123024 0.00615118 0.999981i \(-0.498042\pi\)
0.00615118 + 0.999981i \(0.498042\pi\)
\(110\) −270.000 −0.234032
\(111\) −132.000 −0.112873
\(112\) 0 0
\(113\) −2184.00 −1.81817 −0.909086 0.416608i \(-0.863219\pi\)
−0.909086 + 0.416608i \(0.863219\pi\)
\(114\) 624.000 0.512657
\(115\) 1260.00 1.02170
\(116\) 204.000 0.163284
\(117\) −792.000 −0.625816
\(118\) −318.000 −0.248087
\(119\) 0 0
\(120\) −360.000 −0.273861
\(121\) −1250.00 −0.939144
\(122\) −1444.00 −1.07159
\(123\) 504.000 0.369465
\(124\) 740.000 0.535919
\(125\) 375.000 0.268328
\(126\) 0 0
\(127\) −373.000 −0.260617 −0.130309 0.991473i \(-0.541597\pi\)
−0.130309 + 0.991473i \(0.541597\pi\)
\(128\) −128.000 −0.0883883
\(129\) −978.000 −0.667505
\(130\) −2640.00 −1.78110
\(131\) −1173.00 −0.782332 −0.391166 0.920320i \(-0.627928\pi\)
−0.391166 + 0.920320i \(0.627928\pi\)
\(132\) 108.000 0.0712136
\(133\) 0 0
\(134\) 332.000 0.214033
\(135\) 405.000 0.258199
\(136\) 672.000 0.423702
\(137\) 30.0000 0.0187086 0.00935428 0.999956i \(-0.497022\pi\)
0.00935428 + 0.999956i \(0.497022\pi\)
\(138\) −504.000 −0.310894
\(139\) −82.0000 −0.0500370 −0.0250185 0.999687i \(-0.507964\pi\)
−0.0250185 + 0.999687i \(0.507964\pi\)
\(140\) 0 0
\(141\) 414.000 0.247270
\(142\) −2172.00 −1.28359
\(143\) 792.000 0.463149
\(144\) 144.000 0.0833333
\(145\) −765.000 −0.438136
\(146\) −436.000 −0.247148
\(147\) 0 0
\(148\) 176.000 0.0977507
\(149\) −1434.00 −0.788442 −0.394221 0.919016i \(-0.628986\pi\)
−0.394221 + 0.919016i \(0.628986\pi\)
\(150\) 600.000 0.326599
\(151\) −2671.00 −1.43949 −0.719745 0.694239i \(-0.755741\pi\)
−0.719745 + 0.694239i \(0.755741\pi\)
\(152\) −832.000 −0.443974
\(153\) −756.000 −0.399470
\(154\) 0 0
\(155\) −2775.00 −1.43802
\(156\) 1056.00 0.541972
\(157\) 2252.00 1.14477 0.572386 0.819984i \(-0.306018\pi\)
0.572386 + 0.819984i \(0.306018\pi\)
\(158\) 1166.00 0.587101
\(159\) −1917.00 −0.956151
\(160\) 480.000 0.237171
\(161\) 0 0
\(162\) −162.000 −0.0785674
\(163\) 1676.00 0.805365 0.402682 0.915340i \(-0.368078\pi\)
0.402682 + 0.915340i \(0.368078\pi\)
\(164\) −672.000 −0.319966
\(165\) −405.000 −0.191086
\(166\) 1194.00 0.558267
\(167\) 3030.00 1.40400 0.702001 0.712176i \(-0.252290\pi\)
0.702001 + 0.712176i \(0.252290\pi\)
\(168\) 0 0
\(169\) 5547.00 2.52481
\(170\) −2520.00 −1.13691
\(171\) 936.000 0.418583
\(172\) 1304.00 0.578076
\(173\) 3438.00 1.51090 0.755452 0.655204i \(-0.227417\pi\)
0.755452 + 0.655204i \(0.227417\pi\)
\(174\) 306.000 0.133321
\(175\) 0 0
\(176\) −144.000 −0.0616728
\(177\) −477.000 −0.202562
\(178\) 2076.00 0.874173
\(179\) −1212.00 −0.506085 −0.253042 0.967455i \(-0.581431\pi\)
−0.253042 + 0.967455i \(0.581431\pi\)
\(180\) −540.000 −0.223607
\(181\) 3032.00 1.24512 0.622560 0.782572i \(-0.286093\pi\)
0.622560 + 0.782572i \(0.286093\pi\)
\(182\) 0 0
\(183\) −2166.00 −0.874947
\(184\) 672.000 0.269242
\(185\) −660.000 −0.262293
\(186\) 1110.00 0.437576
\(187\) 756.000 0.295637
\(188\) −552.000 −0.214142
\(189\) 0 0
\(190\) 3120.00 1.19131
\(191\) 2520.00 0.954664 0.477332 0.878723i \(-0.341604\pi\)
0.477332 + 0.878723i \(0.341604\pi\)
\(192\) −192.000 −0.0721688
\(193\) 365.000 0.136131 0.0680655 0.997681i \(-0.478317\pi\)
0.0680655 + 0.997681i \(0.478317\pi\)
\(194\) 338.000 0.125088
\(195\) −3960.00 −1.45426
\(196\) 0 0
\(197\) −1590.00 −0.575040 −0.287520 0.957775i \(-0.592831\pi\)
−0.287520 + 0.957775i \(0.592831\pi\)
\(198\) 162.000 0.0581456
\(199\) −5380.00 −1.91647 −0.958236 0.285977i \(-0.907682\pi\)
−0.958236 + 0.285977i \(0.907682\pi\)
\(200\) −800.000 −0.282843
\(201\) 498.000 0.174757
\(202\) −1284.00 −0.447237
\(203\) 0 0
\(204\) 1008.00 0.345952
\(205\) 2520.00 0.858558
\(206\) −928.000 −0.313868
\(207\) −756.000 −0.253844
\(208\) −1408.00 −0.469362
\(209\) −936.000 −0.309782
\(210\) 0 0
\(211\) −5362.00 −1.74946 −0.874728 0.484614i \(-0.838960\pi\)
−0.874728 + 0.484614i \(0.838960\pi\)
\(212\) 2556.00 0.828051
\(213\) −3258.00 −1.04805
\(214\) −786.000 −0.251074
\(215\) −4890.00 −1.55114
\(216\) 216.000 0.0680414
\(217\) 0 0
\(218\) −28.0000 −0.00869908
\(219\) −654.000 −0.201796
\(220\) 540.000 0.165485
\(221\) 7392.00 2.24995
\(222\) 264.000 0.0798132
\(223\) −1573.00 −0.472358 −0.236179 0.971710i \(-0.575895\pi\)
−0.236179 + 0.971710i \(0.575895\pi\)
\(224\) 0 0
\(225\) 900.000 0.266667
\(226\) 4368.00 1.28564
\(227\) 921.000 0.269290 0.134645 0.990894i \(-0.457011\pi\)
0.134645 + 0.990894i \(0.457011\pi\)
\(228\) −1248.00 −0.362504
\(229\) 4052.00 1.16927 0.584637 0.811295i \(-0.301237\pi\)
0.584637 + 0.811295i \(0.301237\pi\)
\(230\) −2520.00 −0.722452
\(231\) 0 0
\(232\) −408.000 −0.115459
\(233\) −468.000 −0.131587 −0.0657933 0.997833i \(-0.520958\pi\)
−0.0657933 + 0.997833i \(0.520958\pi\)
\(234\) 1584.00 0.442518
\(235\) 2070.00 0.574604
\(236\) 636.000 0.175424
\(237\) 1749.00 0.479366
\(238\) 0 0
\(239\) 4932.00 1.33483 0.667415 0.744686i \(-0.267401\pi\)
0.667415 + 0.744686i \(0.267401\pi\)
\(240\) 720.000 0.193649
\(241\) −1537.00 −0.410817 −0.205408 0.978676i \(-0.565852\pi\)
−0.205408 + 0.978676i \(0.565852\pi\)
\(242\) 2500.00 0.664075
\(243\) −243.000 −0.0641500
\(244\) 2888.00 0.757726
\(245\) 0 0
\(246\) −1008.00 −0.261251
\(247\) −9152.00 −2.35760
\(248\) −1480.00 −0.378952
\(249\) 1791.00 0.455823
\(250\) −750.000 −0.189737
\(251\) 5319.00 1.33758 0.668789 0.743452i \(-0.266813\pi\)
0.668789 + 0.743452i \(0.266813\pi\)
\(252\) 0 0
\(253\) 756.000 0.187863
\(254\) 746.000 0.184284
\(255\) −3780.00 −0.928285
\(256\) 256.000 0.0625000
\(257\) 5346.00 1.29757 0.648783 0.760974i \(-0.275278\pi\)
0.648783 + 0.760974i \(0.275278\pi\)
\(258\) 1956.00 0.471997
\(259\) 0 0
\(260\) 5280.00 1.25943
\(261\) 459.000 0.108856
\(262\) 2346.00 0.553192
\(263\) 774.000 0.181471 0.0907355 0.995875i \(-0.471078\pi\)
0.0907355 + 0.995875i \(0.471078\pi\)
\(264\) −216.000 −0.0503556
\(265\) −9585.00 −2.22189
\(266\) 0 0
\(267\) 3114.00 0.713759
\(268\) −664.000 −0.151344
\(269\) 2415.00 0.547380 0.273690 0.961818i \(-0.411756\pi\)
0.273690 + 0.961818i \(0.411756\pi\)
\(270\) −810.000 −0.182574
\(271\) −475.000 −0.106473 −0.0532365 0.998582i \(-0.516954\pi\)
−0.0532365 + 0.998582i \(0.516954\pi\)
\(272\) −1344.00 −0.299603
\(273\) 0 0
\(274\) −60.0000 −0.0132290
\(275\) −900.000 −0.197353
\(276\) 1008.00 0.219835
\(277\) 3728.00 0.808642 0.404321 0.914617i \(-0.367508\pi\)
0.404321 + 0.914617i \(0.367508\pi\)
\(278\) 164.000 0.0353815
\(279\) 1665.00 0.357279
\(280\) 0 0
\(281\) 1602.00 0.340097 0.170049 0.985436i \(-0.445608\pi\)
0.170049 + 0.985436i \(0.445608\pi\)
\(282\) −828.000 −0.174846
\(283\) 686.000 0.144094 0.0720468 0.997401i \(-0.477047\pi\)
0.0720468 + 0.997401i \(0.477047\pi\)
\(284\) 4344.00 0.907637
\(285\) 4680.00 0.972699
\(286\) −1584.00 −0.327496
\(287\) 0 0
\(288\) −288.000 −0.0589256
\(289\) 2143.00 0.436190
\(290\) 1530.00 0.309809
\(291\) 507.000 0.102134
\(292\) 872.000 0.174760
\(293\) −1101.00 −0.219526 −0.109763 0.993958i \(-0.535009\pi\)
−0.109763 + 0.993958i \(0.535009\pi\)
\(294\) 0 0
\(295\) −2385.00 −0.470712
\(296\) −352.000 −0.0691202
\(297\) 243.000 0.0474757
\(298\) 2868.00 0.557513
\(299\) 7392.00 1.42973
\(300\) −1200.00 −0.230940
\(301\) 0 0
\(302\) 5342.00 1.01787
\(303\) −1926.00 −0.365168
\(304\) 1664.00 0.313937
\(305\) −10830.0 −2.03319
\(306\) 1512.00 0.282468
\(307\) 2780.00 0.516818 0.258409 0.966036i \(-0.416802\pi\)
0.258409 + 0.966036i \(0.416802\pi\)
\(308\) 0 0
\(309\) −1392.00 −0.256272
\(310\) 5550.00 1.01683
\(311\) 4296.00 0.783292 0.391646 0.920116i \(-0.371906\pi\)
0.391646 + 0.920116i \(0.371906\pi\)
\(312\) −2112.00 −0.383232
\(313\) 5489.00 0.991235 0.495618 0.868541i \(-0.334942\pi\)
0.495618 + 0.868541i \(0.334942\pi\)
\(314\) −4504.00 −0.809476
\(315\) 0 0
\(316\) −2332.00 −0.415143
\(317\) 4491.00 0.795709 0.397854 0.917449i \(-0.369755\pi\)
0.397854 + 0.917449i \(0.369755\pi\)
\(318\) 3834.00 0.676101
\(319\) −459.000 −0.0805613
\(320\) −960.000 −0.167705
\(321\) −1179.00 −0.205001
\(322\) 0 0
\(323\) −8736.00 −1.50490
\(324\) 324.000 0.0555556
\(325\) −8800.00 −1.50196
\(326\) −3352.00 −0.569479
\(327\) −42.0000 −0.00710277
\(328\) 1344.00 0.226250
\(329\) 0 0
\(330\) 810.000 0.135118
\(331\) −3964.00 −0.658251 −0.329126 0.944286i \(-0.606754\pi\)
−0.329126 + 0.944286i \(0.606754\pi\)
\(332\) −2388.00 −0.394755
\(333\) 396.000 0.0651672
\(334\) −6060.00 −0.992780
\(335\) 2490.00 0.406099
\(336\) 0 0
\(337\) 161.000 0.0260244 0.0130122 0.999915i \(-0.495858\pi\)
0.0130122 + 0.999915i \(0.495858\pi\)
\(338\) −11094.0 −1.78531
\(339\) 6552.00 1.04972
\(340\) 5040.00 0.803919
\(341\) −1665.00 −0.264413
\(342\) −1872.00 −0.295983
\(343\) 0 0
\(344\) −2608.00 −0.408761
\(345\) −3780.00 −0.589879
\(346\) −6876.00 −1.06837
\(347\) −5916.00 −0.915238 −0.457619 0.889148i \(-0.651298\pi\)
−0.457619 + 0.889148i \(0.651298\pi\)
\(348\) −612.000 −0.0942720
\(349\) −142.000 −0.0217796 −0.0108898 0.999941i \(-0.503466\pi\)
−0.0108898 + 0.999941i \(0.503466\pi\)
\(350\) 0 0
\(351\) 2376.00 0.361315
\(352\) 288.000 0.0436092
\(353\) −4440.00 −0.669454 −0.334727 0.942315i \(-0.608644\pi\)
−0.334727 + 0.942315i \(0.608644\pi\)
\(354\) 954.000 0.143233
\(355\) −16290.0 −2.43545
\(356\) −4152.00 −0.618134
\(357\) 0 0
\(358\) 2424.00 0.357856
\(359\) 2286.00 0.336074 0.168037 0.985781i \(-0.446257\pi\)
0.168037 + 0.985781i \(0.446257\pi\)
\(360\) 1080.00 0.158114
\(361\) 3957.00 0.576906
\(362\) −6064.00 −0.880433
\(363\) 3750.00 0.542215
\(364\) 0 0
\(365\) −3270.00 −0.468930
\(366\) 4332.00 0.618681
\(367\) −2869.00 −0.408067 −0.204033 0.978964i \(-0.565405\pi\)
−0.204033 + 0.978964i \(0.565405\pi\)
\(368\) −1344.00 −0.190383
\(369\) −1512.00 −0.213311
\(370\) 1320.00 0.185469
\(371\) 0 0
\(372\) −2220.00 −0.309413
\(373\) −3064.00 −0.425330 −0.212665 0.977125i \(-0.568214\pi\)
−0.212665 + 0.977125i \(0.568214\pi\)
\(374\) −1512.00 −0.209047
\(375\) −1125.00 −0.154919
\(376\) 1104.00 0.151421
\(377\) −4488.00 −0.613113
\(378\) 0 0
\(379\) −6040.00 −0.818612 −0.409306 0.912397i \(-0.634229\pi\)
−0.409306 + 0.912397i \(0.634229\pi\)
\(380\) −6240.00 −0.842382
\(381\) 1119.00 0.150467
\(382\) −5040.00 −0.675049
\(383\) 1842.00 0.245749 0.122874 0.992422i \(-0.460789\pi\)
0.122874 + 0.992422i \(0.460789\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) −730.000 −0.0962591
\(387\) 2934.00 0.385384
\(388\) −676.000 −0.0884503
\(389\) 7830.00 1.02056 0.510279 0.860009i \(-0.329542\pi\)
0.510279 + 0.860009i \(0.329542\pi\)
\(390\) 7920.00 1.02832
\(391\) 7056.00 0.912627
\(392\) 0 0
\(393\) 3519.00 0.451680
\(394\) 3180.00 0.406614
\(395\) 8745.00 1.11395
\(396\) −324.000 −0.0411152
\(397\) −14764.0 −1.86646 −0.933229 0.359282i \(-0.883022\pi\)
−0.933229 + 0.359282i \(0.883022\pi\)
\(398\) 10760.0 1.35515
\(399\) 0 0
\(400\) 1600.00 0.200000
\(401\) 6264.00 0.780073 0.390036 0.920799i \(-0.372462\pi\)
0.390036 + 0.920799i \(0.372462\pi\)
\(402\) −996.000 −0.123572
\(403\) −16280.0 −2.01232
\(404\) 2568.00 0.316244
\(405\) −1215.00 −0.149071
\(406\) 0 0
\(407\) −396.000 −0.0482285
\(408\) −2016.00 −0.244625
\(409\) 4751.00 0.574381 0.287191 0.957873i \(-0.407279\pi\)
0.287191 + 0.957873i \(0.407279\pi\)
\(410\) −5040.00 −0.607092
\(411\) −90.0000 −0.0108014
\(412\) 1856.00 0.221938
\(413\) 0 0
\(414\) 1512.00 0.179495
\(415\) 8955.00 1.05924
\(416\) 2816.00 0.331889
\(417\) 246.000 0.0288889
\(418\) 1872.00 0.219049
\(419\) −4704.00 −0.548462 −0.274231 0.961664i \(-0.588423\pi\)
−0.274231 + 0.961664i \(0.588423\pi\)
\(420\) 0 0
\(421\) −4474.00 −0.517932 −0.258966 0.965886i \(-0.583382\pi\)
−0.258966 + 0.965886i \(0.583382\pi\)
\(422\) 10724.0 1.23705
\(423\) −1242.00 −0.142761
\(424\) −5112.00 −0.585520
\(425\) −8400.00 −0.958729
\(426\) 6516.00 0.741083
\(427\) 0 0
\(428\) 1572.00 0.177536
\(429\) −2376.00 −0.267399
\(430\) 9780.00 1.09682
\(431\) −12804.0 −1.43097 −0.715484 0.698629i \(-0.753794\pi\)
−0.715484 + 0.698629i \(0.753794\pi\)
\(432\) −432.000 −0.0481125
\(433\) −5074.00 −0.563143 −0.281571 0.959540i \(-0.590856\pi\)
−0.281571 + 0.959540i \(0.590856\pi\)
\(434\) 0 0
\(435\) 2295.00 0.252958
\(436\) 56.0000 0.00615118
\(437\) −8736.00 −0.956292
\(438\) 1308.00 0.142691
\(439\) −1267.00 −0.137746 −0.0688731 0.997625i \(-0.521940\pi\)
−0.0688731 + 0.997625i \(0.521940\pi\)
\(440\) −1080.00 −0.117016
\(441\) 0 0
\(442\) −14784.0 −1.59096
\(443\) −6933.00 −0.743559 −0.371780 0.928321i \(-0.621252\pi\)
−0.371780 + 0.928321i \(0.621252\pi\)
\(444\) −528.000 −0.0564364
\(445\) 15570.0 1.65863
\(446\) 3146.00 0.334008
\(447\) 4302.00 0.455207
\(448\) 0 0
\(449\) 11688.0 1.22849 0.614244 0.789116i \(-0.289461\pi\)
0.614244 + 0.789116i \(0.289461\pi\)
\(450\) −1800.00 −0.188562
\(451\) 1512.00 0.157865
\(452\) −8736.00 −0.909086
\(453\) 8013.00 0.831090
\(454\) −1842.00 −0.190417
\(455\) 0 0
\(456\) 2496.00 0.256329
\(457\) 551.000 0.0563998 0.0281999 0.999602i \(-0.491023\pi\)
0.0281999 + 0.999602i \(0.491023\pi\)
\(458\) −8104.00 −0.826801
\(459\) 2268.00 0.230634
\(460\) 5040.00 0.510850
\(461\) 13386.0 1.35238 0.676191 0.736726i \(-0.263629\pi\)
0.676191 + 0.736726i \(0.263629\pi\)
\(462\) 0 0
\(463\) −6376.00 −0.639995 −0.319998 0.947418i \(-0.603682\pi\)
−0.319998 + 0.947418i \(0.603682\pi\)
\(464\) 816.000 0.0816419
\(465\) 8325.00 0.830242
\(466\) 936.000 0.0930458
\(467\) 5700.00 0.564806 0.282403 0.959296i \(-0.408868\pi\)
0.282403 + 0.959296i \(0.408868\pi\)
\(468\) −3168.00 −0.312908
\(469\) 0 0
\(470\) −4140.00 −0.406306
\(471\) −6756.00 −0.660934
\(472\) −1272.00 −0.124044
\(473\) −2934.00 −0.285212
\(474\) −3498.00 −0.338963
\(475\) 10400.0 1.00460
\(476\) 0 0
\(477\) 5751.00 0.552034
\(478\) −9864.00 −0.943868
\(479\) 19794.0 1.88812 0.944062 0.329769i \(-0.106971\pi\)
0.944062 + 0.329769i \(0.106971\pi\)
\(480\) −1440.00 −0.136931
\(481\) −3872.00 −0.367044
\(482\) 3074.00 0.290491
\(483\) 0 0
\(484\) −5000.00 −0.469572
\(485\) 2535.00 0.237337
\(486\) 486.000 0.0453609
\(487\) 15935.0 1.48272 0.741359 0.671109i \(-0.234182\pi\)
0.741359 + 0.671109i \(0.234182\pi\)
\(488\) −5776.00 −0.535794
\(489\) −5028.00 −0.464978
\(490\) 0 0
\(491\) 9963.00 0.915731 0.457865 0.889021i \(-0.348614\pi\)
0.457865 + 0.889021i \(0.348614\pi\)
\(492\) 2016.00 0.184732
\(493\) −4284.00 −0.391362
\(494\) 18304.0 1.66708
\(495\) 1215.00 0.110324
\(496\) 2960.00 0.267960
\(497\) 0 0
\(498\) −3582.00 −0.322316
\(499\) 19142.0 1.71726 0.858631 0.512594i \(-0.171316\pi\)
0.858631 + 0.512594i \(0.171316\pi\)
\(500\) 1500.00 0.134164
\(501\) −9090.00 −0.810601
\(502\) −10638.0 −0.945811
\(503\) −12192.0 −1.08074 −0.540372 0.841426i \(-0.681717\pi\)
−0.540372 + 0.841426i \(0.681717\pi\)
\(504\) 0 0
\(505\) −9630.00 −0.848573
\(506\) −1512.00 −0.132839
\(507\) −16641.0 −1.45770
\(508\) −1492.00 −0.130309
\(509\) −19809.0 −1.72499 −0.862494 0.506068i \(-0.831098\pi\)
−0.862494 + 0.506068i \(0.831098\pi\)
\(510\) 7560.00 0.656397
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −2808.00 −0.241669
\(514\) −10692.0 −0.917517
\(515\) −6960.00 −0.595523
\(516\) −3912.00 −0.333752
\(517\) 1242.00 0.105654
\(518\) 0 0
\(519\) −10314.0 −0.872321
\(520\) −10560.0 −0.890551
\(521\) −1794.00 −0.150857 −0.0754286 0.997151i \(-0.524032\pi\)
−0.0754286 + 0.997151i \(0.524032\pi\)
\(522\) −918.000 −0.0769727
\(523\) −6448.00 −0.539104 −0.269552 0.962986i \(-0.586876\pi\)
−0.269552 + 0.962986i \(0.586876\pi\)
\(524\) −4692.00 −0.391166
\(525\) 0 0
\(526\) −1548.00 −0.128319
\(527\) −15540.0 −1.28450
\(528\) 432.000 0.0356068
\(529\) −5111.00 −0.420071
\(530\) 19170.0 1.57112
\(531\) 1431.00 0.116949
\(532\) 0 0
\(533\) 14784.0 1.20144
\(534\) −6228.00 −0.504704
\(535\) −5895.00 −0.476380
\(536\) 1328.00 0.107017
\(537\) 3636.00 0.292188
\(538\) −4830.00 −0.387056
\(539\) 0 0
\(540\) 1620.00 0.129099
\(541\) 7262.00 0.577112 0.288556 0.957463i \(-0.406825\pi\)
0.288556 + 0.957463i \(0.406825\pi\)
\(542\) 950.000 0.0752878
\(543\) −9096.00 −0.718871
\(544\) 2688.00 0.211851
\(545\) −210.000 −0.0165053
\(546\) 0 0
\(547\) 14204.0 1.11027 0.555136 0.831759i \(-0.312666\pi\)
0.555136 + 0.831759i \(0.312666\pi\)
\(548\) 120.000 0.00935428
\(549\) 6498.00 0.505151
\(550\) 1800.00 0.139550
\(551\) 5304.00 0.410087
\(552\) −2016.00 −0.155447
\(553\) 0 0
\(554\) −7456.00 −0.571796
\(555\) 1980.00 0.151435
\(556\) −328.000 −0.0250185
\(557\) 15825.0 1.20382 0.601909 0.798565i \(-0.294407\pi\)
0.601909 + 0.798565i \(0.294407\pi\)
\(558\) −3330.00 −0.252635
\(559\) −28688.0 −2.17061
\(560\) 0 0
\(561\) −2268.00 −0.170686
\(562\) −3204.00 −0.240485
\(563\) 1059.00 0.0792745 0.0396372 0.999214i \(-0.487380\pi\)
0.0396372 + 0.999214i \(0.487380\pi\)
\(564\) 1656.00 0.123635
\(565\) 32760.0 2.43933
\(566\) −1372.00 −0.101890
\(567\) 0 0
\(568\) −8688.00 −0.641796
\(569\) 3960.00 0.291761 0.145880 0.989302i \(-0.453399\pi\)
0.145880 + 0.989302i \(0.453399\pi\)
\(570\) −9360.00 −0.687802
\(571\) −2530.00 −0.185424 −0.0927121 0.995693i \(-0.529554\pi\)
−0.0927121 + 0.995693i \(0.529554\pi\)
\(572\) 3168.00 0.231575
\(573\) −7560.00 −0.551175
\(574\) 0 0
\(575\) −8400.00 −0.609225
\(576\) 576.000 0.0416667
\(577\) 11831.0 0.853607 0.426803 0.904344i \(-0.359640\pi\)
0.426803 + 0.904344i \(0.359640\pi\)
\(578\) −4286.00 −0.308433
\(579\) −1095.00 −0.0785952
\(580\) −3060.00 −0.219068
\(581\) 0 0
\(582\) −1014.00 −0.0722193
\(583\) −5751.00 −0.408546
\(584\) −1744.00 −0.123574
\(585\) 11880.0 0.839620
\(586\) 2202.00 0.155228
\(587\) 4809.00 0.338141 0.169070 0.985604i \(-0.445923\pi\)
0.169070 + 0.985604i \(0.445923\pi\)
\(588\) 0 0
\(589\) 19240.0 1.34596
\(590\) 4770.00 0.332844
\(591\) 4770.00 0.331999
\(592\) 704.000 0.0488754
\(593\) 21804.0 1.50992 0.754960 0.655770i \(-0.227656\pi\)
0.754960 + 0.655770i \(0.227656\pi\)
\(594\) −486.000 −0.0335704
\(595\) 0 0
\(596\) −5736.00 −0.394221
\(597\) 16140.0 1.10648
\(598\) −14784.0 −1.01097
\(599\) 14166.0 0.966289 0.483144 0.875541i \(-0.339495\pi\)
0.483144 + 0.875541i \(0.339495\pi\)
\(600\) 2400.00 0.163299
\(601\) 5891.00 0.399832 0.199916 0.979813i \(-0.435933\pi\)
0.199916 + 0.979813i \(0.435933\pi\)
\(602\) 0 0
\(603\) −1494.00 −0.100896
\(604\) −10684.0 −0.719745
\(605\) 18750.0 1.25999
\(606\) 3852.00 0.258213
\(607\) −2737.00 −0.183017 −0.0915086 0.995804i \(-0.529169\pi\)
−0.0915086 + 0.995804i \(0.529169\pi\)
\(608\) −3328.00 −0.221987
\(609\) 0 0
\(610\) 21660.0 1.43768
\(611\) 12144.0 0.804081
\(612\) −3024.00 −0.199735
\(613\) −26188.0 −1.72549 −0.862743 0.505642i \(-0.831256\pi\)
−0.862743 + 0.505642i \(0.831256\pi\)
\(614\) −5560.00 −0.365445
\(615\) −7560.00 −0.495689
\(616\) 0 0
\(617\) −2358.00 −0.153857 −0.0769283 0.997037i \(-0.524511\pi\)
−0.0769283 + 0.997037i \(0.524511\pi\)
\(618\) 2784.00 0.181212
\(619\) 13766.0 0.893865 0.446932 0.894568i \(-0.352516\pi\)
0.446932 + 0.894568i \(0.352516\pi\)
\(620\) −11100.0 −0.719011
\(621\) 2268.00 0.146557
\(622\) −8592.00 −0.553871
\(623\) 0 0
\(624\) 4224.00 0.270986
\(625\) −18125.0 −1.16000
\(626\) −10978.0 −0.700909
\(627\) 2808.00 0.178853
\(628\) 9008.00 0.572386
\(629\) −3696.00 −0.234291
\(630\) 0 0
\(631\) 21287.0 1.34298 0.671491 0.741012i \(-0.265654\pi\)
0.671491 + 0.741012i \(0.265654\pi\)
\(632\) 4664.00 0.293551
\(633\) 16086.0 1.01005
\(634\) −8982.00 −0.562651
\(635\) 5595.00 0.349655
\(636\) −7668.00 −0.478075
\(637\) 0 0
\(638\) 918.000 0.0569655
\(639\) 9774.00 0.605091
\(640\) 1920.00 0.118585
\(641\) 21426.0 1.32024 0.660122 0.751159i \(-0.270505\pi\)
0.660122 + 0.751159i \(0.270505\pi\)
\(642\) 2358.00 0.144958
\(643\) 9962.00 0.610984 0.305492 0.952195i \(-0.401179\pi\)
0.305492 + 0.952195i \(0.401179\pi\)
\(644\) 0 0
\(645\) 14670.0 0.895551
\(646\) 17472.0 1.06413
\(647\) −18174.0 −1.10432 −0.552159 0.833739i \(-0.686196\pi\)
−0.552159 + 0.833739i \(0.686196\pi\)
\(648\) −648.000 −0.0392837
\(649\) −1431.00 −0.0865511
\(650\) 17600.0 1.06204
\(651\) 0 0
\(652\) 6704.00 0.402682
\(653\) −19167.0 −1.14864 −0.574321 0.818630i \(-0.694734\pi\)
−0.574321 + 0.818630i \(0.694734\pi\)
\(654\) 84.0000 0.00502242
\(655\) 17595.0 1.04961
\(656\) −2688.00 −0.159983
\(657\) 1962.00 0.116507
\(658\) 0 0
\(659\) 13080.0 0.773178 0.386589 0.922252i \(-0.373653\pi\)
0.386589 + 0.922252i \(0.373653\pi\)
\(660\) −1620.00 −0.0955431
\(661\) −15190.0 −0.893831 −0.446916 0.894576i \(-0.647478\pi\)
−0.446916 + 0.894576i \(0.647478\pi\)
\(662\) 7928.00 0.465454
\(663\) −22176.0 −1.29901
\(664\) 4776.00 0.279134
\(665\) 0 0
\(666\) −792.000 −0.0460801
\(667\) −4284.00 −0.248691
\(668\) 12120.0 0.702001
\(669\) 4719.00 0.272716
\(670\) −4980.00 −0.287155
\(671\) −6498.00 −0.373849
\(672\) 0 0
\(673\) 4397.00 0.251845 0.125923 0.992040i \(-0.459811\pi\)
0.125923 + 0.992040i \(0.459811\pi\)
\(674\) −322.000 −0.0184020
\(675\) −2700.00 −0.153960
\(676\) 22188.0 1.26240
\(677\) 4029.00 0.228725 0.114363 0.993439i \(-0.463517\pi\)
0.114363 + 0.993439i \(0.463517\pi\)
\(678\) −13104.0 −0.742266
\(679\) 0 0
\(680\) −10080.0 −0.568456
\(681\) −2763.00 −0.155475
\(682\) 3330.00 0.186968
\(683\) 15021.0 0.841526 0.420763 0.907170i \(-0.361762\pi\)
0.420763 + 0.907170i \(0.361762\pi\)
\(684\) 3744.00 0.209292
\(685\) −450.000 −0.0251002
\(686\) 0 0
\(687\) −12156.0 −0.675081
\(688\) 5216.00 0.289038
\(689\) −56232.0 −3.10924
\(690\) 7560.00 0.417108
\(691\) −13984.0 −0.769865 −0.384932 0.922945i \(-0.625775\pi\)
−0.384932 + 0.922945i \(0.625775\pi\)
\(692\) 13752.0 0.755452
\(693\) 0 0
\(694\) 11832.0 0.647171
\(695\) 1230.00 0.0671317
\(696\) 1224.00 0.0666603
\(697\) 14112.0 0.766901
\(698\) 284.000 0.0154005
\(699\) 1404.00 0.0759716
\(700\) 0 0
\(701\) −31053.0 −1.67312 −0.836559 0.547877i \(-0.815436\pi\)
−0.836559 + 0.547877i \(0.815436\pi\)
\(702\) −4752.00 −0.255488
\(703\) 4576.00 0.245501
\(704\) −576.000 −0.0308364
\(705\) −6210.00 −0.331748
\(706\) 8880.00 0.473376
\(707\) 0 0
\(708\) −1908.00 −0.101281
\(709\) 15086.0 0.799107 0.399553 0.916710i \(-0.369165\pi\)
0.399553 + 0.916710i \(0.369165\pi\)
\(710\) 32580.0 1.72212
\(711\) −5247.00 −0.276762
\(712\) 8304.00 0.437086
\(713\) −15540.0 −0.816238
\(714\) 0 0
\(715\) −11880.0 −0.621380
\(716\) −4848.00 −0.253042
\(717\) −14796.0 −0.770665
\(718\) −4572.00 −0.237640
\(719\) −6378.00 −0.330820 −0.165410 0.986225i \(-0.552895\pi\)
−0.165410 + 0.986225i \(0.552895\pi\)
\(720\) −2160.00 −0.111803
\(721\) 0 0
\(722\) −7914.00 −0.407934
\(723\) 4611.00 0.237185
\(724\) 12128.0 0.622560
\(725\) 5100.00 0.261254
\(726\) −7500.00 −0.383404
\(727\) −7363.00 −0.375624 −0.187812 0.982205i \(-0.560140\pi\)
−0.187812 + 0.982205i \(0.560140\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 6540.00 0.331584
\(731\) −27384.0 −1.38555
\(732\) −8664.00 −0.437474
\(733\) 32810.0 1.65329 0.826647 0.562720i \(-0.190245\pi\)
0.826647 + 0.562720i \(0.190245\pi\)
\(734\) 5738.00 0.288547
\(735\) 0 0
\(736\) 2688.00 0.134621
\(737\) 1494.00 0.0746706
\(738\) 3024.00 0.150833
\(739\) −24034.0 −1.19635 −0.598177 0.801364i \(-0.704108\pi\)
−0.598177 + 0.801364i \(0.704108\pi\)
\(740\) −2640.00 −0.131146
\(741\) 27456.0 1.36116
\(742\) 0 0
\(743\) −8022.00 −0.396095 −0.198048 0.980192i \(-0.563460\pi\)
−0.198048 + 0.980192i \(0.563460\pi\)
\(744\) 4440.00 0.218788
\(745\) 21510.0 1.05781
\(746\) 6128.00 0.300753
\(747\) −5373.00 −0.263170
\(748\) 3024.00 0.147819
\(749\) 0 0
\(750\) 2250.00 0.109545
\(751\) 29519.0 1.43431 0.717153 0.696916i \(-0.245445\pi\)
0.717153 + 0.696916i \(0.245445\pi\)
\(752\) −2208.00 −0.107071
\(753\) −15957.0 −0.772252
\(754\) 8976.00 0.433537
\(755\) 40065.0 1.93128
\(756\) 0 0
\(757\) −3742.00 −0.179664 −0.0898318 0.995957i \(-0.528633\pi\)
−0.0898318 + 0.995957i \(0.528633\pi\)
\(758\) 12080.0 0.578846
\(759\) −2268.00 −0.108463
\(760\) 12480.0 0.595654
\(761\) −10896.0 −0.519027 −0.259514 0.965739i \(-0.583562\pi\)
−0.259514 + 0.965739i \(0.583562\pi\)
\(762\) −2238.00 −0.106397
\(763\) 0 0
\(764\) 10080.0 0.477332
\(765\) 11340.0 0.535946
\(766\) −3684.00 −0.173771
\(767\) −13992.0 −0.658699
\(768\) −768.000 −0.0360844
\(769\) 17285.0 0.810550 0.405275 0.914195i \(-0.367176\pi\)
0.405275 + 0.914195i \(0.367176\pi\)
\(770\) 0 0
\(771\) −16038.0 −0.749150
\(772\) 1460.00 0.0680655
\(773\) 11826.0 0.550261 0.275130 0.961407i \(-0.411279\pi\)
0.275130 + 0.961407i \(0.411279\pi\)
\(774\) −5868.00 −0.272508
\(775\) 18500.0 0.857470
\(776\) 1352.00 0.0625438
\(777\) 0 0
\(778\) −15660.0 −0.721643
\(779\) −17472.0 −0.803594
\(780\) −15840.0 −0.727132
\(781\) −9774.00 −0.447812
\(782\) −14112.0 −0.645325
\(783\) −1377.00 −0.0628480
\(784\) 0 0
\(785\) −33780.0 −1.53587
\(786\) −7038.00 −0.319386
\(787\) 17714.0 0.802333 0.401166 0.916005i \(-0.368605\pi\)
0.401166 + 0.916005i \(0.368605\pi\)
\(788\) −6360.00 −0.287520
\(789\) −2322.00 −0.104772
\(790\) −17490.0 −0.787679
\(791\) 0 0
\(792\) 648.000 0.0290728
\(793\) −63536.0 −2.84518
\(794\) 29528.0 1.31979
\(795\) 28755.0 1.28281
\(796\) −21520.0 −0.958236
\(797\) −24939.0 −1.10839 −0.554194 0.832388i \(-0.686973\pi\)
−0.554194 + 0.832388i \(0.686973\pi\)
\(798\) 0 0
\(799\) 11592.0 0.513261
\(800\) −3200.00 −0.141421
\(801\) −9342.00 −0.412089
\(802\) −12528.0 −0.551595
\(803\) −1962.00 −0.0862235
\(804\) 1992.00 0.0873786
\(805\) 0 0
\(806\) 32560.0 1.42292
\(807\) −7245.00 −0.316030
\(808\) −5136.00 −0.223619
\(809\) −29064.0 −1.26309 −0.631543 0.775341i \(-0.717578\pi\)
−0.631543 + 0.775341i \(0.717578\pi\)
\(810\) 2430.00 0.105409
\(811\) −15370.0 −0.665492 −0.332746 0.943017i \(-0.607975\pi\)
−0.332746 + 0.943017i \(0.607975\pi\)
\(812\) 0 0
\(813\) 1425.00 0.0614722
\(814\) 792.000 0.0341027
\(815\) −25140.0 −1.08051
\(816\) 4032.00 0.172976
\(817\) 33904.0 1.45184
\(818\) −9502.00 −0.406149
\(819\) 0 0
\(820\) 10080.0 0.429279
\(821\) 44031.0 1.87173 0.935866 0.352355i \(-0.114619\pi\)
0.935866 + 0.352355i \(0.114619\pi\)
\(822\) 180.000 0.00763774
\(823\) −4192.00 −0.177550 −0.0887752 0.996052i \(-0.528295\pi\)
−0.0887752 + 0.996052i \(0.528295\pi\)
\(824\) −3712.00 −0.156934
\(825\) 2700.00 0.113942
\(826\) 0 0
\(827\) 33195.0 1.39577 0.697886 0.716209i \(-0.254124\pi\)
0.697886 + 0.716209i \(0.254124\pi\)
\(828\) −3024.00 −0.126922
\(829\) 16448.0 0.689098 0.344549 0.938768i \(-0.388032\pi\)
0.344549 + 0.938768i \(0.388032\pi\)
\(830\) −17910.0 −0.748994
\(831\) −11184.0 −0.466870
\(832\) −5632.00 −0.234681
\(833\) 0 0
\(834\) −492.000 −0.0204275
\(835\) −45450.0 −1.88367
\(836\) −3744.00 −0.154891
\(837\) −4995.00 −0.206275
\(838\) 9408.00 0.387821
\(839\) 16860.0 0.693769 0.346884 0.937908i \(-0.387240\pi\)
0.346884 + 0.937908i \(0.387240\pi\)
\(840\) 0 0
\(841\) −21788.0 −0.893354
\(842\) 8948.00 0.366233
\(843\) −4806.00 −0.196355
\(844\) −21448.0 −0.874728
\(845\) −83205.0 −3.38738
\(846\) 2484.00 0.100948
\(847\) 0 0
\(848\) 10224.0 0.414025
\(849\) −2058.00 −0.0831924
\(850\) 16800.0 0.677924
\(851\) −3696.00 −0.148880
\(852\) −13032.0 −0.524025
\(853\) 29054.0 1.16623 0.583113 0.812391i \(-0.301835\pi\)
0.583113 + 0.812391i \(0.301835\pi\)
\(854\) 0 0
\(855\) −14040.0 −0.561588
\(856\) −3144.00 −0.125537
\(857\) 41958.0 1.67241 0.836207 0.548415i \(-0.184768\pi\)
0.836207 + 0.548415i \(0.184768\pi\)
\(858\) 4752.00 0.189080
\(859\) 5546.00 0.220288 0.110144 0.993916i \(-0.464869\pi\)
0.110144 + 0.993916i \(0.464869\pi\)
\(860\) −19560.0 −0.775570
\(861\) 0 0
\(862\) 25608.0 1.01185
\(863\) −32538.0 −1.28344 −0.641719 0.766940i \(-0.721778\pi\)
−0.641719 + 0.766940i \(0.721778\pi\)
\(864\) 864.000 0.0340207
\(865\) −51570.0 −2.02709
\(866\) 10148.0 0.398202
\(867\) −6429.00 −0.251834
\(868\) 0 0
\(869\) 5247.00 0.204824
\(870\) −4590.00 −0.178868
\(871\) 14608.0 0.568282
\(872\) −112.000 −0.00434954
\(873\) −1521.00 −0.0589668
\(874\) 17472.0 0.676200
\(875\) 0 0
\(876\) −2616.00 −0.100898
\(877\) 32096.0 1.23581 0.617905 0.786253i \(-0.287982\pi\)
0.617905 + 0.786253i \(0.287982\pi\)
\(878\) 2534.00 0.0974013
\(879\) 3303.00 0.126743
\(880\) 2160.00 0.0827427
\(881\) −8490.00 −0.324671 −0.162336 0.986736i \(-0.551903\pi\)
−0.162336 + 0.986736i \(0.551903\pi\)
\(882\) 0 0
\(883\) −48352.0 −1.84278 −0.921390 0.388640i \(-0.872945\pi\)
−0.921390 + 0.388640i \(0.872945\pi\)
\(884\) 29568.0 1.12498
\(885\) 7155.00 0.271766
\(886\) 13866.0 0.525776
\(887\) 15492.0 0.586438 0.293219 0.956045i \(-0.405274\pi\)
0.293219 + 0.956045i \(0.405274\pi\)
\(888\) 1056.00 0.0399066
\(889\) 0 0
\(890\) −31140.0 −1.17283
\(891\) −729.000 −0.0274101
\(892\) −6292.00 −0.236179
\(893\) −14352.0 −0.537818
\(894\) −8604.00 −0.321880
\(895\) 18180.0 0.678984
\(896\) 0 0
\(897\) −22176.0 −0.825457
\(898\) −23376.0 −0.868672
\(899\) 9435.00 0.350028
\(900\) 3600.00 0.133333
\(901\) −53676.0 −1.98469
\(902\) −3024.00 −0.111628
\(903\) 0 0
\(904\) 17472.0 0.642821
\(905\) −45480.0 −1.67050
\(906\) −16026.0 −0.587669
\(907\) −8116.00 −0.297119 −0.148560 0.988903i \(-0.547464\pi\)
−0.148560 + 0.988903i \(0.547464\pi\)
\(908\) 3684.00 0.134645
\(909\) 5778.00 0.210830
\(910\) 0 0
\(911\) −4446.00 −0.161693 −0.0808466 0.996727i \(-0.525762\pi\)
−0.0808466 + 0.996727i \(0.525762\pi\)
\(912\) −4992.00 −0.181252
\(913\) 5373.00 0.194765
\(914\) −1102.00 −0.0398807
\(915\) 32490.0 1.17386
\(916\) 16208.0 0.584637
\(917\) 0 0
\(918\) −4536.00 −0.163083
\(919\) 26504.0 0.951345 0.475673 0.879622i \(-0.342205\pi\)
0.475673 + 0.879622i \(0.342205\pi\)
\(920\) −10080.0 −0.361226
\(921\) −8340.00 −0.298385
\(922\) −26772.0 −0.956279
\(923\) −95568.0 −3.40808
\(924\) 0 0
\(925\) 4400.00 0.156401
\(926\) 12752.0 0.452545
\(927\) 4176.00 0.147959
\(928\) −1632.00 −0.0577296
\(929\) −5430.00 −0.191768 −0.0958840 0.995393i \(-0.530568\pi\)
−0.0958840 + 0.995393i \(0.530568\pi\)
\(930\) −16650.0 −0.587070
\(931\) 0 0
\(932\) −1872.00 −0.0657933
\(933\) −12888.0 −0.452234
\(934\) −11400.0 −0.399378
\(935\) −11340.0 −0.396639
\(936\) 6336.00 0.221259
\(937\) 33803.0 1.17854 0.589272 0.807935i \(-0.299415\pi\)
0.589272 + 0.807935i \(0.299415\pi\)
\(938\) 0 0
\(939\) −16467.0 −0.572290
\(940\) 8280.00 0.287302
\(941\) −48483.0 −1.67960 −0.839798 0.542898i \(-0.817327\pi\)
−0.839798 + 0.542898i \(0.817327\pi\)
\(942\) 13512.0 0.467351
\(943\) 14112.0 0.487328
\(944\) 2544.00 0.0877120
\(945\) 0 0
\(946\) 5868.00 0.201676
\(947\) 37296.0 1.27979 0.639893 0.768464i \(-0.278979\pi\)
0.639893 + 0.768464i \(0.278979\pi\)
\(948\) 6996.00 0.239683
\(949\) −19184.0 −0.656205
\(950\) −20800.0 −0.710359
\(951\) −13473.0 −0.459403
\(952\) 0 0
\(953\) −38478.0 −1.30790 −0.653948 0.756540i \(-0.726888\pi\)
−0.653948 + 0.756540i \(0.726888\pi\)
\(954\) −11502.0 −0.390347
\(955\) −37800.0 −1.28082
\(956\) 19728.0 0.667415
\(957\) 1377.00 0.0465121
\(958\) −39588.0 −1.33510
\(959\) 0 0
\(960\) 2880.00 0.0968246
\(961\) 4434.00 0.148837
\(962\) 7744.00 0.259539
\(963\) 3537.00 0.118357
\(964\) −6148.00 −0.205408
\(965\) −5475.00 −0.182639
\(966\) 0 0
\(967\) 27257.0 0.906438 0.453219 0.891399i \(-0.350275\pi\)
0.453219 + 0.891399i \(0.350275\pi\)
\(968\) 10000.0 0.332037
\(969\) 26208.0 0.868857
\(970\) −5070.00 −0.167823
\(971\) 34341.0 1.13497 0.567485 0.823384i \(-0.307917\pi\)
0.567485 + 0.823384i \(0.307917\pi\)
\(972\) −972.000 −0.0320750
\(973\) 0 0
\(974\) −31870.0 −1.04844
\(975\) 26400.0 0.867156
\(976\) 11552.0 0.378863
\(977\) 27426.0 0.898092 0.449046 0.893509i \(-0.351764\pi\)
0.449046 + 0.893509i \(0.351764\pi\)
\(978\) 10056.0 0.328789
\(979\) 9342.00 0.304976
\(980\) 0 0
\(981\) 126.000 0.00410079
\(982\) −19926.0 −0.647520
\(983\) 12324.0 0.399872 0.199936 0.979809i \(-0.435927\pi\)
0.199936 + 0.979809i \(0.435927\pi\)
\(984\) −4032.00 −0.130625
\(985\) 23850.0 0.771497
\(986\) 8568.00 0.276735
\(987\) 0 0
\(988\) −36608.0 −1.17880
\(989\) −27384.0 −0.880445
\(990\) −2430.00 −0.0780106
\(991\) 47597.0 1.52570 0.762850 0.646576i \(-0.223800\pi\)
0.762850 + 0.646576i \(0.223800\pi\)
\(992\) −5920.00 −0.189476
\(993\) 11892.0 0.380042
\(994\) 0 0
\(995\) 80700.0 2.57122
\(996\) 7164.00 0.227912
\(997\) −11242.0 −0.357109 −0.178555 0.983930i \(-0.557142\pi\)
−0.178555 + 0.983930i \(0.557142\pi\)
\(998\) −38284.0 −1.21429
\(999\) −1188.00 −0.0376243
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.4.a.a.1.1 1
3.2 odd 2 882.4.a.r.1.1 1
4.3 odd 2 2352.4.a.u.1.1 1
7.2 even 3 42.4.e.b.25.1 2
7.3 odd 6 294.4.e.e.79.1 2
7.4 even 3 42.4.e.b.37.1 yes 2
7.5 odd 6 294.4.e.e.67.1 2
7.6 odd 2 294.4.a.g.1.1 1
21.2 odd 6 126.4.g.a.109.1 2
21.5 even 6 882.4.g.l.361.1 2
21.11 odd 6 126.4.g.a.37.1 2
21.17 even 6 882.4.g.l.667.1 2
21.20 even 2 882.4.a.h.1.1 1
28.11 odd 6 336.4.q.d.289.1 2
28.23 odd 6 336.4.q.d.193.1 2
28.27 even 2 2352.4.a.q.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.4.e.b.25.1 2 7.2 even 3
42.4.e.b.37.1 yes 2 7.4 even 3
126.4.g.a.37.1 2 21.11 odd 6
126.4.g.a.109.1 2 21.2 odd 6
294.4.a.a.1.1 1 1.1 even 1 trivial
294.4.a.g.1.1 1 7.6 odd 2
294.4.e.e.67.1 2 7.5 odd 6
294.4.e.e.79.1 2 7.3 odd 6
336.4.q.d.193.1 2 28.23 odd 6
336.4.q.d.289.1 2 28.11 odd 6
882.4.a.h.1.1 1 21.20 even 2
882.4.a.r.1.1 1 3.2 odd 2
882.4.g.l.361.1 2 21.5 even 6
882.4.g.l.667.1 2 21.17 even 6
2352.4.a.q.1.1 1 28.27 even 2
2352.4.a.u.1.1 1 4.3 odd 2