Properties

Label 294.4.e.l
Level 294294
Weight 44
Character orbit 294.e
Analytic conductor 17.34717.347
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,4,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 294.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.346561541717.3465615417
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,1345)\Q(\sqrt{-3}, \sqrt{1345})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+337x2+336x+112896 x^{4} - x^{3} + 337x^{2} + 336x + 112896 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β2q2+(3β2+3)q3+(4β24)q4+(2β2+β1)q56q6+8q89β2q9+(2β34β2++6)q10++(9β3+297)q99+O(q100) q - 2 \beta_{2} q^{2} + ( - 3 \beta_{2} + 3) q^{3} + (4 \beta_{2} - 4) q^{4} + (2 \beta_{2} + \beta_1) q^{5} - 6 q^{6} + 8 q^{8} - 9 \beta_{2} q^{9} + ( - 2 \beta_{3} - 4 \beta_{2} + \cdots + 6) q^{10}+ \cdots + (9 \beta_{3} + 297) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+6q38q4+5q524q6+32q818q9+10q1067q11+24q1282q13+30q1532q1692q1736q18+43q1940q20+268q22++1206q99+O(q100) 4 q - 4 q^{2} + 6 q^{3} - 8 q^{4} + 5 q^{5} - 24 q^{6} + 32 q^{8} - 18 q^{9} + 10 q^{10} - 67 q^{11} + 24 q^{12} - 82 q^{13} + 30 q^{15} - 32 q^{16} - 92 q^{17} - 36 q^{18} + 43 q^{19} - 40 q^{20} + 268 q^{22}+ \cdots + 1206 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+337x2+336x+112896 x^{4} - x^{3} + 337x^{2} + 336x + 112896 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+337ν2337ν+112896)/113232 ( -\nu^{3} + 337\nu^{2} - 337\nu + 112896 ) / 113232 Copy content Toggle raw display
β3\beta_{3}== (ν3+673)/337 ( \nu^{3} + 673 ) / 337 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+336β2+β1337 \beta_{3} + 336\beta_{2} + \beta _1 - 337 Copy content Toggle raw display
ν3\nu^{3}== 337β3673 337\beta_{3} - 673 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/294Z)×\left(\mathbb{Z}/294\mathbb{Z}\right)^\times.

nn 197197 199199
χ(n)\chi(n) 11 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
−8.91856 15.4474i
9.41856 + 16.3134i
−8.91856 + 15.4474i
9.41856 16.3134i
−1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i −7.91856 13.7153i −6.00000 0 8.00000 −4.50000 7.79423i −15.8371 + 27.4307i
67.2 −1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 10.4186 + 18.0455i −6.00000 0 8.00000 −4.50000 7.79423i 20.8371 36.0910i
79.1 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i −7.91856 + 13.7153i −6.00000 0 8.00000 −4.50000 + 7.79423i −15.8371 27.4307i
79.2 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 10.4186 18.0455i −6.00000 0 8.00000 −4.50000 + 7.79423i 20.8371 + 36.0910i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.e.l 4
3.b odd 2 1 882.4.g.bf 4
7.b odd 2 1 42.4.e.c 4
7.c even 3 1 294.4.a.m 2
7.c even 3 1 inner 294.4.e.l 4
7.d odd 6 1 42.4.e.c 4
7.d odd 6 1 294.4.a.n 2
21.c even 2 1 126.4.g.g 4
21.g even 6 1 126.4.g.g 4
21.g even 6 1 882.4.a.v 2
21.h odd 6 1 882.4.a.z 2
21.h odd 6 1 882.4.g.bf 4
28.d even 2 1 336.4.q.j 4
28.f even 6 1 336.4.q.j 4
28.f even 6 1 2352.4.a.bq 2
28.g odd 6 1 2352.4.a.ca 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.e.c 4 7.b odd 2 1
42.4.e.c 4 7.d odd 6 1
126.4.g.g 4 21.c even 2 1
126.4.g.g 4 21.g even 6 1
294.4.a.m 2 7.c even 3 1
294.4.a.n 2 7.d odd 6 1
294.4.e.l 4 1.a even 1 1 trivial
294.4.e.l 4 7.c even 3 1 inner
336.4.q.j 4 28.d even 2 1
336.4.q.j 4 28.f even 6 1
882.4.a.v 2 21.g even 6 1
882.4.a.z 2 21.h odd 6 1
882.4.g.bf 4 3.b odd 2 1
882.4.g.bf 4 21.h odd 6 1
2352.4.a.bq 2 28.f even 6 1
2352.4.a.ca 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(294,[χ])S_{4}^{\mathrm{new}}(294, [\chi]):

T545T53+355T52+1650T5+108900 T_{5}^{4} - 5T_{5}^{3} + 355T_{5}^{2} + 1650T_{5} + 108900 Copy content Toggle raw display
T114+67T113+3703T112+52662T11+617796 T_{11}^{4} + 67T_{11}^{3} + 3703T_{11}^{2} + 52662T_{11} + 617796 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
33 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
55 T45T3++108900 T^{4} - 5 T^{3} + \cdots + 108900 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+67T3++617796 T^{4} + 67 T^{3} + \cdots + 617796 Copy content Toggle raw display
1313 (T2+41T+84)2 (T^{2} + 41 T + 84)^{2} Copy content Toggle raw display
1717 T4+92T3++10653696 T^{4} + 92 T^{3} + \cdots + 10653696 Copy content Toggle raw display
1919 T443T3++6574096 T^{4} - 43 T^{3} + \cdots + 6574096 Copy content Toggle raw display
2323 T4+148T3++9216 T^{4} + 148 T^{3} + \cdots + 9216 Copy content Toggle raw display
2929 (T277T39204)2 (T^{2} - 77 T - 39204)^{2} Copy content Toggle raw display
3131 T4++4389725025 T^{4} + \cdots + 4389725025 Copy content Toggle raw display
3737 T4+7T3++741146176 T^{4} + 7 T^{3} + \cdots + 741146176 Copy content Toggle raw display
4141 (T2426T+33264)2 (T^{2} - 426 T + 33264)^{2} Copy content Toggle raw display
4343 (T2+107T72794)2 (T^{2} + 107 T - 72794)^{2} Copy content Toggle raw display
4747 T4++1191906576 T^{4} + \cdots + 1191906576 Copy content Toggle raw display
5353 T4243T3++137733696 T^{4} - 243 T^{3} + \cdots + 137733696 Copy content Toggle raw display
5959 T4++44160500736 T^{4} + \cdots + 44160500736 Copy content Toggle raw display
6161 T4224T3++51322896 T^{4} - 224 T^{3} + \cdots + 51322896 Copy content Toggle raw display
6767 T4++5976217636 T^{4} + \cdots + 5976217636 Copy content Toggle raw display
7171 (T2472T78804)2 (T^{2} - 472 T - 78804)^{2} Copy content Toggle raw display
7373 T4++39938423716 T^{4} + \cdots + 39938423716 Copy content Toggle raw display
7979 T4++2270427201 T^{4} + \cdots + 2270427201 Copy content Toggle raw display
8383 (T2221T197946)2 (T^{2} - 221 T - 197946)^{2} Copy content Toggle raw display
8989 T4++196582277376 T^{4} + \cdots + 196582277376 Copy content Toggle raw display
9797 (T2+1953T+541646)2 (T^{2} + 1953 T + 541646)^{2} Copy content Toggle raw display
show more
show less