Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [294,4,Mod(1,294)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(294, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("294.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 294.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 42) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 294.4.a.i | 1 | |
3.b | odd | 2 | 1 | 882.4.a.g | 1 | ||
4.b | odd | 2 | 1 | 2352.4.a.a | 1 | ||
7.b | odd | 2 | 1 | 42.4.a.a | ✓ | 1 | |
7.c | even | 3 | 2 | 294.4.e.b | 2 | ||
7.d | odd | 6 | 2 | 294.4.e.c | 2 | ||
21.c | even | 2 | 1 | 126.4.a.a | 1 | ||
21.g | even | 6 | 2 | 882.4.g.w | 2 | ||
21.h | odd | 6 | 2 | 882.4.g.o | 2 | ||
28.d | even | 2 | 1 | 336.4.a.l | 1 | ||
35.c | odd | 2 | 1 | 1050.4.a.g | 1 | ||
35.f | even | 4 | 2 | 1050.4.g.a | 2 | ||
56.e | even | 2 | 1 | 1344.4.a.a | 1 | ||
56.h | odd | 2 | 1 | 1344.4.a.o | 1 | ||
84.h | odd | 2 | 1 | 1008.4.a.b | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.4.a.a | ✓ | 1 | 7.b | odd | 2 | 1 | |
126.4.a.a | 1 | 21.c | even | 2 | 1 | ||
294.4.a.i | 1 | 1.a | even | 1 | 1 | trivial | |
294.4.e.b | 2 | 7.c | even | 3 | 2 | ||
294.4.e.c | 2 | 7.d | odd | 6 | 2 | ||
336.4.a.l | 1 | 28.d | even | 2 | 1 | ||
882.4.a.g | 1 | 3.b | odd | 2 | 1 | ||
882.4.g.o | 2 | 21.h | odd | 6 | 2 | ||
882.4.g.w | 2 | 21.g | even | 6 | 2 | ||
1008.4.a.b | 1 | 84.h | odd | 2 | 1 | ||
1050.4.a.g | 1 | 35.c | odd | 2 | 1 | ||
1050.4.g.a | 2 | 35.f | even | 4 | 2 | ||
1344.4.a.a | 1 | 56.e | even | 2 | 1 | ||
1344.4.a.o | 1 | 56.h | odd | 2 | 1 | ||
2352.4.a.a | 1 | 4.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|