Properties

Label 294.4.a.d.1.1
Level $294$
Weight $4$
Character 294.1
Self dual yes
Analytic conductor $17.347$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,4,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3465615417\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{5} -6.00000 q^{6} -8.00000 q^{8} +9.00000 q^{9} +12.0000 q^{10} -30.0000 q^{11} +12.0000 q^{12} +53.0000 q^{13} -18.0000 q^{15} +16.0000 q^{16} -84.0000 q^{17} -18.0000 q^{18} -97.0000 q^{19} -24.0000 q^{20} +60.0000 q^{22} +84.0000 q^{23} -24.0000 q^{24} -89.0000 q^{25} -106.000 q^{26} +27.0000 q^{27} -180.000 q^{29} +36.0000 q^{30} +179.000 q^{31} -32.0000 q^{32} -90.0000 q^{33} +168.000 q^{34} +36.0000 q^{36} -145.000 q^{37} +194.000 q^{38} +159.000 q^{39} +48.0000 q^{40} +126.000 q^{41} -325.000 q^{43} -120.000 q^{44} -54.0000 q^{45} -168.000 q^{46} -366.000 q^{47} +48.0000 q^{48} +178.000 q^{50} -252.000 q^{51} +212.000 q^{52} -768.000 q^{53} -54.0000 q^{54} +180.000 q^{55} -291.000 q^{57} +360.000 q^{58} -264.000 q^{59} -72.0000 q^{60} +818.000 q^{61} -358.000 q^{62} +64.0000 q^{64} -318.000 q^{65} +180.000 q^{66} -523.000 q^{67} -336.000 q^{68} +252.000 q^{69} -342.000 q^{71} -72.0000 q^{72} -43.0000 q^{73} +290.000 q^{74} -267.000 q^{75} -388.000 q^{76} -318.000 q^{78} -1171.00 q^{79} -96.0000 q^{80} +81.0000 q^{81} -252.000 q^{82} -810.000 q^{83} +504.000 q^{85} +650.000 q^{86} -540.000 q^{87} +240.000 q^{88} -600.000 q^{89} +108.000 q^{90} +336.000 q^{92} +537.000 q^{93} +732.000 q^{94} +582.000 q^{95} -96.0000 q^{96} +386.000 q^{97} -270.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) −6.00000 −0.536656 −0.268328 0.963328i \(-0.586471\pi\)
−0.268328 + 0.963328i \(0.586471\pi\)
\(6\) −6.00000 −0.408248
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) 12.0000 0.379473
\(11\) −30.0000 −0.822304 −0.411152 0.911567i \(-0.634873\pi\)
−0.411152 + 0.911567i \(0.634873\pi\)
\(12\) 12.0000 0.288675
\(13\) 53.0000 1.13074 0.565368 0.824839i \(-0.308734\pi\)
0.565368 + 0.824839i \(0.308734\pi\)
\(14\) 0 0
\(15\) −18.0000 −0.309839
\(16\) 16.0000 0.250000
\(17\) −84.0000 −1.19841 −0.599206 0.800595i \(-0.704517\pi\)
−0.599206 + 0.800595i \(0.704517\pi\)
\(18\) −18.0000 −0.235702
\(19\) −97.0000 −1.17123 −0.585614 0.810590i \(-0.699146\pi\)
−0.585614 + 0.810590i \(0.699146\pi\)
\(20\) −24.0000 −0.268328
\(21\) 0 0
\(22\) 60.0000 0.581456
\(23\) 84.0000 0.761531 0.380765 0.924672i \(-0.375661\pi\)
0.380765 + 0.924672i \(0.375661\pi\)
\(24\) −24.0000 −0.204124
\(25\) −89.0000 −0.712000
\(26\) −106.000 −0.799550
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −180.000 −1.15259 −0.576296 0.817241i \(-0.695502\pi\)
−0.576296 + 0.817241i \(0.695502\pi\)
\(30\) 36.0000 0.219089
\(31\) 179.000 1.03708 0.518538 0.855055i \(-0.326477\pi\)
0.518538 + 0.855055i \(0.326477\pi\)
\(32\) −32.0000 −0.176777
\(33\) −90.0000 −0.474757
\(34\) 168.000 0.847405
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) −145.000 −0.644266 −0.322133 0.946694i \(-0.604400\pi\)
−0.322133 + 0.946694i \(0.604400\pi\)
\(38\) 194.000 0.828183
\(39\) 159.000 0.652830
\(40\) 48.0000 0.189737
\(41\) 126.000 0.479949 0.239974 0.970779i \(-0.422861\pi\)
0.239974 + 0.970779i \(0.422861\pi\)
\(42\) 0 0
\(43\) −325.000 −1.15261 −0.576303 0.817236i \(-0.695505\pi\)
−0.576303 + 0.817236i \(0.695505\pi\)
\(44\) −120.000 −0.411152
\(45\) −54.0000 −0.178885
\(46\) −168.000 −0.538484
\(47\) −366.000 −1.13588 −0.567942 0.823068i \(-0.692260\pi\)
−0.567942 + 0.823068i \(0.692260\pi\)
\(48\) 48.0000 0.144338
\(49\) 0 0
\(50\) 178.000 0.503460
\(51\) −252.000 −0.691903
\(52\) 212.000 0.565368
\(53\) −768.000 −1.99043 −0.995216 0.0976975i \(-0.968852\pi\)
−0.995216 + 0.0976975i \(0.968852\pi\)
\(54\) −54.0000 −0.136083
\(55\) 180.000 0.441294
\(56\) 0 0
\(57\) −291.000 −0.676209
\(58\) 360.000 0.815005
\(59\) −264.000 −0.582540 −0.291270 0.956641i \(-0.594078\pi\)
−0.291270 + 0.956641i \(0.594078\pi\)
\(60\) −72.0000 −0.154919
\(61\) 818.000 1.71695 0.858477 0.512852i \(-0.171411\pi\)
0.858477 + 0.512852i \(0.171411\pi\)
\(62\) −358.000 −0.733323
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −318.000 −0.606816
\(66\) 180.000 0.335704
\(67\) −523.000 −0.953651 −0.476826 0.878998i \(-0.658213\pi\)
−0.476826 + 0.878998i \(0.658213\pi\)
\(68\) −336.000 −0.599206
\(69\) 252.000 0.439670
\(70\) 0 0
\(71\) −342.000 −0.571661 −0.285831 0.958280i \(-0.592269\pi\)
−0.285831 + 0.958280i \(0.592269\pi\)
\(72\) −72.0000 −0.117851
\(73\) −43.0000 −0.0689420 −0.0344710 0.999406i \(-0.510975\pi\)
−0.0344710 + 0.999406i \(0.510975\pi\)
\(74\) 290.000 0.455565
\(75\) −267.000 −0.411073
\(76\) −388.000 −0.585614
\(77\) 0 0
\(78\) −318.000 −0.461621
\(79\) −1171.00 −1.66769 −0.833847 0.551996i \(-0.813866\pi\)
−0.833847 + 0.551996i \(0.813866\pi\)
\(80\) −96.0000 −0.134164
\(81\) 81.0000 0.111111
\(82\) −252.000 −0.339375
\(83\) −810.000 −1.07119 −0.535597 0.844474i \(-0.679913\pi\)
−0.535597 + 0.844474i \(0.679913\pi\)
\(84\) 0 0
\(85\) 504.000 0.643135
\(86\) 650.000 0.815015
\(87\) −540.000 −0.665449
\(88\) 240.000 0.290728
\(89\) −600.000 −0.714605 −0.357303 0.933989i \(-0.616304\pi\)
−0.357303 + 0.933989i \(0.616304\pi\)
\(90\) 108.000 0.126491
\(91\) 0 0
\(92\) 336.000 0.380765
\(93\) 537.000 0.598756
\(94\) 732.000 0.803192
\(95\) 582.000 0.628547
\(96\) −96.0000 −0.102062
\(97\) 386.000 0.404045 0.202022 0.979381i \(-0.435249\pi\)
0.202022 + 0.979381i \(0.435249\pi\)
\(98\) 0 0
\(99\) −270.000 −0.274101
\(100\) −356.000 −0.356000
\(101\) 618.000 0.608845 0.304422 0.952537i \(-0.401537\pi\)
0.304422 + 0.952537i \(0.401537\pi\)
\(102\) 504.000 0.489249
\(103\) 1475.00 1.41103 0.705515 0.708695i \(-0.250716\pi\)
0.705515 + 0.708695i \(0.250716\pi\)
\(104\) −424.000 −0.399775
\(105\) 0 0
\(106\) 1536.00 1.40745
\(107\) 1884.00 1.70218 0.851090 0.525021i \(-0.175942\pi\)
0.851090 + 0.525021i \(0.175942\pi\)
\(108\) 108.000 0.0962250
\(109\) 413.000 0.362920 0.181460 0.983398i \(-0.441918\pi\)
0.181460 + 0.983398i \(0.441918\pi\)
\(110\) −360.000 −0.312042
\(111\) −435.000 −0.371967
\(112\) 0 0
\(113\) −882.000 −0.734262 −0.367131 0.930169i \(-0.619660\pi\)
−0.367131 + 0.930169i \(0.619660\pi\)
\(114\) 582.000 0.478152
\(115\) −504.000 −0.408680
\(116\) −720.000 −0.576296
\(117\) 477.000 0.376912
\(118\) 528.000 0.411918
\(119\) 0 0
\(120\) 144.000 0.109545
\(121\) −431.000 −0.323817
\(122\) −1636.00 −1.21407
\(123\) 378.000 0.277098
\(124\) 716.000 0.518538
\(125\) 1284.00 0.918756
\(126\) 0 0
\(127\) 2483.00 1.73489 0.867443 0.497536i \(-0.165762\pi\)
0.867443 + 0.497536i \(0.165762\pi\)
\(128\) −128.000 −0.0883883
\(129\) −975.000 −0.665457
\(130\) 636.000 0.429084
\(131\) 2118.00 1.41260 0.706300 0.707913i \(-0.250363\pi\)
0.706300 + 0.707913i \(0.250363\pi\)
\(132\) −360.000 −0.237379
\(133\) 0 0
\(134\) 1046.00 0.674333
\(135\) −162.000 −0.103280
\(136\) 672.000 0.423702
\(137\) 3012.00 1.87834 0.939170 0.343453i \(-0.111597\pi\)
0.939170 + 0.343453i \(0.111597\pi\)
\(138\) −504.000 −0.310894
\(139\) −37.0000 −0.0225777 −0.0112888 0.999936i \(-0.503593\pi\)
−0.0112888 + 0.999936i \(0.503593\pi\)
\(140\) 0 0
\(141\) −1098.00 −0.655803
\(142\) 684.000 0.404225
\(143\) −1590.00 −0.929808
\(144\) 144.000 0.0833333
\(145\) 1080.00 0.618546
\(146\) 86.0000 0.0487494
\(147\) 0 0
\(148\) −580.000 −0.322133
\(149\) −1644.00 −0.903904 −0.451952 0.892042i \(-0.649272\pi\)
−0.451952 + 0.892042i \(0.649272\pi\)
\(150\) 534.000 0.290673
\(151\) 1088.00 0.586359 0.293179 0.956057i \(-0.405287\pi\)
0.293179 + 0.956057i \(0.405287\pi\)
\(152\) 776.000 0.414092
\(153\) −756.000 −0.399470
\(154\) 0 0
\(155\) −1074.00 −0.556553
\(156\) 636.000 0.326415
\(157\) 506.000 0.257218 0.128609 0.991695i \(-0.458949\pi\)
0.128609 + 0.991695i \(0.458949\pi\)
\(158\) 2342.00 1.17924
\(159\) −2304.00 −1.14918
\(160\) 192.000 0.0948683
\(161\) 0 0
\(162\) −162.000 −0.0785674
\(163\) 1844.00 0.886093 0.443047 0.896499i \(-0.353898\pi\)
0.443047 + 0.896499i \(0.353898\pi\)
\(164\) 504.000 0.239974
\(165\) 540.000 0.254781
\(166\) 1620.00 0.757448
\(167\) 162.000 0.0750655 0.0375327 0.999295i \(-0.488050\pi\)
0.0375327 + 0.999295i \(0.488050\pi\)
\(168\) 0 0
\(169\) 612.000 0.278562
\(170\) −1008.00 −0.454765
\(171\) −873.000 −0.390409
\(172\) −1300.00 −0.576303
\(173\) −2724.00 −1.19712 −0.598560 0.801078i \(-0.704260\pi\)
−0.598560 + 0.801078i \(0.704260\pi\)
\(174\) 1080.00 0.470544
\(175\) 0 0
\(176\) −480.000 −0.205576
\(177\) −792.000 −0.336330
\(178\) 1200.00 0.505302
\(179\) −1254.00 −0.523622 −0.261811 0.965119i \(-0.584320\pi\)
−0.261811 + 0.965119i \(0.584320\pi\)
\(180\) −216.000 −0.0894427
\(181\) −1807.00 −0.742062 −0.371031 0.928620i \(-0.620996\pi\)
−0.371031 + 0.928620i \(0.620996\pi\)
\(182\) 0 0
\(183\) 2454.00 0.991284
\(184\) −672.000 −0.269242
\(185\) 870.000 0.345750
\(186\) −1074.00 −0.423384
\(187\) 2520.00 0.985458
\(188\) −1464.00 −0.567942
\(189\) 0 0
\(190\) −1164.00 −0.444450
\(191\) 714.000 0.270488 0.135244 0.990812i \(-0.456818\pi\)
0.135244 + 0.990812i \(0.456818\pi\)
\(192\) 192.000 0.0721688
\(193\) −3709.00 −1.38331 −0.691657 0.722226i \(-0.743119\pi\)
−0.691657 + 0.722226i \(0.743119\pi\)
\(194\) −772.000 −0.285703
\(195\) −954.000 −0.350345
\(196\) 0 0
\(197\) −1044.00 −0.377573 −0.188787 0.982018i \(-0.560455\pi\)
−0.188787 + 0.982018i \(0.560455\pi\)
\(198\) 540.000 0.193819
\(199\) −136.000 −0.0484462 −0.0242231 0.999707i \(-0.507711\pi\)
−0.0242231 + 0.999707i \(0.507711\pi\)
\(200\) 712.000 0.251730
\(201\) −1569.00 −0.550591
\(202\) −1236.00 −0.430518
\(203\) 0 0
\(204\) −1008.00 −0.345952
\(205\) −756.000 −0.257567
\(206\) −2950.00 −0.997749
\(207\) 756.000 0.253844
\(208\) 848.000 0.282684
\(209\) 2910.00 0.963105
\(210\) 0 0
\(211\) 1484.00 0.484184 0.242092 0.970253i \(-0.422166\pi\)
0.242092 + 0.970253i \(0.422166\pi\)
\(212\) −3072.00 −0.995216
\(213\) −1026.00 −0.330049
\(214\) −3768.00 −1.20362
\(215\) 1950.00 0.618553
\(216\) −216.000 −0.0680414
\(217\) 0 0
\(218\) −826.000 −0.256623
\(219\) −129.000 −0.0398037
\(220\) 720.000 0.220647
\(221\) −4452.00 −1.35509
\(222\) 870.000 0.263021
\(223\) −2032.00 −0.610192 −0.305096 0.952322i \(-0.598689\pi\)
−0.305096 + 0.952322i \(0.598689\pi\)
\(224\) 0 0
\(225\) −801.000 −0.237333
\(226\) 1764.00 0.519201
\(227\) 6198.00 1.81223 0.906114 0.423034i \(-0.139035\pi\)
0.906114 + 0.423034i \(0.139035\pi\)
\(228\) −1164.00 −0.338104
\(229\) −4591.00 −1.32481 −0.662406 0.749145i \(-0.730464\pi\)
−0.662406 + 0.749145i \(0.730464\pi\)
\(230\) 1008.00 0.288981
\(231\) 0 0
\(232\) 1440.00 0.407503
\(233\) 4530.00 1.27369 0.636846 0.770991i \(-0.280239\pi\)
0.636846 + 0.770991i \(0.280239\pi\)
\(234\) −954.000 −0.266517
\(235\) 2196.00 0.609580
\(236\) −1056.00 −0.291270
\(237\) −3513.00 −0.962843
\(238\) 0 0
\(239\) 1530.00 0.414090 0.207045 0.978331i \(-0.433615\pi\)
0.207045 + 0.978331i \(0.433615\pi\)
\(240\) −288.000 −0.0774597
\(241\) 5534.00 1.47915 0.739577 0.673072i \(-0.235025\pi\)
0.739577 + 0.673072i \(0.235025\pi\)
\(242\) 862.000 0.228973
\(243\) 243.000 0.0641500
\(244\) 3272.00 0.858477
\(245\) 0 0
\(246\) −756.000 −0.195938
\(247\) −5141.00 −1.32435
\(248\) −1432.00 −0.366662
\(249\) −2430.00 −0.618454
\(250\) −2568.00 −0.649658
\(251\) −468.000 −0.117689 −0.0588444 0.998267i \(-0.518742\pi\)
−0.0588444 + 0.998267i \(0.518742\pi\)
\(252\) 0 0
\(253\) −2520.00 −0.626210
\(254\) −4966.00 −1.22675
\(255\) 1512.00 0.371314
\(256\) 256.000 0.0625000
\(257\) −2490.00 −0.604365 −0.302183 0.953250i \(-0.597715\pi\)
−0.302183 + 0.953250i \(0.597715\pi\)
\(258\) 1950.00 0.470549
\(259\) 0 0
\(260\) −1272.00 −0.303408
\(261\) −1620.00 −0.384197
\(262\) −4236.00 −0.998859
\(263\) 1572.00 0.368569 0.184285 0.982873i \(-0.441003\pi\)
0.184285 + 0.982873i \(0.441003\pi\)
\(264\) 720.000 0.167852
\(265\) 4608.00 1.06818
\(266\) 0 0
\(267\) −1800.00 −0.412578
\(268\) −2092.00 −0.476826
\(269\) 1806.00 0.409345 0.204672 0.978831i \(-0.434387\pi\)
0.204672 + 0.978831i \(0.434387\pi\)
\(270\) 324.000 0.0730297
\(271\) −6112.00 −1.37003 −0.685014 0.728530i \(-0.740204\pi\)
−0.685014 + 0.728530i \(0.740204\pi\)
\(272\) −1344.00 −0.299603
\(273\) 0 0
\(274\) −6024.00 −1.32819
\(275\) 2670.00 0.585480
\(276\) 1008.00 0.219835
\(277\) −4231.00 −0.917748 −0.458874 0.888501i \(-0.651747\pi\)
−0.458874 + 0.888501i \(0.651747\pi\)
\(278\) 74.0000 0.0159648
\(279\) 1611.00 0.345692
\(280\) 0 0
\(281\) −3816.00 −0.810119 −0.405060 0.914290i \(-0.632749\pi\)
−0.405060 + 0.914290i \(0.632749\pi\)
\(282\) 2196.00 0.463723
\(283\) −3997.00 −0.839565 −0.419783 0.907625i \(-0.637894\pi\)
−0.419783 + 0.907625i \(0.637894\pi\)
\(284\) −1368.00 −0.285831
\(285\) 1746.00 0.362892
\(286\) 3180.00 0.657473
\(287\) 0 0
\(288\) −288.000 −0.0589256
\(289\) 2143.00 0.436190
\(290\) −2160.00 −0.437378
\(291\) 1158.00 0.233275
\(292\) −172.000 −0.0344710
\(293\) 4608.00 0.918779 0.459389 0.888235i \(-0.348068\pi\)
0.459389 + 0.888235i \(0.348068\pi\)
\(294\) 0 0
\(295\) 1584.00 0.312624
\(296\) 1160.00 0.227783
\(297\) −810.000 −0.158252
\(298\) 3288.00 0.639157
\(299\) 4452.00 0.861090
\(300\) −1068.00 −0.205537
\(301\) 0 0
\(302\) −2176.00 −0.414618
\(303\) 1854.00 0.351517
\(304\) −1552.00 −0.292807
\(305\) −4908.00 −0.921414
\(306\) 1512.00 0.282468
\(307\) −631.000 −0.117306 −0.0586532 0.998278i \(-0.518681\pi\)
−0.0586532 + 0.998278i \(0.518681\pi\)
\(308\) 0 0
\(309\) 4425.00 0.814658
\(310\) 2148.00 0.393543
\(311\) 3894.00 0.709995 0.354998 0.934867i \(-0.384482\pi\)
0.354998 + 0.934867i \(0.384482\pi\)
\(312\) −1272.00 −0.230810
\(313\) −2185.00 −0.394580 −0.197290 0.980345i \(-0.563214\pi\)
−0.197290 + 0.980345i \(0.563214\pi\)
\(314\) −1012.00 −0.181880
\(315\) 0 0
\(316\) −4684.00 −0.833847
\(317\) 3504.00 0.620834 0.310417 0.950601i \(-0.399531\pi\)
0.310417 + 0.950601i \(0.399531\pi\)
\(318\) 4608.00 0.812591
\(319\) 5400.00 0.947780
\(320\) −384.000 −0.0670820
\(321\) 5652.00 0.982754
\(322\) 0 0
\(323\) 8148.00 1.40361
\(324\) 324.000 0.0555556
\(325\) −4717.00 −0.805083
\(326\) −3688.00 −0.626563
\(327\) 1239.00 0.209532
\(328\) −1008.00 −0.169687
\(329\) 0 0
\(330\) −1080.00 −0.180158
\(331\) 2945.00 0.489039 0.244519 0.969644i \(-0.421370\pi\)
0.244519 + 0.969644i \(0.421370\pi\)
\(332\) −3240.00 −0.535597
\(333\) −1305.00 −0.214755
\(334\) −324.000 −0.0530793
\(335\) 3138.00 0.511783
\(336\) 0 0
\(337\) 4277.00 0.691344 0.345672 0.938355i \(-0.387651\pi\)
0.345672 + 0.938355i \(0.387651\pi\)
\(338\) −1224.00 −0.196973
\(339\) −2646.00 −0.423926
\(340\) 2016.00 0.321568
\(341\) −5370.00 −0.852791
\(342\) 1746.00 0.276061
\(343\) 0 0
\(344\) 2600.00 0.407508
\(345\) −1512.00 −0.235952
\(346\) 5448.00 0.846492
\(347\) 7188.00 1.11202 0.556012 0.831175i \(-0.312331\pi\)
0.556012 + 0.831175i \(0.312331\pi\)
\(348\) −2160.00 −0.332725
\(349\) −9406.00 −1.44267 −0.721335 0.692587i \(-0.756471\pi\)
−0.721335 + 0.692587i \(0.756471\pi\)
\(350\) 0 0
\(351\) 1431.00 0.217610
\(352\) 960.000 0.145364
\(353\) 3390.00 0.511137 0.255569 0.966791i \(-0.417737\pi\)
0.255569 + 0.966791i \(0.417737\pi\)
\(354\) 1584.00 0.237821
\(355\) 2052.00 0.306785
\(356\) −2400.00 −0.357303
\(357\) 0 0
\(358\) 2508.00 0.370257
\(359\) −4812.00 −0.707431 −0.353715 0.935353i \(-0.615082\pi\)
−0.353715 + 0.935353i \(0.615082\pi\)
\(360\) 432.000 0.0632456
\(361\) 2550.00 0.371774
\(362\) 3614.00 0.524717
\(363\) −1293.00 −0.186956
\(364\) 0 0
\(365\) 258.000 0.0369982
\(366\) −4908.00 −0.700943
\(367\) −7099.00 −1.00971 −0.504857 0.863203i \(-0.668455\pi\)
−0.504857 + 0.863203i \(0.668455\pi\)
\(368\) 1344.00 0.190383
\(369\) 1134.00 0.159983
\(370\) −1740.00 −0.244482
\(371\) 0 0
\(372\) 2148.00 0.299378
\(373\) 2963.00 0.411309 0.205655 0.978625i \(-0.434068\pi\)
0.205655 + 0.978625i \(0.434068\pi\)
\(374\) −5040.00 −0.696824
\(375\) 3852.00 0.530444
\(376\) 2928.00 0.401596
\(377\) −9540.00 −1.30328
\(378\) 0 0
\(379\) −11899.0 −1.61269 −0.806346 0.591444i \(-0.798558\pi\)
−0.806346 + 0.591444i \(0.798558\pi\)
\(380\) 2328.00 0.314273
\(381\) 7449.00 1.00164
\(382\) −1428.00 −0.191264
\(383\) 2568.00 0.342607 0.171304 0.985218i \(-0.445202\pi\)
0.171304 + 0.985218i \(0.445202\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) 7418.00 0.978151
\(387\) −2925.00 −0.384202
\(388\) 1544.00 0.202022
\(389\) −10146.0 −1.32242 −0.661212 0.750199i \(-0.729957\pi\)
−0.661212 + 0.750199i \(0.729957\pi\)
\(390\) 1908.00 0.247732
\(391\) −7056.00 −0.912627
\(392\) 0 0
\(393\) 6354.00 0.815565
\(394\) 2088.00 0.266985
\(395\) 7026.00 0.894978
\(396\) −1080.00 −0.137051
\(397\) −6229.00 −0.787467 −0.393734 0.919225i \(-0.628817\pi\)
−0.393734 + 0.919225i \(0.628817\pi\)
\(398\) 272.000 0.0342566
\(399\) 0 0
\(400\) −1424.00 −0.178000
\(401\) −2472.00 −0.307845 −0.153922 0.988083i \(-0.549191\pi\)
−0.153922 + 0.988083i \(0.549191\pi\)
\(402\) 3138.00 0.389326
\(403\) 9487.00 1.17266
\(404\) 2472.00 0.304422
\(405\) −486.000 −0.0596285
\(406\) 0 0
\(407\) 4350.00 0.529783
\(408\) 2016.00 0.244625
\(409\) −7075.00 −0.855345 −0.427673 0.903934i \(-0.640666\pi\)
−0.427673 + 0.903934i \(0.640666\pi\)
\(410\) 1512.00 0.182128
\(411\) 9036.00 1.08446
\(412\) 5900.00 0.705515
\(413\) 0 0
\(414\) −1512.00 −0.179495
\(415\) 4860.00 0.574863
\(416\) −1696.00 −0.199888
\(417\) −111.000 −0.0130352
\(418\) −5820.00 −0.681018
\(419\) −4158.00 −0.484801 −0.242400 0.970176i \(-0.577935\pi\)
−0.242400 + 0.970176i \(0.577935\pi\)
\(420\) 0 0
\(421\) −6595.00 −0.763469 −0.381735 0.924272i \(-0.624673\pi\)
−0.381735 + 0.924272i \(0.624673\pi\)
\(422\) −2968.00 −0.342370
\(423\) −3294.00 −0.378628
\(424\) 6144.00 0.703724
\(425\) 7476.00 0.853269
\(426\) 2052.00 0.233380
\(427\) 0 0
\(428\) 7536.00 0.851090
\(429\) −4770.00 −0.536825
\(430\) −3900.00 −0.437383
\(431\) 1518.00 0.169651 0.0848254 0.996396i \(-0.472967\pi\)
0.0848254 + 0.996396i \(0.472967\pi\)
\(432\) 432.000 0.0481125
\(433\) 8567.00 0.950817 0.475408 0.879765i \(-0.342300\pi\)
0.475408 + 0.879765i \(0.342300\pi\)
\(434\) 0 0
\(435\) 3240.00 0.357117
\(436\) 1652.00 0.181460
\(437\) −8148.00 −0.891926
\(438\) 258.000 0.0281455
\(439\) 10640.0 1.15676 0.578382 0.815766i \(-0.303684\pi\)
0.578382 + 0.815766i \(0.303684\pi\)
\(440\) −1440.00 −0.156021
\(441\) 0 0
\(442\) 8904.00 0.958190
\(443\) 7032.00 0.754177 0.377088 0.926177i \(-0.376925\pi\)
0.377088 + 0.926177i \(0.376925\pi\)
\(444\) −1740.00 −0.185984
\(445\) 3600.00 0.383497
\(446\) 4064.00 0.431471
\(447\) −4932.00 −0.521869
\(448\) 0 0
\(449\) −14814.0 −1.55705 −0.778525 0.627613i \(-0.784032\pi\)
−0.778525 + 0.627613i \(0.784032\pi\)
\(450\) 1602.00 0.167820
\(451\) −3780.00 −0.394664
\(452\) −3528.00 −0.367131
\(453\) 3264.00 0.338534
\(454\) −12396.0 −1.28144
\(455\) 0 0
\(456\) 2328.00 0.239076
\(457\) −11251.0 −1.15164 −0.575820 0.817576i \(-0.695317\pi\)
−0.575820 + 0.817576i \(0.695317\pi\)
\(458\) 9182.00 0.936783
\(459\) −2268.00 −0.230634
\(460\) −2016.00 −0.204340
\(461\) −3852.00 −0.389166 −0.194583 0.980886i \(-0.562335\pi\)
−0.194583 + 0.980886i \(0.562335\pi\)
\(462\) 0 0
\(463\) −475.000 −0.0476784 −0.0238392 0.999716i \(-0.507589\pi\)
−0.0238392 + 0.999716i \(0.507589\pi\)
\(464\) −2880.00 −0.288148
\(465\) −3222.00 −0.321326
\(466\) −9060.00 −0.900636
\(467\) 5934.00 0.587993 0.293997 0.955806i \(-0.405015\pi\)
0.293997 + 0.955806i \(0.405015\pi\)
\(468\) 1908.00 0.188456
\(469\) 0 0
\(470\) −4392.00 −0.431038
\(471\) 1518.00 0.148505
\(472\) 2112.00 0.205959
\(473\) 9750.00 0.947792
\(474\) 7026.00 0.680833
\(475\) 8633.00 0.833914
\(476\) 0 0
\(477\) −6912.00 −0.663477
\(478\) −3060.00 −0.292806
\(479\) −13368.0 −1.27516 −0.637578 0.770386i \(-0.720064\pi\)
−0.637578 + 0.770386i \(0.720064\pi\)
\(480\) 576.000 0.0547723
\(481\) −7685.00 −0.728494
\(482\) −11068.0 −1.04592
\(483\) 0 0
\(484\) −1724.00 −0.161908
\(485\) −2316.00 −0.216833
\(486\) −486.000 −0.0453609
\(487\) 6653.00 0.619048 0.309524 0.950892i \(-0.399830\pi\)
0.309524 + 0.950892i \(0.399830\pi\)
\(488\) −6544.00 −0.607035
\(489\) 5532.00 0.511586
\(490\) 0 0
\(491\) 15444.0 1.41951 0.709754 0.704450i \(-0.248806\pi\)
0.709754 + 0.704450i \(0.248806\pi\)
\(492\) 1512.00 0.138549
\(493\) 15120.0 1.38128
\(494\) 10282.0 0.936456
\(495\) 1620.00 0.147098
\(496\) 2864.00 0.259269
\(497\) 0 0
\(498\) 4860.00 0.437313
\(499\) 683.000 0.0612731 0.0306366 0.999531i \(-0.490247\pi\)
0.0306366 + 0.999531i \(0.490247\pi\)
\(500\) 5136.00 0.459378
\(501\) 486.000 0.0433391
\(502\) 936.000 0.0832186
\(503\) 9882.00 0.875977 0.437989 0.898980i \(-0.355691\pi\)
0.437989 + 0.898980i \(0.355691\pi\)
\(504\) 0 0
\(505\) −3708.00 −0.326740
\(506\) 5040.00 0.442797
\(507\) 1836.00 0.160828
\(508\) 9932.00 0.867443
\(509\) 4206.00 0.366263 0.183131 0.983088i \(-0.441377\pi\)
0.183131 + 0.983088i \(0.441377\pi\)
\(510\) −3024.00 −0.262559
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −2619.00 −0.225403
\(514\) 4980.00 0.427351
\(515\) −8850.00 −0.757238
\(516\) −3900.00 −0.332729
\(517\) 10980.0 0.934042
\(518\) 0 0
\(519\) −8172.00 −0.691158
\(520\) 2544.00 0.214542
\(521\) 9060.00 0.761854 0.380927 0.924605i \(-0.375605\pi\)
0.380927 + 0.924605i \(0.375605\pi\)
\(522\) 3240.00 0.271668
\(523\) −15679.0 −1.31089 −0.655444 0.755243i \(-0.727519\pi\)
−0.655444 + 0.755243i \(0.727519\pi\)
\(524\) 8472.00 0.706300
\(525\) 0 0
\(526\) −3144.00 −0.260618
\(527\) −15036.0 −1.24284
\(528\) −1440.00 −0.118689
\(529\) −5111.00 −0.420071
\(530\) −9216.00 −0.755316
\(531\) −2376.00 −0.194180
\(532\) 0 0
\(533\) 6678.00 0.542695
\(534\) 3600.00 0.291736
\(535\) −11304.0 −0.913485
\(536\) 4184.00 0.337167
\(537\) −3762.00 −0.302313
\(538\) −3612.00 −0.289451
\(539\) 0 0
\(540\) −648.000 −0.0516398
\(541\) −7711.00 −0.612794 −0.306397 0.951904i \(-0.599124\pi\)
−0.306397 + 0.951904i \(0.599124\pi\)
\(542\) 12224.0 0.968756
\(543\) −5421.00 −0.428430
\(544\) 2688.00 0.211851
\(545\) −2478.00 −0.194763
\(546\) 0 0
\(547\) 4292.00 0.335489 0.167745 0.985830i \(-0.446352\pi\)
0.167745 + 0.985830i \(0.446352\pi\)
\(548\) 12048.0 0.939170
\(549\) 7362.00 0.572318
\(550\) −5340.00 −0.413997
\(551\) 17460.0 1.34995
\(552\) −2016.00 −0.155447
\(553\) 0 0
\(554\) 8462.00 0.648946
\(555\) 2610.00 0.199619
\(556\) −148.000 −0.0112888
\(557\) −9858.00 −0.749905 −0.374952 0.927044i \(-0.622341\pi\)
−0.374952 + 0.927044i \(0.622341\pi\)
\(558\) −3222.00 −0.244441
\(559\) −17225.0 −1.30329
\(560\) 0 0
\(561\) 7560.00 0.568954
\(562\) 7632.00 0.572841
\(563\) −13890.0 −1.03978 −0.519888 0.854235i \(-0.674026\pi\)
−0.519888 + 0.854235i \(0.674026\pi\)
\(564\) −4392.00 −0.327902
\(565\) 5292.00 0.394046
\(566\) 7994.00 0.593662
\(567\) 0 0
\(568\) 2736.00 0.202113
\(569\) 19038.0 1.40266 0.701331 0.712836i \(-0.252590\pi\)
0.701331 + 0.712836i \(0.252590\pi\)
\(570\) −3492.00 −0.256603
\(571\) −8053.00 −0.590206 −0.295103 0.955465i \(-0.595354\pi\)
−0.295103 + 0.955465i \(0.595354\pi\)
\(572\) −6360.00 −0.464904
\(573\) 2142.00 0.156166
\(574\) 0 0
\(575\) −7476.00 −0.542210
\(576\) 576.000 0.0416667
\(577\) −17137.0 −1.23643 −0.618217 0.786007i \(-0.712145\pi\)
−0.618217 + 0.786007i \(0.712145\pi\)
\(578\) −4286.00 −0.308433
\(579\) −11127.0 −0.798657
\(580\) 4320.00 0.309273
\(581\) 0 0
\(582\) −2316.00 −0.164951
\(583\) 23040.0 1.63674
\(584\) 344.000 0.0243747
\(585\) −2862.00 −0.202272
\(586\) −9216.00 −0.649675
\(587\) 18144.0 1.27578 0.637890 0.770127i \(-0.279807\pi\)
0.637890 + 0.770127i \(0.279807\pi\)
\(588\) 0 0
\(589\) −17363.0 −1.21465
\(590\) −3168.00 −0.221058
\(591\) −3132.00 −0.217992
\(592\) −2320.00 −0.161067
\(593\) −24702.0 −1.71061 −0.855303 0.518128i \(-0.826629\pi\)
−0.855303 + 0.518128i \(0.826629\pi\)
\(594\) 1620.00 0.111901
\(595\) 0 0
\(596\) −6576.00 −0.451952
\(597\) −408.000 −0.0279704
\(598\) −8904.00 −0.608882
\(599\) −2172.00 −0.148156 −0.0740781 0.997252i \(-0.523601\pi\)
−0.0740781 + 0.997252i \(0.523601\pi\)
\(600\) 2136.00 0.145336
\(601\) 4175.00 0.283364 0.141682 0.989912i \(-0.454749\pi\)
0.141682 + 0.989912i \(0.454749\pi\)
\(602\) 0 0
\(603\) −4707.00 −0.317884
\(604\) 4352.00 0.293179
\(605\) 2586.00 0.173778
\(606\) −3708.00 −0.248560
\(607\) 2261.00 0.151188 0.0755940 0.997139i \(-0.475915\pi\)
0.0755940 + 0.997139i \(0.475915\pi\)
\(608\) 3104.00 0.207046
\(609\) 0 0
\(610\) 9816.00 0.651538
\(611\) −19398.0 −1.28438
\(612\) −3024.00 −0.199735
\(613\) −16318.0 −1.07517 −0.537584 0.843210i \(-0.680663\pi\)
−0.537584 + 0.843210i \(0.680663\pi\)
\(614\) 1262.00 0.0829482
\(615\) −2268.00 −0.148707
\(616\) 0 0
\(617\) −26550.0 −1.73235 −0.866177 0.499737i \(-0.833430\pi\)
−0.866177 + 0.499737i \(0.833430\pi\)
\(618\) −8850.00 −0.576051
\(619\) 19925.0 1.29379 0.646893 0.762581i \(-0.276068\pi\)
0.646893 + 0.762581i \(0.276068\pi\)
\(620\) −4296.00 −0.278277
\(621\) 2268.00 0.146557
\(622\) −7788.00 −0.502042
\(623\) 0 0
\(624\) 2544.00 0.163208
\(625\) 3421.00 0.218944
\(626\) 4370.00 0.279010
\(627\) 8730.00 0.556049
\(628\) 2024.00 0.128609
\(629\) 12180.0 0.772096
\(630\) 0 0
\(631\) −6832.00 −0.431026 −0.215513 0.976501i \(-0.569142\pi\)
−0.215513 + 0.976501i \(0.569142\pi\)
\(632\) 9368.00 0.589619
\(633\) 4452.00 0.279544
\(634\) −7008.00 −0.438996
\(635\) −14898.0 −0.931038
\(636\) −9216.00 −0.574588
\(637\) 0 0
\(638\) −10800.0 −0.670182
\(639\) −3078.00 −0.190554
\(640\) 768.000 0.0474342
\(641\) 10212.0 0.629251 0.314625 0.949216i \(-0.398121\pi\)
0.314625 + 0.949216i \(0.398121\pi\)
\(642\) −11304.0 −0.694912
\(643\) 3779.00 0.231772 0.115886 0.993263i \(-0.463029\pi\)
0.115886 + 0.993263i \(0.463029\pi\)
\(644\) 0 0
\(645\) 5850.00 0.357122
\(646\) −16296.0 −0.992504
\(647\) 16998.0 1.03286 0.516430 0.856329i \(-0.327261\pi\)
0.516430 + 0.856329i \(0.327261\pi\)
\(648\) −648.000 −0.0392837
\(649\) 7920.00 0.479025
\(650\) 9434.00 0.569280
\(651\) 0 0
\(652\) 7376.00 0.443047
\(653\) −21750.0 −1.30344 −0.651718 0.758462i \(-0.725951\pi\)
−0.651718 + 0.758462i \(0.725951\pi\)
\(654\) −2478.00 −0.148161
\(655\) −12708.0 −0.758080
\(656\) 2016.00 0.119987
\(657\) −387.000 −0.0229807
\(658\) 0 0
\(659\) −10944.0 −0.646916 −0.323458 0.946243i \(-0.604845\pi\)
−0.323458 + 0.946243i \(0.604845\pi\)
\(660\) 2160.00 0.127391
\(661\) 10955.0 0.644630 0.322315 0.946633i \(-0.395539\pi\)
0.322315 + 0.946633i \(0.395539\pi\)
\(662\) −5890.00 −0.345803
\(663\) −13356.0 −0.782359
\(664\) 6480.00 0.378724
\(665\) 0 0
\(666\) 2610.00 0.151855
\(667\) −15120.0 −0.877734
\(668\) 648.000 0.0375327
\(669\) −6096.00 −0.352294
\(670\) −6276.00 −0.361885
\(671\) −24540.0 −1.41186
\(672\) 0 0
\(673\) 25103.0 1.43782 0.718908 0.695106i \(-0.244642\pi\)
0.718908 + 0.695106i \(0.244642\pi\)
\(674\) −8554.00 −0.488854
\(675\) −2403.00 −0.137024
\(676\) 2448.00 0.139281
\(677\) −5604.00 −0.318138 −0.159069 0.987267i \(-0.550849\pi\)
−0.159069 + 0.987267i \(0.550849\pi\)
\(678\) 5292.00 0.299761
\(679\) 0 0
\(680\) −4032.00 −0.227383
\(681\) 18594.0 1.04629
\(682\) 10740.0 0.603014
\(683\) 10968.0 0.614464 0.307232 0.951635i \(-0.400597\pi\)
0.307232 + 0.951635i \(0.400597\pi\)
\(684\) −3492.00 −0.195205
\(685\) −18072.0 −1.00802
\(686\) 0 0
\(687\) −13773.0 −0.764880
\(688\) −5200.00 −0.288151
\(689\) −40704.0 −2.25065
\(690\) 3024.00 0.166843
\(691\) 8405.00 0.462723 0.231361 0.972868i \(-0.425682\pi\)
0.231361 + 0.972868i \(0.425682\pi\)
\(692\) −10896.0 −0.598560
\(693\) 0 0
\(694\) −14376.0 −0.786319
\(695\) 222.000 0.0121165
\(696\) 4320.00 0.235272
\(697\) −10584.0 −0.575176
\(698\) 18812.0 1.02012
\(699\) 13590.0 0.735366
\(700\) 0 0
\(701\) 468.000 0.0252156 0.0126078 0.999921i \(-0.495987\pi\)
0.0126078 + 0.999921i \(0.495987\pi\)
\(702\) −2862.00 −0.153874
\(703\) 14065.0 0.754583
\(704\) −1920.00 −0.102788
\(705\) 6588.00 0.351941
\(706\) −6780.00 −0.361429
\(707\) 0 0
\(708\) −3168.00 −0.168165
\(709\) −25066.0 −1.32775 −0.663874 0.747844i \(-0.731089\pi\)
−0.663874 + 0.747844i \(0.731089\pi\)
\(710\) −4104.00 −0.216930
\(711\) −10539.0 −0.555898
\(712\) 4800.00 0.252651
\(713\) 15036.0 0.789765
\(714\) 0 0
\(715\) 9540.00 0.498987
\(716\) −5016.00 −0.261811
\(717\) 4590.00 0.239075
\(718\) 9624.00 0.500229
\(719\) 11082.0 0.574811 0.287405 0.957809i \(-0.407207\pi\)
0.287405 + 0.957809i \(0.407207\pi\)
\(720\) −864.000 −0.0447214
\(721\) 0 0
\(722\) −5100.00 −0.262884
\(723\) 16602.0 0.853990
\(724\) −7228.00 −0.371031
\(725\) 16020.0 0.820645
\(726\) 2586.00 0.132198
\(727\) 13481.0 0.687734 0.343867 0.939018i \(-0.388263\pi\)
0.343867 + 0.939018i \(0.388263\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −516.000 −0.0261617
\(731\) 27300.0 1.38130
\(732\) 9816.00 0.495642
\(733\) 24317.0 1.22533 0.612666 0.790342i \(-0.290097\pi\)
0.612666 + 0.790342i \(0.290097\pi\)
\(734\) 14198.0 0.713975
\(735\) 0 0
\(736\) −2688.00 −0.134621
\(737\) 15690.0 0.784191
\(738\) −2268.00 −0.113125
\(739\) −18217.0 −0.906797 −0.453399 0.891308i \(-0.649789\pi\)
−0.453399 + 0.891308i \(0.649789\pi\)
\(740\) 3480.00 0.172875
\(741\) −15423.0 −0.764613
\(742\) 0 0
\(743\) 19782.0 0.976758 0.488379 0.872632i \(-0.337588\pi\)
0.488379 + 0.872632i \(0.337588\pi\)
\(744\) −4296.00 −0.211692
\(745\) 9864.00 0.485086
\(746\) −5926.00 −0.290840
\(747\) −7290.00 −0.357064
\(748\) 10080.0 0.492729
\(749\) 0 0
\(750\) −7704.00 −0.375080
\(751\) −4921.00 −0.239108 −0.119554 0.992828i \(-0.538146\pi\)
−0.119554 + 0.992828i \(0.538146\pi\)
\(752\) −5856.00 −0.283971
\(753\) −1404.00 −0.0679477
\(754\) 19080.0 0.921555
\(755\) −6528.00 −0.314673
\(756\) 0 0
\(757\) 18098.0 0.868934 0.434467 0.900688i \(-0.356937\pi\)
0.434467 + 0.900688i \(0.356937\pi\)
\(758\) 23798.0 1.14035
\(759\) −7560.00 −0.361542
\(760\) −4656.00 −0.222225
\(761\) −24468.0 −1.16552 −0.582762 0.812643i \(-0.698028\pi\)
−0.582762 + 0.812643i \(0.698028\pi\)
\(762\) −14898.0 −0.708265
\(763\) 0 0
\(764\) 2856.00 0.135244
\(765\) 4536.00 0.214378
\(766\) −5136.00 −0.242260
\(767\) −13992.0 −0.658699
\(768\) 768.000 0.0360844
\(769\) 21719.0 1.01847 0.509237 0.860626i \(-0.329928\pi\)
0.509237 + 0.860626i \(0.329928\pi\)
\(770\) 0 0
\(771\) −7470.00 −0.348931
\(772\) −14836.0 −0.691657
\(773\) −30306.0 −1.41013 −0.705065 0.709142i \(-0.749082\pi\)
−0.705065 + 0.709142i \(0.749082\pi\)
\(774\) 5850.00 0.271672
\(775\) −15931.0 −0.738398
\(776\) −3088.00 −0.142851
\(777\) 0 0
\(778\) 20292.0 0.935094
\(779\) −12222.0 −0.562129
\(780\) −3816.00 −0.175173
\(781\) 10260.0 0.470079
\(782\) 14112.0 0.645325
\(783\) −4860.00 −0.221816
\(784\) 0 0
\(785\) −3036.00 −0.138038
\(786\) −12708.0 −0.576691
\(787\) 27296.0 1.23634 0.618169 0.786046i \(-0.287875\pi\)
0.618169 + 0.786046i \(0.287875\pi\)
\(788\) −4176.00 −0.188787
\(789\) 4716.00 0.212793
\(790\) −14052.0 −0.632845
\(791\) 0 0
\(792\) 2160.00 0.0969094
\(793\) 43354.0 1.94142
\(794\) 12458.0 0.556824
\(795\) 13824.0 0.616713
\(796\) −544.000 −0.0242231
\(797\) −35100.0 −1.55998 −0.779991 0.625791i \(-0.784776\pi\)
−0.779991 + 0.625791i \(0.784776\pi\)
\(798\) 0 0
\(799\) 30744.0 1.36126
\(800\) 2848.00 0.125865
\(801\) −5400.00 −0.238202
\(802\) 4944.00 0.217679
\(803\) 1290.00 0.0566913
\(804\) −6276.00 −0.275295
\(805\) 0 0
\(806\) −18974.0 −0.829194
\(807\) 5418.00 0.236335
\(808\) −4944.00 −0.215259
\(809\) 44394.0 1.92931 0.964654 0.263520i \(-0.0848836\pi\)
0.964654 + 0.263520i \(0.0848836\pi\)
\(810\) 972.000 0.0421637
\(811\) −8584.00 −0.371671 −0.185835 0.982581i \(-0.559499\pi\)
−0.185835 + 0.982581i \(0.559499\pi\)
\(812\) 0 0
\(813\) −18336.0 −0.790986
\(814\) −8700.00 −0.374613
\(815\) −11064.0 −0.475528
\(816\) −4032.00 −0.172976
\(817\) 31525.0 1.34996
\(818\) 14150.0 0.604820
\(819\) 0 0
\(820\) −3024.00 −0.128784
\(821\) −9834.00 −0.418038 −0.209019 0.977912i \(-0.567027\pi\)
−0.209019 + 0.977912i \(0.567027\pi\)
\(822\) −18072.0 −0.766829
\(823\) 43856.0 1.85750 0.928751 0.370704i \(-0.120884\pi\)
0.928751 + 0.370704i \(0.120884\pi\)
\(824\) −11800.0 −0.498874
\(825\) 8010.00 0.338027
\(826\) 0 0
\(827\) 13266.0 0.557804 0.278902 0.960320i \(-0.410030\pi\)
0.278902 + 0.960320i \(0.410030\pi\)
\(828\) 3024.00 0.126922
\(829\) 17453.0 0.731204 0.365602 0.930771i \(-0.380863\pi\)
0.365602 + 0.930771i \(0.380863\pi\)
\(830\) −9720.00 −0.406489
\(831\) −12693.0 −0.529862
\(832\) 3392.00 0.141342
\(833\) 0 0
\(834\) 222.000 0.00921730
\(835\) −972.000 −0.0402844
\(836\) 11640.0 0.481552
\(837\) 4833.00 0.199585
\(838\) 8316.00 0.342806
\(839\) −35172.0 −1.44729 −0.723643 0.690175i \(-0.757534\pi\)
−0.723643 + 0.690175i \(0.757534\pi\)
\(840\) 0 0
\(841\) 8011.00 0.328468
\(842\) 13190.0 0.539854
\(843\) −11448.0 −0.467722
\(844\) 5936.00 0.242092
\(845\) −3672.00 −0.149492
\(846\) 6588.00 0.267731
\(847\) 0 0
\(848\) −12288.0 −0.497608
\(849\) −11991.0 −0.484723
\(850\) −14952.0 −0.603352
\(851\) −12180.0 −0.490629
\(852\) −4104.00 −0.165024
\(853\) 3503.00 0.140610 0.0703051 0.997526i \(-0.477603\pi\)
0.0703051 + 0.997526i \(0.477603\pi\)
\(854\) 0 0
\(855\) 5238.00 0.209516
\(856\) −15072.0 −0.601811
\(857\) 22848.0 0.910703 0.455352 0.890312i \(-0.349514\pi\)
0.455352 + 0.890312i \(0.349514\pi\)
\(858\) 9540.00 0.379592
\(859\) −13456.0 −0.534474 −0.267237 0.963631i \(-0.586111\pi\)
−0.267237 + 0.963631i \(0.586111\pi\)
\(860\) 7800.00 0.309277
\(861\) 0 0
\(862\) −3036.00 −0.119961
\(863\) 40710.0 1.60578 0.802888 0.596130i \(-0.203296\pi\)
0.802888 + 0.596130i \(0.203296\pi\)
\(864\) −864.000 −0.0340207
\(865\) 16344.0 0.642442
\(866\) −17134.0 −0.672329
\(867\) 6429.00 0.251834
\(868\) 0 0
\(869\) 35130.0 1.37135
\(870\) −6480.00 −0.252520
\(871\) −27719.0 −1.07833
\(872\) −3304.00 −0.128311
\(873\) 3474.00 0.134682
\(874\) 16296.0 0.630687
\(875\) 0 0
\(876\) −516.000 −0.0199019
\(877\) 2906.00 0.111891 0.0559456 0.998434i \(-0.482183\pi\)
0.0559456 + 0.998434i \(0.482183\pi\)
\(878\) −21280.0 −0.817956
\(879\) 13824.0 0.530457
\(880\) 2880.00 0.110324
\(881\) −19188.0 −0.733780 −0.366890 0.930264i \(-0.619577\pi\)
−0.366890 + 0.930264i \(0.619577\pi\)
\(882\) 0 0
\(883\) −17251.0 −0.657466 −0.328733 0.944423i \(-0.606622\pi\)
−0.328733 + 0.944423i \(0.606622\pi\)
\(884\) −17808.0 −0.677543
\(885\) 4752.00 0.180493
\(886\) −14064.0 −0.533284
\(887\) −2094.00 −0.0792668 −0.0396334 0.999214i \(-0.512619\pi\)
−0.0396334 + 0.999214i \(0.512619\pi\)
\(888\) 3480.00 0.131510
\(889\) 0 0
\(890\) −7200.00 −0.271174
\(891\) −2430.00 −0.0913671
\(892\) −8128.00 −0.305096
\(893\) 35502.0 1.33038
\(894\) 9864.00 0.369017
\(895\) 7524.00 0.281005
\(896\) 0 0
\(897\) 13356.0 0.497150
\(898\) 29628.0 1.10100
\(899\) −32220.0 −1.19532
\(900\) −3204.00 −0.118667
\(901\) 64512.0 2.38536
\(902\) 7560.00 0.279069
\(903\) 0 0
\(904\) 7056.00 0.259601
\(905\) 10842.0 0.398232
\(906\) −6528.00 −0.239380
\(907\) −40267.0 −1.47414 −0.737069 0.675817i \(-0.763791\pi\)
−0.737069 + 0.675817i \(0.763791\pi\)
\(908\) 24792.0 0.906114
\(909\) 5562.00 0.202948
\(910\) 0 0
\(911\) 17604.0 0.640227 0.320113 0.947379i \(-0.396279\pi\)
0.320113 + 0.947379i \(0.396279\pi\)
\(912\) −4656.00 −0.169052
\(913\) 24300.0 0.880846
\(914\) 22502.0 0.814333
\(915\) −14724.0 −0.531979
\(916\) −18364.0 −0.662406
\(917\) 0 0
\(918\) 4536.00 0.163083
\(919\) 3509.00 0.125953 0.0629767 0.998015i \(-0.479941\pi\)
0.0629767 + 0.998015i \(0.479941\pi\)
\(920\) 4032.00 0.144490
\(921\) −1893.00 −0.0677269
\(922\) 7704.00 0.275182
\(923\) −18126.0 −0.646397
\(924\) 0 0
\(925\) 12905.0 0.458718
\(926\) 950.000 0.0337138
\(927\) 13275.0 0.470343
\(928\) 5760.00 0.203751
\(929\) −34638.0 −1.22329 −0.611645 0.791133i \(-0.709492\pi\)
−0.611645 + 0.791133i \(0.709492\pi\)
\(930\) 6444.00 0.227212
\(931\) 0 0
\(932\) 18120.0 0.636846
\(933\) 11682.0 0.409916
\(934\) −11868.0 −0.415774
\(935\) −15120.0 −0.528852
\(936\) −3816.00 −0.133258
\(937\) −17353.0 −0.605014 −0.302507 0.953147i \(-0.597824\pi\)
−0.302507 + 0.953147i \(0.597824\pi\)
\(938\) 0 0
\(939\) −6555.00 −0.227811
\(940\) 8784.00 0.304790
\(941\) −46920.0 −1.62545 −0.812725 0.582648i \(-0.802017\pi\)
−0.812725 + 0.582648i \(0.802017\pi\)
\(942\) −3036.00 −0.105009
\(943\) 10584.0 0.365496
\(944\) −4224.00 −0.145635
\(945\) 0 0
\(946\) −19500.0 −0.670190
\(947\) 18354.0 0.629804 0.314902 0.949124i \(-0.398028\pi\)
0.314902 + 0.949124i \(0.398028\pi\)
\(948\) −14052.0 −0.481422
\(949\) −2279.00 −0.0779552
\(950\) −17266.0 −0.589666
\(951\) 10512.0 0.358438
\(952\) 0 0
\(953\) 35568.0 1.20898 0.604491 0.796612i \(-0.293376\pi\)
0.604491 + 0.796612i \(0.293376\pi\)
\(954\) 13824.0 0.469149
\(955\) −4284.00 −0.145159
\(956\) 6120.00 0.207045
\(957\) 16200.0 0.547201
\(958\) 26736.0 0.901671
\(959\) 0 0
\(960\) −1152.00 −0.0387298
\(961\) 2250.00 0.0755262
\(962\) 15370.0 0.515123
\(963\) 16956.0 0.567393
\(964\) 22136.0 0.739577
\(965\) 22254.0 0.742364
\(966\) 0 0
\(967\) −27343.0 −0.909298 −0.454649 0.890671i \(-0.650235\pi\)
−0.454649 + 0.890671i \(0.650235\pi\)
\(968\) 3448.00 0.114486
\(969\) 24444.0 0.810376
\(970\) 4632.00 0.153324
\(971\) 51024.0 1.68634 0.843171 0.537645i \(-0.180686\pi\)
0.843171 + 0.537645i \(0.180686\pi\)
\(972\) 972.000 0.0320750
\(973\) 0 0
\(974\) −13306.0 −0.437733
\(975\) −14151.0 −0.464815
\(976\) 13088.0 0.429238
\(977\) −2226.00 −0.0728926 −0.0364463 0.999336i \(-0.511604\pi\)
−0.0364463 + 0.999336i \(0.511604\pi\)
\(978\) −11064.0 −0.361746
\(979\) 18000.0 0.587623
\(980\) 0 0
\(981\) 3717.00 0.120973
\(982\) −30888.0 −1.00374
\(983\) 35304.0 1.14550 0.572748 0.819731i \(-0.305877\pi\)
0.572748 + 0.819731i \(0.305877\pi\)
\(984\) −3024.00 −0.0979691
\(985\) 6264.00 0.202627
\(986\) −30240.0 −0.976712
\(987\) 0 0
\(988\) −20564.0 −0.662174
\(989\) −27300.0 −0.877745
\(990\) −3240.00 −0.104014
\(991\) −2341.00 −0.0750397 −0.0375198 0.999296i \(-0.511946\pi\)
−0.0375198 + 0.999296i \(0.511946\pi\)
\(992\) −5728.00 −0.183331
\(993\) 8835.00 0.282347
\(994\) 0 0
\(995\) 816.000 0.0259989
\(996\) −9720.00 −0.309227
\(997\) 29015.0 0.921679 0.460840 0.887483i \(-0.347548\pi\)
0.460840 + 0.887483i \(0.347548\pi\)
\(998\) −1366.00 −0.0433266
\(999\) −3915.00 −0.123989
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.4.a.d.1.1 1
3.2 odd 2 882.4.a.o.1.1 1
4.3 odd 2 2352.4.a.f.1.1 1
7.2 even 3 42.4.e.a.25.1 2
7.3 odd 6 294.4.e.i.79.1 2
7.4 even 3 42.4.e.a.37.1 yes 2
7.5 odd 6 294.4.e.i.67.1 2
7.6 odd 2 294.4.a.c.1.1 1
21.2 odd 6 126.4.g.b.109.1 2
21.5 even 6 882.4.g.g.361.1 2
21.11 odd 6 126.4.g.b.37.1 2
21.17 even 6 882.4.g.g.667.1 2
21.20 even 2 882.4.a.l.1.1 1
28.11 odd 6 336.4.q.f.289.1 2
28.23 odd 6 336.4.q.f.193.1 2
28.27 even 2 2352.4.a.bf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.4.e.a.25.1 2 7.2 even 3
42.4.e.a.37.1 yes 2 7.4 even 3
126.4.g.b.37.1 2 21.11 odd 6
126.4.g.b.109.1 2 21.2 odd 6
294.4.a.c.1.1 1 7.6 odd 2
294.4.a.d.1.1 1 1.1 even 1 trivial
294.4.e.i.67.1 2 7.5 odd 6
294.4.e.i.79.1 2 7.3 odd 6
336.4.q.f.193.1 2 28.23 odd 6
336.4.q.f.289.1 2 28.11 odd 6
882.4.a.l.1.1 1 21.20 even 2
882.4.a.o.1.1 1 3.2 odd 2
882.4.g.g.361.1 2 21.5 even 6
882.4.g.g.667.1 2 21.17 even 6
2352.4.a.f.1.1 1 4.3 odd 2
2352.4.a.bf.1.1 1 28.27 even 2