Properties

Label 294.6.a.i.1.1
Level 294294
Weight 66
Character 294.1
Self dual yes
Analytic conductor 47.15347.153
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 47.152843025047.1528430250
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 294.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.00000q29.00000q3+16.0000q424.0000q536.0000q6+64.0000q8+81.0000q996.0000q10+66.0000q11144.000q1298.0000q13+216.000q15+256.000q16+216.000q17+324.000q18+340.000q19384.000q20+264.000q221038.00q23576.000q242549.00q25392.000q26729.000q272490.00q29+864.000q30+7048.00q31+1024.00q32594.000q33+864.000q34+1296.00q3612238.0q37+1360.00q38+882.000q391536.00q406468.00q4115412.0q43+1056.00q441944.00q454152.00q4620604.0q472304.00q4810196.0q501944.00q511568.00q52+32490.0q532916.00q541584.00q553060.00q579960.00q5834224.0q59+3456.00q6035654.0q61+28192.0q62+4096.00q64+2352.00q652376.00q66+12680.0q67+3456.00q68+9342.00q6942642.0q71+5184.00q7233734.0q7348952.0q74+22941.0q75+5440.00q76+3528.00q7885108.0q796144.00q80+6561.00q8125872.0q82+106764.q835184.00q8561648.0q86+22410.0q87+4224.00q8834884.0q897776.00q9016608.0q9263432.0q9382416.0q948160.00q959216.00q9618662.0q97+5346.00q99+O(q100)q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} -24.0000 q^{5} -36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} -96.0000 q^{10} +66.0000 q^{11} -144.000 q^{12} -98.0000 q^{13} +216.000 q^{15} +256.000 q^{16} +216.000 q^{17} +324.000 q^{18} +340.000 q^{19} -384.000 q^{20} +264.000 q^{22} -1038.00 q^{23} -576.000 q^{24} -2549.00 q^{25} -392.000 q^{26} -729.000 q^{27} -2490.00 q^{29} +864.000 q^{30} +7048.00 q^{31} +1024.00 q^{32} -594.000 q^{33} +864.000 q^{34} +1296.00 q^{36} -12238.0 q^{37} +1360.00 q^{38} +882.000 q^{39} -1536.00 q^{40} -6468.00 q^{41} -15412.0 q^{43} +1056.00 q^{44} -1944.00 q^{45} -4152.00 q^{46} -20604.0 q^{47} -2304.00 q^{48} -10196.0 q^{50} -1944.00 q^{51} -1568.00 q^{52} +32490.0 q^{53} -2916.00 q^{54} -1584.00 q^{55} -3060.00 q^{57} -9960.00 q^{58} -34224.0 q^{59} +3456.00 q^{60} -35654.0 q^{61} +28192.0 q^{62} +4096.00 q^{64} +2352.00 q^{65} -2376.00 q^{66} +12680.0 q^{67} +3456.00 q^{68} +9342.00 q^{69} -42642.0 q^{71} +5184.00 q^{72} -33734.0 q^{73} -48952.0 q^{74} +22941.0 q^{75} +5440.00 q^{76} +3528.00 q^{78} -85108.0 q^{79} -6144.00 q^{80} +6561.00 q^{81} -25872.0 q^{82} +106764. q^{83} -5184.00 q^{85} -61648.0 q^{86} +22410.0 q^{87} +4224.00 q^{88} -34884.0 q^{89} -7776.00 q^{90} -16608.0 q^{92} -63432.0 q^{93} -82416.0 q^{94} -8160.00 q^{95} -9216.00 q^{96} -18662.0 q^{97} +5346.00 q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 4.00000 0.707107
33 −9.00000 −0.577350
44 16.0000 0.500000
55 −24.0000 −0.429325 −0.214663 0.976688i 0.568865π-0.568865\pi
−0.214663 + 0.976688i 0.568865π0.568865\pi
66 −36.0000 −0.408248
77 0 0
88 64.0000 0.353553
99 81.0000 0.333333
1010 −96.0000 −0.303579
1111 66.0000 0.164461 0.0822304 0.996613i 0.473796π-0.473796\pi
0.0822304 + 0.996613i 0.473796π0.473796\pi
1212 −144.000 −0.288675
1313 −98.0000 −0.160830 −0.0804151 0.996761i 0.525625π-0.525625\pi
−0.0804151 + 0.996761i 0.525625π0.525625\pi
1414 0 0
1515 216.000 0.247871
1616 256.000 0.250000
1717 216.000 0.181272 0.0906362 0.995884i 0.471110π-0.471110\pi
0.0906362 + 0.995884i 0.471110π0.471110\pi
1818 324.000 0.235702
1919 340.000 0.216070 0.108035 0.994147i 0.465544π-0.465544\pi
0.108035 + 0.994147i 0.465544π0.465544\pi
2020 −384.000 −0.214663
2121 0 0
2222 264.000 0.116291
2323 −1038.00 −0.409145 −0.204573 0.978851i 0.565580π-0.565580\pi
−0.204573 + 0.978851i 0.565580π0.565580\pi
2424 −576.000 −0.204124
2525 −2549.00 −0.815680
2626 −392.000 −0.113724
2727 −729.000 −0.192450
2828 0 0
2929 −2490.00 −0.549800 −0.274900 0.961473i 0.588645π-0.588645\pi
−0.274900 + 0.961473i 0.588645π0.588645\pi
3030 864.000 0.175271
3131 7048.00 1.31723 0.658615 0.752480i 0.271143π-0.271143\pi
0.658615 + 0.752480i 0.271143π0.271143\pi
3232 1024.00 0.176777
3333 −594.000 −0.0949514
3434 864.000 0.128179
3535 0 0
3636 1296.00 0.166667
3737 −12238.0 −1.46962 −0.734812 0.678271i 0.762730π-0.762730\pi
−0.734812 + 0.678271i 0.762730π0.762730\pi
3838 1360.00 0.152785
3939 882.000 0.0928554
4040 −1536.00 −0.151789
4141 −6468.00 −0.600911 −0.300456 0.953796i 0.597139π-0.597139\pi
−0.300456 + 0.953796i 0.597139π0.597139\pi
4242 0 0
4343 −15412.0 −1.27112 −0.635562 0.772050i 0.719232π-0.719232\pi
−0.635562 + 0.772050i 0.719232π0.719232\pi
4444 1056.00 0.0822304
4545 −1944.00 −0.143108
4646 −4152.00 −0.289310
4747 −20604.0 −1.36053 −0.680263 0.732968i 0.738134π-0.738134\pi
−0.680263 + 0.732968i 0.738134π0.738134\pi
4848 −2304.00 −0.144338
4949 0 0
5050 −10196.0 −0.576773
5151 −1944.00 −0.104658
5252 −1568.00 −0.0804151
5353 32490.0 1.58877 0.794383 0.607417i 0.207794π-0.207794\pi
0.794383 + 0.607417i 0.207794π0.207794\pi
5454 −2916.00 −0.136083
5555 −1584.00 −0.0706071
5656 0 0
5757 −3060.00 −0.124748
5858 −9960.00 −0.388767
5959 −34224.0 −1.27997 −0.639986 0.768386i 0.721060π-0.721060\pi
−0.639986 + 0.768386i 0.721060π0.721060\pi
6060 3456.00 0.123935
6161 −35654.0 −1.22683 −0.613414 0.789762i 0.710204π-0.710204\pi
−0.613414 + 0.789762i 0.710204π0.710204\pi
6262 28192.0 0.931422
6363 0 0
6464 4096.00 0.125000
6565 2352.00 0.0690484
6666 −2376.00 −0.0671408
6767 12680.0 0.345090 0.172545 0.985002i 0.444801π-0.444801\pi
0.172545 + 0.985002i 0.444801π0.444801\pi
6868 3456.00 0.0906362
6969 9342.00 0.236220
7070 0 0
7171 −42642.0 −1.00390 −0.501951 0.864896i 0.667384π-0.667384\pi
−0.501951 + 0.864896i 0.667384π0.667384\pi
7272 5184.00 0.117851
7373 −33734.0 −0.740902 −0.370451 0.928852i 0.620797π-0.620797\pi
−0.370451 + 0.928852i 0.620797π0.620797\pi
7474 −48952.0 −1.03918
7575 22941.0 0.470933
7676 5440.00 0.108035
7777 0 0
7878 3528.00 0.0656587
7979 −85108.0 −1.53427 −0.767137 0.641484i 0.778319π-0.778319\pi
−0.767137 + 0.641484i 0.778319π0.778319\pi
8080 −6144.00 −0.107331
8181 6561.00 0.111111
8282 −25872.0 −0.424908
8383 106764. 1.70110 0.850550 0.525895i 0.176270π-0.176270\pi
0.850550 + 0.525895i 0.176270π0.176270\pi
8484 0 0
8585 −5184.00 −0.0778247
8686 −61648.0 −0.898820
8787 22410.0 0.317427
8888 4224.00 0.0581456
8989 −34884.0 −0.466822 −0.233411 0.972378i 0.574989π-0.574989\pi
−0.233411 + 0.972378i 0.574989π0.574989\pi
9090 −7776.00 −0.101193
9191 0 0
9292 −16608.0 −0.204573
9393 −63432.0 −0.760503
9494 −82416.0 −0.962037
9595 −8160.00 −0.0927644
9696 −9216.00 −0.102062
9797 −18662.0 −0.201386 −0.100693 0.994918i 0.532106π-0.532106\pi
−0.100693 + 0.994918i 0.532106π0.532106\pi
9898 0 0
9999 5346.00 0.0548202
100100 −40784.0 −0.407840
101101 −153084. −1.49323 −0.746614 0.665257i 0.768322π-0.768322\pi
−0.746614 + 0.665257i 0.768322π0.768322\pi
102102 −7776.00 −0.0740041
103103 −35864.0 −0.333093 −0.166547 0.986034i 0.553262π-0.553262\pi
−0.166547 + 0.986034i 0.553262π0.553262\pi
104104 −6272.00 −0.0568621
105105 0 0
106106 129960. 1.12343
107107 −95454.0 −0.805999 −0.403000 0.915200i 0.632032π-0.632032\pi
−0.403000 + 0.915200i 0.632032π0.632032\pi
108108 −11664.0 −0.0962250
109109 212222. 1.71090 0.855449 0.517887i 0.173281π-0.173281\pi
0.855449 + 0.517887i 0.173281π0.173281\pi
110110 −6336.00 −0.0499268
111111 110142. 0.848488
112112 0 0
113113 62106.0 0.457549 0.228774 0.973479i 0.426528π-0.426528\pi
0.228774 + 0.973479i 0.426528π0.426528\pi
114114 −12240.0 −0.0882103
115115 24912.0 0.175656
116116 −39840.0 −0.274900
117117 −7938.00 −0.0536101
118118 −136896. −0.905077
119119 0 0
120120 13824.0 0.0876356
121121 −156695. −0.972953
122122 −142616. −0.867498
123123 58212.0 0.346936
124124 112768. 0.658615
125125 136176. 0.779517
126126 0 0
127127 −53044.0 −0.291828 −0.145914 0.989297i 0.546612π-0.546612\pi
−0.145914 + 0.989297i 0.546612π0.546612\pi
128128 16384.0 0.0883883
129129 138708. 0.733884
130130 9408.00 0.0488246
131131 −69324.0 −0.352944 −0.176472 0.984306i 0.556468π-0.556468\pi
−0.176472 + 0.984306i 0.556468π0.556468\pi
132132 −9504.00 −0.0474757
133133 0 0
134134 50720.0 0.244015
135135 17496.0 0.0826236
136136 13824.0 0.0640894
137137 129846. 0.591054 0.295527 0.955334i 0.404505π-0.404505\pi
0.295527 + 0.955334i 0.404505π0.404505\pi
138138 37368.0 0.167033
139139 104356. 0.458121 0.229061 0.973412i 0.426435π-0.426435\pi
0.229061 + 0.973412i 0.426435π0.426435\pi
140140 0 0
141141 185436. 0.785500
142142 −170568. −0.709867
143143 −6468.00 −0.0264503
144144 20736.0 0.0833333
145145 59760.0 0.236043
146146 −134936. −0.523897
147147 0 0
148148 −195808. −0.734812
149149 217194. 0.801461 0.400730 0.916196i 0.368756π-0.368756\pi
0.400730 + 0.916196i 0.368756π0.368756\pi
150150 91764.0 0.333000
151151 221000. 0.788769 0.394385 0.918945i 0.370958π-0.370958\pi
0.394385 + 0.918945i 0.370958π0.370958\pi
152152 21760.0 0.0763924
153153 17496.0 0.0604241
154154 0 0
155155 −169152. −0.565520
156156 14112.0 0.0464277
157157 378370. 1.22509 0.612544 0.790436i 0.290146π-0.290146\pi
0.612544 + 0.790436i 0.290146π0.290146\pi
158158 −340432. −1.08489
159159 −292410. −0.917275
160160 −24576.0 −0.0758947
161161 0 0
162162 26244.0 0.0785674
163163 104816. 0.309000 0.154500 0.987993i 0.450623π-0.450623\pi
0.154500 + 0.987993i 0.450623π0.450623\pi
164164 −103488. −0.300456
165165 14256.0 0.0407650
166166 427056. 1.20286
167167 426972. 1.18470 0.592350 0.805681i 0.298200π-0.298200\pi
0.592350 + 0.805681i 0.298200π0.298200\pi
168168 0 0
169169 −361689. −0.974134
170170 −20736.0 −0.0550304
171171 27540.0 0.0720234
172172 −246592. −0.635562
173173 −331068. −0.841012 −0.420506 0.907290i 0.638147π-0.638147\pi
−0.420506 + 0.907290i 0.638147π0.638147\pi
174174 89640.0 0.224455
175175 0 0
176176 16896.0 0.0411152
177177 308016. 0.738993
178178 −139536. −0.330093
179179 −400194. −0.933551 −0.466775 0.884376i 0.654584π-0.654584\pi
−0.466775 + 0.884376i 0.654584π0.654584\pi
180180 −31104.0 −0.0715542
181181 −588098. −1.33430 −0.667150 0.744924i 0.732486π-0.732486\pi
−0.667150 + 0.744924i 0.732486π0.732486\pi
182182 0 0
183183 320886. 0.708309
184184 −66432.0 −0.144655
185185 293712. 0.630946
186186 −253728. −0.537757
187187 14256.0 0.0298122
188188 −329664. −0.680263
189189 0 0
190190 −32640.0 −0.0655943
191191 939342. 1.86312 0.931559 0.363590i 0.118449π-0.118449\pi
0.931559 + 0.363590i 0.118449π0.118449\pi
192192 −36864.0 −0.0721688
193193 338390. 0.653919 0.326960 0.945038i 0.393976π-0.393976\pi
0.326960 + 0.945038i 0.393976π0.393976\pi
194194 −74648.0 −0.142401
195195 −21168.0 −0.0398651
196196 0 0
197197 −237942. −0.436823 −0.218412 0.975857i 0.570088π-0.570088\pi
−0.218412 + 0.975857i 0.570088π0.570088\pi
198198 21384.0 0.0387638
199199 −204464. −0.366003 −0.183001 0.983113i 0.558581π-0.558581\pi
−0.183001 + 0.983113i 0.558581π0.558581\pi
200200 −163136. −0.288386
201201 −114120. −0.199238
202202 −612336. −1.05587
203203 0 0
204204 −31104.0 −0.0523288
205205 155232. 0.257986
206206 −143456. −0.235532
207207 −84078.0 −0.136382
208208 −25088.0 −0.0402076
209209 22440.0 0.0355351
210210 0 0
211211 −348724. −0.539232 −0.269616 0.962968i 0.586897π-0.586897\pi
−0.269616 + 0.962968i 0.586897π0.586897\pi
212212 519840. 0.794383
213213 383778. 0.579604
214214 −381816. −0.569928
215215 369888. 0.545725
216216 −46656.0 −0.0680414
217217 0 0
218218 848888. 1.20979
219219 303606. 0.427760
220220 −25344.0 −0.0353036
221221 −21168.0 −0.0291541
222222 440568. 0.599971
223223 −1.47006e6 −1.97957 −0.989787 0.142554i 0.954468π-0.954468\pi
−0.989787 + 0.142554i 0.954468π0.954468\pi
224224 0 0
225225 −206469. −0.271893
226226 248424. 0.323536
227227 589560. 0.759387 0.379694 0.925112i 0.376029π-0.376029\pi
0.379694 + 0.925112i 0.376029π0.376029\pi
228228 −48960.0 −0.0623741
229229 1.04534e6 1.31725 0.658627 0.752469i 0.271137π-0.271137\pi
0.658627 + 0.752469i 0.271137π0.271137\pi
230230 99648.0 0.124208
231231 0 0
232232 −159360. −0.194383
233233 651222. 0.785849 0.392925 0.919571i 0.371463π-0.371463\pi
0.392925 + 0.919571i 0.371463π0.371463\pi
234234 −31752.0 −0.0379080
235235 494496. 0.584108
236236 −547584. −0.639986
237237 765972. 0.885813
238238 0 0
239239 −513462. −0.581452 −0.290726 0.956806i 0.593897π-0.593897\pi
−0.290726 + 0.956806i 0.593897π0.593897\pi
240240 55296.0 0.0619677
241241 694714. 0.770484 0.385242 0.922816i 0.374118π-0.374118\pi
0.385242 + 0.922816i 0.374118π0.374118\pi
242242 −626780. −0.687981
243243 −59049.0 −0.0641500
244244 −570464. −0.613414
245245 0 0
246246 232848. 0.245321
247247 −33320.0 −0.0347506
248248 451072. 0.465711
249249 −960876. −0.982130
250250 544704. 0.551202
251251 1.39608e6 1.39870 0.699352 0.714777i 0.253472π-0.253472\pi
0.699352 + 0.714777i 0.253472π0.253472\pi
252252 0 0
253253 −68508.0 −0.0672884
254254 −212176. −0.206354
255255 46656.0 0.0449321
256256 65536.0 0.0625000
257257 1.00520e6 0.949339 0.474670 0.880164i 0.342568π-0.342568\pi
0.474670 + 0.880164i 0.342568π0.342568\pi
258258 554832. 0.518934
259259 0 0
260260 37632.0 0.0345242
261261 −201690. −0.183267
262262 −277296. −0.249569
263263 1.25301e6 1.11703 0.558515 0.829494i 0.311371π-0.311371\pi
0.558515 + 0.829494i 0.311371π0.311371\pi
264264 −38016.0 −0.0335704
265265 −779760. −0.682097
266266 0 0
267267 313956. 0.269520
268268 202880. 0.172545
269269 1.76069e6 1.48355 0.741774 0.670650i 0.233985π-0.233985\pi
0.741774 + 0.670650i 0.233985π0.233985\pi
270270 69984.0 0.0584237
271271 −770528. −0.637331 −0.318666 0.947867i 0.603235π-0.603235\pi
−0.318666 + 0.947867i 0.603235π0.603235\pi
272272 55296.0 0.0453181
273273 0 0
274274 519384. 0.417938
275275 −168234. −0.134147
276276 149472. 0.118110
277277 707738. 0.554208 0.277104 0.960840i 0.410625π-0.410625\pi
0.277104 + 0.960840i 0.410625π0.410625\pi
278278 417424. 0.323941
279279 570888. 0.439077
280280 0 0
281281 2.30432e6 1.74091 0.870456 0.492247i 0.163824π-0.163824\pi
0.870456 + 0.492247i 0.163824π0.163824\pi
282282 741744. 0.555432
283283 −1.60903e6 −1.19426 −0.597128 0.802146i 0.703692π-0.703692\pi
−0.597128 + 0.802146i 0.703692π0.703692\pi
284284 −682272. −0.501951
285285 73440.0 0.0535575
286286 −25872.0 −0.0187032
287287 0 0
288288 82944.0 0.0589256
289289 −1.37320e6 −0.967140
290290 239040. 0.166907
291291 167958. 0.116270
292292 −539744. −0.370451
293293 −517020. −0.351834 −0.175917 0.984405i 0.556289π-0.556289\pi
−0.175917 + 0.984405i 0.556289π0.556289\pi
294294 0 0
295295 821376. 0.549524
296296 −783232. −0.519590
297297 −48114.0 −0.0316505
298298 868776. 0.566718
299299 101724. 0.0658030
300300 367056. 0.235467
301301 0 0
302302 884000. 0.557744
303303 1.37776e6 0.862116
304304 87040.0 0.0540176
305305 855696. 0.526708
306306 69984.0 0.0427263
307307 −1.35002e6 −0.817512 −0.408756 0.912644i 0.634037π-0.634037\pi
−0.408756 + 0.912644i 0.634037π0.634037\pi
308308 0 0
309309 322776. 0.192311
310310 −676608. −0.399883
311311 −1.34538e6 −0.788758 −0.394379 0.918948i 0.629040π-0.629040\pi
−0.394379 + 0.918948i 0.629040π0.629040\pi
312312 56448.0 0.0328293
313313 −256154. −0.147788 −0.0738942 0.997266i 0.523543π-0.523543\pi
−0.0738942 + 0.997266i 0.523543π0.523543\pi
314314 1.51348e6 0.866269
315315 0 0
316316 −1.36173e6 −0.767137
317317 1.84629e6 1.03193 0.515967 0.856609i 0.327433π-0.327433\pi
0.515967 + 0.856609i 0.327433π0.327433\pi
318318 −1.16964e6 −0.648611
319319 −164340. −0.0904204
320320 −98304.0 −0.0536656
321321 859086. 0.465344
322322 0 0
323323 73440.0 0.0391675
324324 104976. 0.0555556
325325 249802. 0.131186
326326 419264. 0.218496
327327 −1.91000e6 −0.987788
328328 −413952. −0.212454
329329 0 0
330330 57024.0 0.0288252
331331 −3.33238e6 −1.67180 −0.835900 0.548881i 0.815054π-0.815054\pi
−0.835900 + 0.548881i 0.815054π0.815054\pi
332332 1.70822e6 0.850550
333333 −991278. −0.489875
334334 1.70789e6 0.837709
335335 −304320. −0.148156
336336 0 0
337337 −1.63481e6 −0.784136 −0.392068 0.919936i 0.628240π-0.628240\pi
−0.392068 + 0.919936i 0.628240π0.628240\pi
338338 −1.44676e6 −0.688816
339339 −558954. −0.264166
340340 −82944.0 −0.0389124
341341 465168. 0.216633
342342 110160. 0.0509282
343343 0 0
344344 −986368. −0.449410
345345 −224208. −0.101415
346346 −1.32427e6 −0.594685
347347 −841530. −0.375185 −0.187593 0.982247i 0.560068π-0.560068\pi
−0.187593 + 0.982247i 0.560068π0.560068\pi
348348 358560. 0.158713
349349 977242. 0.429476 0.214738 0.976672i 0.431110π-0.431110\pi
0.214738 + 0.976672i 0.431110π0.431110\pi
350350 0 0
351351 71442.0 0.0309518
352352 67584.0 0.0290728
353353 −3.45857e6 −1.47727 −0.738634 0.674106i 0.764529π-0.764529\pi
−0.738634 + 0.674106i 0.764529π0.764529\pi
354354 1.23206e6 0.522547
355355 1.02341e6 0.431001
356356 −558144. −0.233411
357357 0 0
358358 −1.60078e6 −0.660120
359359 −3.47301e6 −1.42223 −0.711115 0.703076i 0.751810π-0.751810\pi
−0.711115 + 0.703076i 0.751810π0.751810\pi
360360 −124416. −0.0505964
361361 −2.36050e6 −0.953314
362362 −2.35239e6 −0.943492
363363 1.41026e6 0.561734
364364 0 0
365365 809616. 0.318088
366366 1.28354e6 0.500850
367367 −3.11994e6 −1.20915 −0.604575 0.796548i 0.706657π-0.706657\pi
−0.604575 + 0.796548i 0.706657π0.706657\pi
368368 −265728. −0.102286
369369 −523908. −0.200304
370370 1.17485e6 0.446146
371371 0 0
372372 −1.01491e6 −0.380252
373373 −2.01673e6 −0.750543 −0.375272 0.926915i 0.622451π-0.622451\pi
−0.375272 + 0.926915i 0.622451π0.622451\pi
374374 57024.0 0.0210804
375375 −1.22558e6 −0.450054
376376 −1.31866e6 −0.481019
377377 244020. 0.0884244
378378 0 0
379379 −5.38083e6 −1.92420 −0.962102 0.272690i 0.912087π-0.912087\pi
−0.962102 + 0.272690i 0.912087π0.912087\pi
380380 −130560. −0.0463822
381381 477396. 0.168487
382382 3.75737e6 1.31742
383383 −807432. −0.281261 −0.140630 0.990062i 0.544913π-0.544913\pi
−0.140630 + 0.990062i 0.544913π0.544913\pi
384384 −147456. −0.0510310
385385 0 0
386386 1.35356e6 0.462391
387387 −1.24837e6 −0.423708
388388 −298592. −0.100693
389389 891390. 0.298671 0.149336 0.988787i 0.452286π-0.452286\pi
0.149336 + 0.988787i 0.452286π0.452286\pi
390390 −84672.0 −0.0281889
391391 −224208. −0.0741667
392392 0 0
393393 623916. 0.203772
394394 −951768. −0.308881
395395 2.04259e6 0.658702
396396 85536.0 0.0274101
397397 −1.12345e6 −0.357749 −0.178875 0.983872i 0.557246π-0.557246\pi
−0.178875 + 0.983872i 0.557246π0.557246\pi
398398 −817856. −0.258803
399399 0 0
400400 −652544. −0.203920
401401 1.72037e6 0.534271 0.267136 0.963659i 0.413923π-0.413923\pi
0.267136 + 0.963659i 0.413923π0.413923\pi
402402 −456480. −0.140882
403403 −690704. −0.211850
404404 −2.44934e6 −0.746614
405405 −157464. −0.0477028
406406 0 0
407407 −807708. −0.241695
408408 −124416. −0.0370021
409409 −77246.0 −0.0228332 −0.0114166 0.999935i 0.503634π-0.503634\pi
−0.0114166 + 0.999935i 0.503634π0.503634\pi
410410 620928. 0.182424
411411 −1.16861e6 −0.341245
412412 −573824. −0.166547
413413 0 0
414414 −336312. −0.0964365
415415 −2.56234e6 −0.730324
416416 −100352. −0.0284310
417417 −939204. −0.264496
418418 89760.0 0.0251271
419419 5.20615e6 1.44871 0.724356 0.689427i 0.242137π-0.242137\pi
0.724356 + 0.689427i 0.242137π0.242137\pi
420420 0 0
421421 1.71847e6 0.472539 0.236270 0.971688i 0.424075π-0.424075\pi
0.236270 + 0.971688i 0.424075π0.424075\pi
422422 −1.39490e6 −0.381295
423423 −1.66892e6 −0.453509
424424 2.07936e6 0.561714
425425 −550584. −0.147860
426426 1.53511e6 0.409842
427427 0 0
428428 −1.52726e6 −0.403000
429429 58212.0 0.0152711
430430 1.47955e6 0.385886
431431 −580626. −0.150558 −0.0752789 0.997163i 0.523985π-0.523985\pi
−0.0752789 + 0.997163i 0.523985π0.523985\pi
432432 −186624. −0.0481125
433433 −4.15087e6 −1.06395 −0.531973 0.846761i 0.678549π-0.678549\pi
−0.531973 + 0.846761i 0.678549π0.678549\pi
434434 0 0
435435 −537840. −0.136279
436436 3.39555e6 0.855449
437437 −352920. −0.0884042
438438 1.21442e6 0.302472
439439 −3.88407e6 −0.961891 −0.480946 0.876750i 0.659707π-0.659707\pi
−0.480946 + 0.876750i 0.659707π0.659707\pi
440440 −101376. −0.0249634
441441 0 0
442442 −84672.0 −0.0206150
443443 −2.31499e6 −0.560453 −0.280226 0.959934i 0.590410π-0.590410\pi
−0.280226 + 0.959934i 0.590410π0.590410\pi
444444 1.76227e6 0.424244
445445 837216. 0.200418
446446 −5.88022e6 −1.39977
447447 −1.95475e6 −0.462723
448448 0 0
449449 −1.92281e6 −0.450113 −0.225056 0.974346i 0.572257π-0.572257\pi
−0.225056 + 0.974346i 0.572257π0.572257\pi
450450 −825876. −0.192258
451451 −426888. −0.0988263
452452 993696. 0.228774
453453 −1.98900e6 −0.455396
454454 2.35824e6 0.536968
455455 0 0
456456 −195840. −0.0441051
457457 6.86215e6 1.53699 0.768493 0.639858i 0.221007π-0.221007\pi
0.768493 + 0.639858i 0.221007π0.221007\pi
458458 4.18137e6 0.931440
459459 −157464. −0.0348859
460460 398592. 0.0878282
461461 −2.97167e6 −0.651250 −0.325625 0.945499i 0.605575π-0.605575\pi
−0.325625 + 0.945499i 0.605575π0.605575\pi
462462 0 0
463463 4.87423e6 1.05670 0.528352 0.849025i 0.322810π-0.322810\pi
0.528352 + 0.849025i 0.322810π0.322810\pi
464464 −637440. −0.137450
465465 1.52237e6 0.326503
466466 2.60489e6 0.555679
467467 8.17301e6 1.73416 0.867081 0.498167i 0.165993π-0.165993\pi
0.867081 + 0.498167i 0.165993π0.165993\pi
468468 −127008. −0.0268050
469469 0 0
470470 1.97798e6 0.413027
471471 −3.40533e6 −0.707305
472472 −2.19034e6 −0.452539
473473 −1.01719e6 −0.209050
474474 3.06389e6 0.626364
475475 −866660. −0.176244
476476 0 0
477477 2.63169e6 0.529589
478478 −2.05385e6 −0.411148
479479 −2.34397e6 −0.466782 −0.233391 0.972383i 0.574982π-0.574982\pi
−0.233391 + 0.972383i 0.574982π0.574982\pi
480480 221184. 0.0438178
481481 1.19932e6 0.236360
482482 2.77886e6 0.544814
483483 0 0
484484 −2.50712e6 −0.486476
485485 447888. 0.0864600
486486 −236196. −0.0453609
487487 316928. 0.0605534 0.0302767 0.999542i 0.490361π-0.490361\pi
0.0302767 + 0.999542i 0.490361π0.490361\pi
488488 −2.28186e6 −0.433749
489489 −943344. −0.178401
490490 0 0
491491 −5.20041e6 −0.973495 −0.486748 0.873543i 0.661817π-0.661817\pi
−0.486748 + 0.873543i 0.661817π0.661817\pi
492492 931392. 0.173468
493493 −537840. −0.0996634
494494 −133280. −0.0245724
495495 −128304. −0.0235357
496496 1.80429e6 0.329308
497497 0 0
498498 −3.84350e6 −0.694471
499499 −4.86773e6 −0.875135 −0.437568 0.899185i 0.644160π-0.644160\pi
−0.437568 + 0.899185i 0.644160π0.644160\pi
500500 2.17882e6 0.389758
501501 −3.84275e6 −0.683987
502502 5.58432e6 0.989034
503503 −426888. −0.0752305 −0.0376153 0.999292i 0.511976π-0.511976\pi
−0.0376153 + 0.999292i 0.511976π0.511976\pi
504504 0 0
505505 3.67402e6 0.641081
506506 −274032. −0.0475801
507507 3.25520e6 0.562416
508508 −848704. −0.145914
509509 9.41621e6 1.61095 0.805474 0.592631i 0.201911π-0.201911\pi
0.805474 + 0.592631i 0.201911π0.201911\pi
510510 186624. 0.0317718
511511 0 0
512512 262144. 0.0441942
513513 −247860. −0.0415827
514514 4.02082e6 0.671284
515515 860736. 0.143005
516516 2.21933e6 0.366942
517517 −1.35986e6 −0.223753
518518 0 0
519519 2.97961e6 0.485558
520520 150528. 0.0244123
521521 −1.84039e6 −0.297041 −0.148520 0.988909i 0.547451π-0.547451\pi
−0.148520 + 0.988909i 0.547451π0.547451\pi
522522 −806760. −0.129589
523523 979108. 0.156522 0.0782612 0.996933i 0.475063π-0.475063\pi
0.0782612 + 0.996933i 0.475063π0.475063\pi
524524 −1.10918e6 −0.176472
525525 0 0
526526 5.01204e6 0.789860
527527 1.52237e6 0.238777
528528 −152064. −0.0237379
529529 −5.35890e6 −0.832600
530530 −3.11904e6 −0.482316
531531 −2.77214e6 −0.426658
532532 0 0
533533 633864. 0.0966447
534534 1.25582e6 0.190579
535535 2.29090e6 0.346036
536536 811520. 0.122008
537537 3.60175e6 0.538986
538538 7.04275e6 1.04903
539539 0 0
540540 279936. 0.0413118
541541 5.96117e6 0.875666 0.437833 0.899056i 0.355746π-0.355746\pi
0.437833 + 0.899056i 0.355746π0.355746\pi
542542 −3.08211e6 −0.450661
543543 5.29288e6 0.770358
544544 221184. 0.0320447
545545 −5.09333e6 −0.734531
546546 0 0
547547 8.73025e6 1.24755 0.623775 0.781604i 0.285598π-0.285598\pi
0.623775 + 0.781604i 0.285598π0.285598\pi
548548 2.07754e6 0.295527
549549 −2.88797e6 −0.408943
550550 −672936. −0.0948565
551551 −846600. −0.118795
552552 597888. 0.0835165
553553 0 0
554554 2.83095e6 0.391885
555555 −2.64341e6 −0.364277
556556 1.66970e6 0.229061
557557 −3.01066e6 −0.411172 −0.205586 0.978639i 0.565910π-0.565910\pi
−0.205586 + 0.978639i 0.565910π0.565910\pi
558558 2.28355e6 0.310474
559559 1.51038e6 0.204435
560560 0 0
561561 −128304. −0.0172121
562562 9.21727e6 1.23101
563563 −1.17573e7 −1.56327 −0.781637 0.623733i 0.785615π-0.785615\pi
−0.781637 + 0.623733i 0.785615π0.785615\pi
564564 2.96698e6 0.392750
565565 −1.49054e6 −0.196437
566566 −6.43611e6 −0.844467
567567 0 0
568568 −2.72909e6 −0.354933
569569 1.31578e7 1.70374 0.851870 0.523754i 0.175469π-0.175469\pi
0.851870 + 0.523754i 0.175469π0.175469\pi
570570 293760. 0.0378709
571571 −1.03344e7 −1.32647 −0.663234 0.748412i 0.730817π-0.730817\pi
−0.663234 + 0.748412i 0.730817π0.730817\pi
572572 −103488. −0.0132251
573573 −8.45408e6 −1.07567
574574 0 0
575575 2.64586e6 0.333732
576576 331776. 0.0416667
577577 7.88133e6 0.985508 0.492754 0.870169i 0.335990π-0.335990\pi
0.492754 + 0.870169i 0.335990π0.335990\pi
578578 −5.49280e6 −0.683872
579579 −3.04551e6 −0.377541
580580 956160. 0.118021
581581 0 0
582582 671832. 0.0822154
583583 2.14434e6 0.261290
584584 −2.15898e6 −0.261948
585585 190512. 0.0230161
586586 −2.06808e6 −0.248784
587587 554568. 0.0664293 0.0332146 0.999448i 0.489426π-0.489426\pi
0.0332146 + 0.999448i 0.489426π0.489426\pi
588588 0 0
589589 2.39632e6 0.284614
590590 3.28550e6 0.388572
591591 2.14148e6 0.252200
592592 −3.13293e6 −0.367406
593593 9.20369e6 1.07479 0.537397 0.843329i 0.319408π-0.319408\pi
0.537397 + 0.843329i 0.319408π0.319408\pi
594594 −192456. −0.0223803
595595 0 0
596596 3.47510e6 0.400730
597597 1.84018e6 0.211312
598598 406896. 0.0465297
599599 8.54295e6 0.972839 0.486419 0.873725i 0.338303π-0.338303\pi
0.486419 + 0.873725i 0.338303π0.338303\pi
600600 1.46822e6 0.166500
601601 9.61555e6 1.08590 0.542948 0.839767i 0.317308π-0.317308\pi
0.542948 + 0.839767i 0.317308π0.317308\pi
602602 0 0
603603 1.02708e6 0.115030
604604 3.53600e6 0.394385
605605 3.76068e6 0.417713
606606 5.51102e6 0.609608
607607 −2.21264e6 −0.243747 −0.121873 0.992546i 0.538890π-0.538890\pi
−0.121873 + 0.992546i 0.538890π0.538890\pi
608608 348160. 0.0381962
609609 0 0
610610 3.42278e6 0.372439
611611 2.01919e6 0.218814
612612 279936. 0.0302121
613613 −7.96215e6 −0.855814 −0.427907 0.903823i 0.640749π-0.640749\pi
−0.427907 + 0.903823i 0.640749π0.640749\pi
614614 −5.40008e6 −0.578068
615615 −1.39709e6 −0.148948
616616 0 0
617617 −1.37397e7 −1.45299 −0.726497 0.687170i 0.758853π-0.758853\pi
−0.726497 + 0.687170i 0.758853π0.758853\pi
618618 1.29110e6 0.135985
619619 8.70113e6 0.912744 0.456372 0.889789i 0.349149π-0.349149\pi
0.456372 + 0.889789i 0.349149π0.349149\pi
620620 −2.70643e6 −0.282760
621621 756702. 0.0787401
622622 −5.38152e6 −0.557736
623623 0 0
624624 225792. 0.0232138
625625 4.69740e6 0.481014
626626 −1.02462e6 −0.104502
627627 −201960. −0.0205162
628628 6.05392e6 0.612544
629629 −2.64341e6 −0.266402
630630 0 0
631631 445412. 0.0445337 0.0222668 0.999752i 0.492912π-0.492912\pi
0.0222668 + 0.999752i 0.492912π0.492912\pi
632632 −5.44691e6 −0.542447
633633 3.13852e6 0.311326
634634 7.38516e6 0.729687
635635 1.27306e6 0.125289
636636 −4.67856e6 −0.458637
637637 0 0
638638 −657360. −0.0639369
639639 −3.45400e6 −0.334634
640640 −393216. −0.0379473
641641 −8.00119e6 −0.769147 −0.384573 0.923094i 0.625651π-0.625651\pi
−0.384573 + 0.923094i 0.625651π0.625651\pi
642642 3.43634e6 0.329048
643643 1.58402e7 1.51090 0.755448 0.655209i 0.227419π-0.227419\pi
0.755448 + 0.655209i 0.227419π0.227419\pi
644644 0 0
645645 −3.32899e6 −0.315075
646646 293760. 0.0276956
647647 −1.30187e6 −0.122266 −0.0611331 0.998130i 0.519471π-0.519471\pi
−0.0611331 + 0.998130i 0.519471π0.519471\pi
648648 419904. 0.0392837
649649 −2.25878e6 −0.210505
650650 999208. 0.0927625
651651 0 0
652652 1.67706e6 0.154500
653653 7.34149e6 0.673753 0.336877 0.941549i 0.390629π-0.390629\pi
0.336877 + 0.941549i 0.390629π0.390629\pi
654654 −7.63999e6 −0.698471
655655 1.66378e6 0.151528
656656 −1.65581e6 −0.150228
657657 −2.73245e6 −0.246967
658658 0 0
659659 −6.18934e6 −0.555176 −0.277588 0.960700i 0.589535π-0.589535\pi
−0.277588 + 0.960700i 0.589535π0.589535\pi
660660 228096. 0.0203825
661661 1.96690e7 1.75097 0.875484 0.483248i 0.160543π-0.160543\pi
0.875484 + 0.483248i 0.160543π0.160543\pi
662662 −1.33295e7 −1.18214
663663 190512. 0.0168321
664664 6.83290e6 0.601429
665665 0 0
666666 −3.96511e6 −0.346394
667667 2.58462e6 0.224948
668668 6.83155e6 0.592350
669669 1.32305e7 1.14291
670670 −1.21728e6 −0.104762
671671 −2.35316e6 −0.201765
672672 0 0
673673 7.18259e6 0.611285 0.305642 0.952146i 0.401129π-0.401129\pi
0.305642 + 0.952146i 0.401129π0.401129\pi
674674 −6.53922e6 −0.554468
675675 1.85822e6 0.156978
676676 −5.78702e6 −0.487067
677677 1.89192e7 1.58647 0.793234 0.608917i 0.208396π-0.208396\pi
0.793234 + 0.608917i 0.208396π0.208396\pi
678678 −2.23582e6 −0.186794
679679 0 0
680680 −331776. −0.0275152
681681 −5.30604e6 −0.438432
682682 1.86067e6 0.153182
683683 2.12204e7 1.74061 0.870306 0.492512i 0.163921π-0.163921\pi
0.870306 + 0.492512i 0.163921π0.163921\pi
684684 440640. 0.0360117
685685 −3.11630e6 −0.253754
686686 0 0
687687 −9.40808e6 −0.760517
688688 −3.94547e6 −0.317781
689689 −3.18402e6 −0.255522
690690 −896832. −0.0717114
691691 −1.63276e7 −1.30085 −0.650424 0.759571i 0.725409π-0.725409\pi
−0.650424 + 0.759571i 0.725409π0.725409\pi
692692 −5.29709e6 −0.420506
693693 0 0
694694 −3.36612e6 −0.265296
695695 −2.50454e6 −0.196683
696696 1.43424e6 0.112227
697697 −1.39709e6 −0.108929
698698 3.90897e6 0.303685
699699 −5.86100e6 −0.453710
700700 0 0
701701 −5.40470e6 −0.415409 −0.207705 0.978192i 0.566599π-0.566599\pi
−0.207705 + 0.978192i 0.566599π0.566599\pi
702702 285768. 0.0218862
703703 −4.16092e6 −0.317542
704704 270336. 0.0205576
705705 −4.45046e6 −0.337235
706706 −1.38343e7 −1.04459
707707 0 0
708708 4.92826e6 0.369496
709709 2.21195e7 1.65257 0.826284 0.563253i 0.190450π-0.190450\pi
0.826284 + 0.563253i 0.190450π0.190450\pi
710710 4.09363e6 0.304763
711711 −6.89375e6 −0.511424
712712 −2.23258e6 −0.165046
713713 −7.31582e6 −0.538939
714714 0 0
715715 155232. 0.0113558
716716 −6.40310e6 −0.466775
717717 4.62116e6 0.335701
718718 −1.38920e7 −1.00567
719719 −2.55819e7 −1.84548 −0.922742 0.385418i 0.874057π-0.874057\pi
−0.922742 + 0.385418i 0.874057π0.874057\pi
720720 −497664. −0.0357771
721721 0 0
722722 −9.44200e6 −0.674095
723723 −6.25243e6 −0.444839
724724 −9.40957e6 −0.667150
725725 6.34701e6 0.448460
726726 5.64102e6 0.397206
727727 9.29438e6 0.652205 0.326103 0.945334i 0.394265π-0.394265\pi
0.326103 + 0.945334i 0.394265π0.394265\pi
728728 0 0
729729 531441. 0.0370370
730730 3.23846e6 0.224922
731731 −3.32899e6 −0.230420
732732 5.13418e6 0.354155
733733 −3.40699e6 −0.234213 −0.117107 0.993119i 0.537362π-0.537362\pi
−0.117107 + 0.993119i 0.537362π0.537362\pi
734734 −1.24797e7 −0.854999
735735 0 0
736736 −1.06291e6 −0.0723274
737737 836880. 0.0567537
738738 −2.09563e6 −0.141636
739739 2.18135e7 1.46932 0.734658 0.678438i 0.237343π-0.237343\pi
0.734658 + 0.678438i 0.237343π0.237343\pi
740740 4.69939e6 0.315473
741741 299880. 0.0200633
742742 0 0
743743 3.79246e6 0.252028 0.126014 0.992028i 0.459782π-0.459782\pi
0.126014 + 0.992028i 0.459782π0.459782\pi
744744 −4.05965e6 −0.268878
745745 −5.21266e6 −0.344087
746746 −8.06692e6 −0.530714
747747 8.64788e6 0.567033
748748 228096. 0.0149061
749749 0 0
750750 −4.90234e6 −0.318236
751751 −2.01483e7 −1.30358 −0.651790 0.758400i 0.725982π-0.725982\pi
−0.651790 + 0.758400i 0.725982π0.725982\pi
752752 −5.27462e6 −0.340132
753753 −1.25647e7 −0.807542
754754 976080. 0.0625255
755755 −5.30400e6 −0.338638
756756 0 0
757757 1.18427e7 0.751126 0.375563 0.926797i 0.377449π-0.377449\pi
0.375563 + 0.926797i 0.377449π0.377449\pi
758758 −2.15233e7 −1.36062
759759 616572. 0.0388490
760760 −522240. −0.0327972
761761 −2.97791e6 −0.186402 −0.0932008 0.995647i 0.529710π-0.529710\pi
−0.0932008 + 0.995647i 0.529710π0.529710\pi
762762 1.90958e6 0.119138
763763 0 0
764764 1.50295e7 0.931559
765765 −419904. −0.0259416
766766 −3.22973e6 −0.198881
767767 3.35395e6 0.205858
768768 −589824. −0.0360844
769769 2.02441e7 1.23447 0.617237 0.786777i 0.288252π-0.288252\pi
0.617237 + 0.786777i 0.288252π0.288252\pi
770770 0 0
771771 −9.04684e6 −0.548101
772772 5.41424e6 0.326960
773773 7.37953e6 0.444202 0.222101 0.975024i 0.428709π-0.428709\pi
0.222101 + 0.975024i 0.428709π0.428709\pi
774774 −4.99349e6 −0.299607
775775 −1.79654e7 −1.07444
776776 −1.19437e6 −0.0712006
777777 0 0
778778 3.56556e6 0.211193
779779 −2.19912e6 −0.129839
780780 −338688. −0.0199326
781781 −2.81437e6 −0.165103
782782 −896832. −0.0524438
783783 1.81521e6 0.105809
784784 0 0
785785 −9.08088e6 −0.525961
786786 2.49566e6 0.144089
787787 −1.36289e7 −0.784377 −0.392188 0.919885i 0.628282π-0.628282\pi
−0.392188 + 0.919885i 0.628282π0.628282\pi
788788 −3.80707e6 −0.218412
789789 −1.12771e7 −0.644918
790790 8.17037e6 0.465773
791791 0 0
792792 342144. 0.0193819
793793 3.49409e6 0.197311
794794 −4.49382e6 −0.252967
795795 7.01784e6 0.393809
796796 −3.27142e6 −0.183001
797797 1.49548e7 0.833938 0.416969 0.908921i 0.363092π-0.363092\pi
0.416969 + 0.908921i 0.363092π0.363092\pi
798798 0 0
799799 −4.45046e6 −0.246626
800800 −2.61018e6 −0.144193
801801 −2.82560e6 −0.155607
802802 6.88150e6 0.377787
803803 −2.22644e6 −0.121849
804804 −1.82592e6 −0.0996189
805805 0 0
806806 −2.76282e6 −0.149801
807807 −1.58462e7 −0.856527
808808 −9.79738e6 −0.527936
809809 2.87242e7 1.54304 0.771519 0.636206i 0.219497π-0.219497\pi
0.771519 + 0.636206i 0.219497π0.219497\pi
810810 −629856. −0.0337310
811811 1.52265e7 0.812922 0.406461 0.913668i 0.366763π-0.366763\pi
0.406461 + 0.913668i 0.366763π0.366763\pi
812812 0 0
813813 6.93475e6 0.367963
814814 −3.23083e6 −0.170904
815815 −2.51558e6 −0.132661
816816 −497664. −0.0261644
817817 −5.24008e6 −0.274652
818818 −308984. −0.0161455
819819 0 0
820820 2.48371e6 0.128993
821821 −3.31001e7 −1.71384 −0.856921 0.515447i 0.827626π-0.827626\pi
−0.856921 + 0.515447i 0.827626π0.827626\pi
822822 −4.67446e6 −0.241297
823823 −1.35915e7 −0.699470 −0.349735 0.936849i 0.613728π-0.613728\pi
−0.349735 + 0.936849i 0.613728π0.613728\pi
824824 −2.29530e6 −0.117766
825825 1.51411e6 0.0774500
826826 0 0
827827 3.13936e6 0.159616 0.0798082 0.996810i 0.474569π-0.474569\pi
0.0798082 + 0.996810i 0.474569π0.474569\pi
828828 −1.34525e6 −0.0681909
829829 −1.27081e7 −0.642234 −0.321117 0.947040i 0.604058π-0.604058\pi
−0.321117 + 0.947040i 0.604058π0.604058\pi
830830 −1.02493e7 −0.516417
831831 −6.36964e6 −0.319972
832832 −401408. −0.0201038
833833 0 0
834834 −3.75682e6 −0.187027
835835 −1.02473e7 −0.508621
836836 359040. 0.0177675
837837 −5.13799e6 −0.253501
838838 2.08246e7 1.02439
839839 2.98312e7 1.46307 0.731536 0.681803i 0.238804π-0.238804\pi
0.731536 + 0.681803i 0.238804π0.238804\pi
840840 0 0
841841 −1.43110e7 −0.697720
842842 6.87390e6 0.334136
843843 −2.07389e7 −1.00512
844844 −5.57958e6 −0.269616
845845 8.68054e6 0.418220
846846 −6.67570e6 −0.320679
847847 0 0
848848 8.31744e6 0.397192
849849 1.44813e7 0.689504
850850 −2.20234e6 −0.104553
851851 1.27030e7 0.601290
852852 6.14045e6 0.289802
853853 1.92215e7 0.904515 0.452257 0.891888i 0.350619π-0.350619\pi
0.452257 + 0.891888i 0.350619π0.350619\pi
854854 0 0
855855 −660960. −0.0309215
856856 −6.10906e6 −0.284964
857857 2.65655e7 1.23556 0.617782 0.786349i 0.288031π-0.288031\pi
0.617782 + 0.786349i 0.288031π0.288031\pi
858858 232848. 0.0107983
859859 9.16844e6 0.423948 0.211974 0.977275i 0.432011π-0.432011\pi
0.211974 + 0.977275i 0.432011π0.432011\pi
860860 5.91821e6 0.272863
861861 0 0
862862 −2.32250e6 −0.106460
863863 −2.92196e7 −1.33551 −0.667755 0.744381i 0.732745π-0.732745\pi
−0.667755 + 0.744381i 0.732745π0.732745\pi
864864 −746496. −0.0340207
865865 7.94563e6 0.361067
866866 −1.66035e7 −0.752324
867867 1.23588e7 0.558379
868868 0 0
869869 −5.61713e6 −0.252328
870870 −2.15136e6 −0.0963640
871871 −1.24264e6 −0.0555009
872872 1.35822e7 0.604894
873873 −1.51162e6 −0.0671286
874874 −1.41168e6 −0.0625112
875875 0 0
876876 4.85770e6 0.213880
877877 9.71286e6 0.426430 0.213215 0.977005i 0.431606π-0.431606\pi
0.213215 + 0.977005i 0.431606π0.431606\pi
878878 −1.55363e7 −0.680160
879879 4.65318e6 0.203132
880880 −405504. −0.0176518
881881 −1.65372e7 −0.717833 −0.358917 0.933370i 0.616854π-0.616854\pi
−0.358917 + 0.933370i 0.616854π0.616854\pi
882882 0 0
883883 −2.39487e7 −1.03367 −0.516833 0.856086i 0.672889π-0.672889\pi
−0.516833 + 0.856086i 0.672889π0.672889\pi
884884 −338688. −0.0145770
885885 −7.39238e6 −0.317268
886886 −9.25994e6 −0.396300
887887 4.62846e6 0.197527 0.0987637 0.995111i 0.468511π-0.468511\pi
0.0987637 + 0.995111i 0.468511π0.468511\pi
888888 7.04909e6 0.299986
889889 0 0
890890 3.34886e6 0.141717
891891 433026. 0.0182734
892892 −2.35209e7 −0.989787
893893 −7.00536e6 −0.293969
894894 −7.81898e6 −0.327195
895895 9.60466e6 0.400797
896896 0 0
897897 −915516. −0.0379914
898898 −7.69126e6 −0.318278
899899 −1.75495e7 −0.724212
900900 −3.30350e6 −0.135947
901901 7.01784e6 0.287999
902902 −1.70755e6 −0.0698808
903903 0 0
904904 3.97478e6 0.161768
905905 1.41144e7 0.572848
906906 −7.95600e6 −0.322014
907907 2.06126e7 0.831983 0.415991 0.909369i 0.363435π-0.363435\pi
0.415991 + 0.909369i 0.363435π0.363435\pi
908908 9.43296e6 0.379694
909909 −1.23998e7 −0.497743
910910 0 0
911911 −3.46749e6 −0.138427 −0.0692133 0.997602i 0.522049π-0.522049\pi
−0.0692133 + 0.997602i 0.522049π0.522049\pi
912912 −783360. −0.0311870
913913 7.04642e6 0.279764
914914 2.74486e7 1.08681
915915 −7.70126e6 −0.304095
916916 1.67255e7 0.658627
917917 0 0
918918 −629856. −0.0246680
919919 −3.61227e7 −1.41088 −0.705442 0.708767i 0.749252π-0.749252\pi
−0.705442 + 0.708767i 0.749252π0.749252\pi
920920 1.59437e6 0.0621039
921921 1.21502e7 0.471991
922922 −1.18867e7 −0.460504
923923 4.17892e6 0.161458
924924 0 0
925925 3.11947e7 1.19874
926926 1.94969e7 0.747203
927927 −2.90498e6 −0.111031
928928 −2.54976e6 −0.0971917
929929 −1.29366e7 −0.491792 −0.245896 0.969296i 0.579082π-0.579082\pi
−0.245896 + 0.969296i 0.579082π0.579082\pi
930930 6.08947e6 0.230873
931931 0 0
932932 1.04196e7 0.392925
933933 1.21084e7 0.455390
934934 3.26920e7 1.22624
935935 −342144. −0.0127991
936936 −508032. −0.0189540
937937 −5.01394e7 −1.86565 −0.932824 0.360332i 0.882664π-0.882664\pi
−0.932824 + 0.360332i 0.882664π0.882664\pi
938938 0 0
939939 2.30539e6 0.0853257
940940 7.91194e6 0.292054
941941 1.05568e7 0.388651 0.194325 0.980937i 0.437748π-0.437748\pi
0.194325 + 0.980937i 0.437748π0.437748\pi
942942 −1.36213e7 −0.500140
943943 6.71378e6 0.245860
944944 −8.76134e6 −0.319993
945945 0 0
946946 −4.06877e6 −0.147821
947947 −3.14684e6 −0.114025 −0.0570124 0.998373i 0.518157π-0.518157\pi
−0.0570124 + 0.998373i 0.518157π0.518157\pi
948948 1.22556e7 0.442906
949949 3.30593e6 0.119159
950950 −3.46664e6 −0.124623
951951 −1.66166e7 −0.595787
952952 0 0
953953 5.22829e7 1.86478 0.932389 0.361455i 0.117720π-0.117720\pi
0.932389 + 0.361455i 0.117720π0.117720\pi
954954 1.05268e7 0.374476
955955 −2.25442e7 −0.799883
956956 −8.21539e6 −0.290726
957957 1.47906e6 0.0522043
958958 −9.37589e6 −0.330064
959959 0 0
960960 884736. 0.0309839
961961 2.10452e7 0.735095
962962 4.79730e6 0.167132
963963 −7.73177e6 −0.268666
964964 1.11154e7 0.385242
965965 −8.12136e6 −0.280744
966966 0 0
967967 −2.48235e7 −0.853682 −0.426841 0.904327i 0.640374π-0.640374\pi
−0.426841 + 0.904327i 0.640374π0.640374\pi
968968 −1.00285e7 −0.343991
969969 −660960. −0.0226134
970970 1.79155e6 0.0611364
971971 −1.33077e7 −0.452956 −0.226478 0.974016i 0.572721π-0.572721\pi
−0.226478 + 0.974016i 0.572721π0.572721\pi
972972 −944784. −0.0320750
973973 0 0
974974 1.26771e6 0.0428177
975975 −2.24822e6 −0.0757403
976976 −9.12742e6 −0.306707
977977 8.17705e6 0.274069 0.137035 0.990566i 0.456243π-0.456243\pi
0.137035 + 0.990566i 0.456243π0.456243\pi
978978 −3.77338e6 −0.126149
979979 −2.30234e6 −0.0767739
980980 0 0
981981 1.71900e7 0.570299
982982 −2.08016e7 −0.688365
983983 1.32465e7 0.437238 0.218619 0.975810i 0.429845π-0.429845\pi
0.218619 + 0.975810i 0.429845π0.429845\pi
984984 3.72557e6 0.122661
985985 5.71061e6 0.187539
986986 −2.15136e6 −0.0704727
987987 0 0
988988 −533120. −0.0173753
989989 1.59977e7 0.520075
990990 −513216. −0.0166423
991991 −1.48550e7 −0.480494 −0.240247 0.970712i 0.577228π-0.577228\pi
−0.240247 + 0.970712i 0.577228π0.577228\pi
992992 7.21715e6 0.232856
993993 2.99914e7 0.965215
994994 0 0
995995 4.90714e6 0.157134
996996 −1.53740e7 −0.491065
997997 3.33769e6 0.106343 0.0531714 0.998585i 0.483067π-0.483067\pi
0.0531714 + 0.998585i 0.483067π0.483067\pi
998998 −1.94709e7 −0.618814
999999 8.92150e6 0.282829
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.i.1.1 1
3.2 odd 2 882.6.a.i.1.1 1
7.2 even 3 294.6.e.f.67.1 2
7.3 odd 6 294.6.e.b.79.1 2
7.4 even 3 294.6.e.f.79.1 2
7.5 odd 6 294.6.e.b.67.1 2
7.6 odd 2 42.6.a.f.1.1 1
21.20 even 2 126.6.a.b.1.1 1
28.27 even 2 336.6.a.g.1.1 1
35.13 even 4 1050.6.g.m.799.1 2
35.27 even 4 1050.6.g.m.799.2 2
35.34 odd 2 1050.6.a.a.1.1 1
84.83 odd 2 1008.6.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.f.1.1 1 7.6 odd 2
126.6.a.b.1.1 1 21.20 even 2
294.6.a.i.1.1 1 1.1 even 1 trivial
294.6.e.b.67.1 2 7.5 odd 6
294.6.e.b.79.1 2 7.3 odd 6
294.6.e.f.67.1 2 7.2 even 3
294.6.e.f.79.1 2 7.4 even 3
336.6.a.g.1.1 1 28.27 even 2
882.6.a.i.1.1 1 3.2 odd 2
1008.6.a.k.1.1 1 84.83 odd 2
1050.6.a.a.1.1 1 35.34 odd 2
1050.6.g.m.799.1 2 35.13 even 4
1050.6.g.m.799.2 2 35.27 even 4