Properties

Label 294.4.e.m
Level 294294
Weight 44
Character orbit 294.e
Analytic conductor 17.34717.347
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,4,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 294.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.346561541717.3465615417
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2β2q2+(3β2+3)q3+(4β24)q4+(β36β2β1)q56q6+8q8+9β2q9+(12β2+2β1+12)q10++(54β3+18)q99+O(q100) q + 2 \beta_{2} q^{2} + (3 \beta_{2} + 3) q^{3} + ( - 4 \beta_{2} - 4) q^{4} + ( - \beta_{3} - 6 \beta_{2} - \beta_1) q^{5} - 6 q^{6} + 8 q^{8} + 9 \beta_{2} q^{9} + (12 \beta_{2} + 2 \beta_1 + 12) q^{10}+ \cdots + ( - 54 \beta_{3} + 18) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+6q38q4+12q524q6+32q818q9+24q104q11+24q1296q13+72q1532q16+132q1736q18+120q1996q20+16q22++72q99+O(q100) 4 q - 4 q^{2} + 6 q^{3} - 8 q^{4} + 12 q^{5} - 24 q^{6} + 32 q^{8} - 18 q^{9} + 24 q^{10} - 4 q^{11} + 24 q^{12} - 96 q^{13} + 72 q^{15} - 32 q^{16} + 132 q^{17} - 36 q^{18} + 120 q^{19} - 96 q^{20} + 16 q^{22}+ \cdots + 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/294Z)×\left(\mathbb{Z}/294\mathbb{Z}\right)^\times.

nn 197197 199199
χ(n)\chi(n) 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 2.29289 + 3.97141i −6.00000 0 8.00000 −4.50000 7.79423i 4.58579 7.94282i
67.2 −1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 3.70711 + 6.42090i −6.00000 0 8.00000 −4.50000 7.79423i 7.41421 12.8418i
79.1 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 2.29289 3.97141i −6.00000 0 8.00000 −4.50000 + 7.79423i 4.58579 + 7.94282i
79.2 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 3.70711 6.42090i −6.00000 0 8.00000 −4.50000 + 7.79423i 7.41421 + 12.8418i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.e.m 4
3.b odd 2 1 882.4.g.be 4
7.b odd 2 1 294.4.e.k 4
7.c even 3 1 294.4.a.l 2
7.c even 3 1 inner 294.4.e.m 4
7.d odd 6 1 294.4.a.o yes 2
7.d odd 6 1 294.4.e.k 4
21.c even 2 1 882.4.g.bk 4
21.g even 6 1 882.4.a.t 2
21.g even 6 1 882.4.g.bk 4
21.h odd 6 1 882.4.a.bb 2
21.h odd 6 1 882.4.g.be 4
28.f even 6 1 2352.4.a.bu 2
28.g odd 6 1 2352.4.a.bw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.l 2 7.c even 3 1
294.4.a.o yes 2 7.d odd 6 1
294.4.e.k 4 7.b odd 2 1
294.4.e.k 4 7.d odd 6 1
294.4.e.m 4 1.a even 1 1 trivial
294.4.e.m 4 7.c even 3 1 inner
882.4.a.t 2 21.g even 6 1
882.4.a.bb 2 21.h odd 6 1
882.4.g.be 4 3.b odd 2 1
882.4.g.be 4 21.h odd 6 1
882.4.g.bk 4 21.c even 2 1
882.4.g.bk 4 21.g even 6 1
2352.4.a.bu 2 28.f even 6 1
2352.4.a.bw 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(294,[χ])S_{4}^{\mathrm{new}}(294, [\chi]):

T5412T53+110T52408T5+1156 T_{5}^{4} - 12T_{5}^{3} + 110T_{5}^{2} - 408T_{5} + 1156 Copy content Toggle raw display
T114+4T113+84T112272T11+4624 T_{11}^{4} + 4T_{11}^{3} + 84T_{11}^{2} - 272T_{11} + 4624 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
33 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
55 T412T3++1156 T^{4} - 12 T^{3} + \cdots + 1156 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+4T3++4624 T^{4} + 4 T^{3} + \cdots + 4624 Copy content Toggle raw display
1313 (T2+48T+126)2 (T^{2} + 48 T + 126)^{2} Copy content Toggle raw display
1717 T4132T3++16924996 T^{4} - 132 T^{3} + \cdots + 16924996 Copy content Toggle raw display
1919 T4120T3++399424 T^{4} - 120 T^{3} + \cdots + 399424 Copy content Toggle raw display
2323 T476T3++374964496 T^{4} - 76 T^{3} + \cdots + 374964496 Copy content Toggle raw display
2929 (T2+112T41864)2 (T^{2} + 112 T - 41864)^{2} Copy content Toggle raw display
3131 T4++1666598976 T^{4} + \cdots + 1666598976 Copy content Toggle raw display
3737 T4++2043040000 T^{4} + \cdots + 2043040000 Copy content Toggle raw display
4141 (T2+36T31934)2 (T^{2} + 36 T - 31934)^{2} Copy content Toggle raw display
4343 (T2+128T161792)2 (T^{2} + 128 T - 161792)^{2} Copy content Toggle raw display
4747 T4++44548012096 T^{4} + \cdots + 44548012096 Copy content Toggle raw display
5353 T4++3110515984 T^{4} + \cdots + 3110515984 Copy content Toggle raw display
5959 T4++22315579456 T^{4} + \cdots + 22315579456 Copy content Toggle raw display
6161 T4++34489689796 T^{4} + \cdots + 34489689796 Copy content Toggle raw display
6767 T4384T3++21233664 T^{4} - 384 T^{3} + \cdots + 21233664 Copy content Toggle raw display
7171 (T2+396T194724)2 (T^{2} + 396 T - 194724)^{2} Copy content Toggle raw display
7373 T4++467464833796 T^{4} + \cdots + 467464833796 Copy content Toggle raw display
7979 T4848T3++50176 T^{4} - 848 T^{3} + \cdots + 50176 Copy content Toggle raw display
8383 (T2648T+92176)2 (T^{2} - 648 T + 92176)^{2} Copy content Toggle raw display
8989 T4++1048852996 T^{4} + \cdots + 1048852996 Copy content Toggle raw display
9797 (T22184T+1157086)2 (T^{2} - 2184 T + 1157086)^{2} Copy content Toggle raw display
show more
show less