Properties

Label 294.6.d.a.293.24
Level $294$
Weight $6$
Character 294.293
Analytic conductor $47.153$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(293,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.293");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 293.24
Character \(\chi\) \(=\) 294.293
Dual form 294.6.d.a.293.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +(5.41554 - 14.6175i) q^{3} -16.0000 q^{4} -83.1862 q^{5} +(58.4701 + 21.6621i) q^{6} -64.0000i q^{8} +(-184.344 - 158.323i) q^{9} -332.745i q^{10} -526.079i q^{11} +(-86.6486 + 233.880i) q^{12} -776.119i q^{13} +(-450.498 + 1215.98i) q^{15} +256.000 q^{16} -472.973 q^{17} +(633.294 - 737.376i) q^{18} +1980.47i q^{19} +1330.98 q^{20} +2104.32 q^{22} -1727.09i q^{23} +(-935.521 - 346.594i) q^{24} +3794.95 q^{25} +3104.48 q^{26} +(-3312.62 + 1837.25i) q^{27} -6041.29i q^{29} +(-4863.91 - 1801.99i) q^{30} +8665.87i q^{31} +1024.00i q^{32} +(-7689.97 - 2849.00i) q^{33} -1891.89i q^{34} +(2949.50 + 2533.17i) q^{36} -3015.34 q^{37} -7921.89 q^{38} +(-11344.9 - 4203.10i) q^{39} +5323.92i q^{40} -1633.44 q^{41} -1198.75 q^{43} +8417.26i q^{44} +(15334.9 + 13170.3i) q^{45} +6908.36 q^{46} -3875.14 q^{47} +(1386.38 - 3742.09i) q^{48} +15179.8i q^{50} +(-2561.40 + 6913.70i) q^{51} +12417.9i q^{52} -3743.72i q^{53} +(-7348.98 - 13250.5i) q^{54} +43762.5i q^{55} +(28949.6 + 10725.3i) q^{57} +24165.1 q^{58} -6485.22 q^{59} +(7207.97 - 19455.6i) q^{60} +44521.9i q^{61} -34663.5 q^{62} -4096.00 q^{64} +64562.4i q^{65} +(11396.0 - 30759.9i) q^{66} +24367.1 q^{67} +7567.57 q^{68} +(-25245.8 - 9353.12i) q^{69} +83508.1i q^{71} +(-10132.7 + 11798.0i) q^{72} -12820.3i q^{73} -12061.4i q^{74} +(20551.7 - 55472.8i) q^{75} -31687.5i q^{76} +(16812.4 - 45379.8i) q^{78} +40332.5 q^{79} -21295.7 q^{80} +(8916.39 + 58371.9i) q^{81} -6533.78i q^{82} -72802.8 q^{83} +39344.9 q^{85} -4794.99i q^{86} +(-88308.6 - 32716.8i) q^{87} -33669.0 q^{88} +58556.7 q^{89} +(-52681.3 + 61339.5i) q^{90} +27633.4i q^{92} +(126674. + 46930.3i) q^{93} -15500.6i q^{94} -164748. i q^{95} +(14968.3 + 5545.51i) q^{96} -1016.75i q^{97} +(-83290.6 + 96979.4i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 448 q^{4} + 60 q^{9} - 516 q^{15} + 7168 q^{16} - 3264 q^{18} + 3312 q^{22} + 26416 q^{25} - 4896 q^{30} - 960 q^{36} - 10976 q^{37} - 43776 q^{39} - 40352 q^{43} + 23136 q^{46} + 69144 q^{51} + 57168 q^{57}+ \cdots + 153216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 5.41554 14.6175i 0.347407 0.937715i
\(4\) −16.0000 −0.500000
\(5\) −83.1862 −1.48808 −0.744040 0.668135i \(-0.767093\pi\)
−0.744040 + 0.668135i \(0.767093\pi\)
\(6\) 58.4701 + 21.6621i 0.663064 + 0.245654i
\(7\) 0 0
\(8\) 64.0000i 0.353553i
\(9\) −184.344 158.323i −0.758617 0.651537i
\(10\) 332.745i 1.05223i
\(11\) 526.079i 1.31090i −0.755239 0.655449i \(-0.772479\pi\)
0.755239 0.655449i \(-0.227521\pi\)
\(12\) −86.6486 + 233.880i −0.173703 + 0.468857i
\(13\) 776.119i 1.27371i −0.770984 0.636854i \(-0.780235\pi\)
0.770984 0.636854i \(-0.219765\pi\)
\(14\) 0 0
\(15\) −450.498 + 1215.98i −0.516969 + 1.39540i
\(16\) 256.000 0.250000
\(17\) −472.973 −0.396930 −0.198465 0.980108i \(-0.563596\pi\)
−0.198465 + 0.980108i \(0.563596\pi\)
\(18\) 633.294 737.376i 0.460706 0.536423i
\(19\) 1980.47i 1.25859i 0.777166 + 0.629295i \(0.216656\pi\)
−0.777166 + 0.629295i \(0.783344\pi\)
\(20\) 1330.98 0.744040
\(21\) 0 0
\(22\) 2104.32 0.926945
\(23\) 1727.09i 0.680762i −0.940288 0.340381i \(-0.889444\pi\)
0.940288 0.340381i \(-0.110556\pi\)
\(24\) −935.521 346.594i −0.331532 0.122827i
\(25\) 3794.95 1.21438
\(26\) 3104.48 0.900648
\(27\) −3312.62 + 1837.25i −0.874504 + 0.485018i
\(28\) 0 0
\(29\) 6041.29i 1.33393i −0.745087 0.666967i \(-0.767592\pi\)
0.745087 0.666967i \(-0.232408\pi\)
\(30\) −4863.91 1801.99i −0.986693 0.365553i
\(31\) 8665.87i 1.61960i 0.586706 + 0.809800i \(0.300425\pi\)
−0.586706 + 0.809800i \(0.699575\pi\)
\(32\) 1024.00i 0.176777i
\(33\) −7689.97 2849.00i −1.22925 0.455415i
\(34\) 1891.89i 0.280672i
\(35\) 0 0
\(36\) 2949.50 + 2533.17i 0.379309 + 0.325768i
\(37\) −3015.34 −0.362103 −0.181052 0.983474i \(-0.557950\pi\)
−0.181052 + 0.983474i \(0.557950\pi\)
\(38\) −7921.89 −0.889958
\(39\) −11344.9 4203.10i −1.19438 0.442495i
\(40\) 5323.92i 0.526116i
\(41\) −1633.44 −0.151756 −0.0758778 0.997117i \(-0.524176\pi\)
−0.0758778 + 0.997117i \(0.524176\pi\)
\(42\) 0 0
\(43\) −1198.75 −0.0988682 −0.0494341 0.998777i \(-0.515742\pi\)
−0.0494341 + 0.998777i \(0.515742\pi\)
\(44\) 8417.26i 0.655449i
\(45\) 15334.9 + 13170.3i 1.12888 + 0.969539i
\(46\) 6908.36 0.481371
\(47\) −3875.14 −0.255884 −0.127942 0.991782i \(-0.540837\pi\)
−0.127942 + 0.991782i \(0.540837\pi\)
\(48\) 1386.38 3742.09i 0.0868517 0.234429i
\(49\) 0 0
\(50\) 15179.8i 0.858700i
\(51\) −2561.40 + 6913.70i −0.137896 + 0.372207i
\(52\) 12417.9i 0.636854i
\(53\) 3743.72i 0.183068i −0.995802 0.0915342i \(-0.970823\pi\)
0.995802 0.0915342i \(-0.0291771\pi\)
\(54\) −7348.98 13250.5i −0.342960 0.618368i
\(55\) 43762.5i 1.95072i
\(56\) 0 0
\(57\) 28949.6 + 10725.3i 1.18020 + 0.437243i
\(58\) 24165.1 0.943234
\(59\) −6485.22 −0.242546 −0.121273 0.992619i \(-0.538698\pi\)
−0.121273 + 0.992619i \(0.538698\pi\)
\(60\) 7207.97 19455.6i 0.258485 0.697698i
\(61\) 44521.9i 1.53197i 0.642861 + 0.765983i \(0.277747\pi\)
−0.642861 + 0.765983i \(0.722253\pi\)
\(62\) −34663.5 −1.14523
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 64562.4i 1.89538i
\(66\) 11396.0 30759.9i 0.322027 0.869210i
\(67\) 24367.1 0.663158 0.331579 0.943427i \(-0.392419\pi\)
0.331579 + 0.943427i \(0.392419\pi\)
\(68\) 7567.57 0.198465
\(69\) −25245.8 9353.12i −0.638360 0.236501i
\(70\) 0 0
\(71\) 83508.1i 1.96600i 0.183614 + 0.982999i \(0.441221\pi\)
−0.183614 + 0.982999i \(0.558779\pi\)
\(72\) −10132.7 + 11798.0i −0.230353 + 0.268212i
\(73\) 12820.3i 0.281573i −0.990040 0.140786i \(-0.955037\pi\)
0.990040 0.140786i \(-0.0449630\pi\)
\(74\) 12061.4i 0.256046i
\(75\) 20551.7 55472.8i 0.421885 1.13875i
\(76\) 31687.5i 0.629295i
\(77\) 0 0
\(78\) 16812.4 45379.8i 0.312891 0.844551i
\(79\) 40332.5 0.727088 0.363544 0.931577i \(-0.381567\pi\)
0.363544 + 0.931577i \(0.381567\pi\)
\(80\) −21295.7 −0.372020
\(81\) 8916.39 + 58371.9i 0.151000 + 0.988534i
\(82\) 6533.78i 0.107307i
\(83\) −72802.8 −1.15999 −0.579993 0.814621i \(-0.696945\pi\)
−0.579993 + 0.814621i \(0.696945\pi\)
\(84\) 0 0
\(85\) 39344.9 0.590664
\(86\) 4794.99i 0.0699104i
\(87\) −88308.6 32716.8i −1.25085 0.463418i
\(88\) −33669.0 −0.463473
\(89\) 58556.7 0.783613 0.391806 0.920048i \(-0.371850\pi\)
0.391806 + 0.920048i \(0.371850\pi\)
\(90\) −52681.3 + 61339.5i −0.685568 + 0.798241i
\(91\) 0 0
\(92\) 27633.4i 0.340381i
\(93\) 126674. + 46930.3i 1.51872 + 0.562660i
\(94\) 15500.6i 0.180937i
\(95\) 164748.i 1.87288i
\(96\) 14968.3 + 5545.51i 0.165766 + 0.0614134i
\(97\) 1016.75i 0.0109720i −0.999985 0.00548598i \(-0.998254\pi\)
0.999985 0.00548598i \(-0.00174625\pi\)
\(98\) 0 0
\(99\) −83290.6 + 96979.4i −0.854099 + 0.994470i
\(100\) −60719.2 −0.607192
\(101\) 77898.7 0.759848 0.379924 0.925018i \(-0.375950\pi\)
0.379924 + 0.925018i \(0.375950\pi\)
\(102\) −27654.8 10245.6i −0.263190 0.0975074i
\(103\) 31799.4i 0.295343i −0.989036 0.147671i \(-0.952822\pi\)
0.989036 0.147671i \(-0.0471778\pi\)
\(104\) −49671.6 −0.450324
\(105\) 0 0
\(106\) 14974.9 0.129449
\(107\) 18955.7i 0.160059i −0.996792 0.0800295i \(-0.974499\pi\)
0.996792 0.0800295i \(-0.0255014\pi\)
\(108\) 53001.9 29395.9i 0.437252 0.242509i
\(109\) −147182. −1.18655 −0.593277 0.804999i \(-0.702166\pi\)
−0.593277 + 0.804999i \(0.702166\pi\)
\(110\) −175050. −1.37937
\(111\) −16329.7 + 44076.9i −0.125797 + 0.339550i
\(112\) 0 0
\(113\) 156121.i 1.15018i 0.818090 + 0.575091i \(0.195033\pi\)
−0.818090 + 0.575091i \(0.804967\pi\)
\(114\) −42901.2 + 115798.i −0.309177 + 0.834527i
\(115\) 143670.i 1.01303i
\(116\) 96660.6i 0.666967i
\(117\) −122878. + 143073.i −0.829868 + 0.966257i
\(118\) 25940.9i 0.171506i
\(119\) 0 0
\(120\) 77822.5 + 28831.9i 0.493347 + 0.182776i
\(121\) −115708. −0.718455
\(122\) −178088. −1.08326
\(123\) −8845.98 + 23876.9i −0.0527209 + 0.142303i
\(124\) 138654.i 0.809800i
\(125\) −55730.8 −0.319022
\(126\) 0 0
\(127\) −93493.1 −0.514364 −0.257182 0.966363i \(-0.582794\pi\)
−0.257182 + 0.966363i \(0.582794\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −6491.86 + 17522.7i −0.0343475 + 0.0927102i
\(130\) −258250. −1.34024
\(131\) −82703.6 −0.421062 −0.210531 0.977587i \(-0.567519\pi\)
−0.210531 + 0.977587i \(0.567519\pi\)
\(132\) 123039. + 45584.0i 0.614624 + 0.227707i
\(133\) 0 0
\(134\) 97468.4i 0.468924i
\(135\) 275564. 152834.i 1.30133 0.721746i
\(136\) 30270.3i 0.140336i
\(137\) 77760.4i 0.353962i −0.984214 0.176981i \(-0.943367\pi\)
0.984214 0.176981i \(-0.0566331\pi\)
\(138\) 37412.5 100983.i 0.167232 0.451389i
\(139\) 37846.0i 0.166143i 0.996544 + 0.0830717i \(0.0264731\pi\)
−0.996544 + 0.0830717i \(0.973527\pi\)
\(140\) 0 0
\(141\) −20986.0 + 56645.0i −0.0888959 + 0.239946i
\(142\) −334032. −1.39017
\(143\) −408300. −1.66970
\(144\) −47192.1 40530.8i −0.189654 0.162884i
\(145\) 502552.i 1.98500i
\(146\) 51281.1 0.199102
\(147\) 0 0
\(148\) 48245.5 0.181052
\(149\) 31228.4i 0.115235i −0.998339 0.0576174i \(-0.981650\pi\)
0.998339 0.0576174i \(-0.0183504\pi\)
\(150\) 221891. + 82206.8i 0.805215 + 0.298318i
\(151\) 356146. 1.27112 0.635559 0.772053i \(-0.280770\pi\)
0.635559 + 0.772053i \(0.280770\pi\)
\(152\) 126750. 0.444979
\(153\) 87189.8 + 74882.7i 0.301118 + 0.258615i
\(154\) 0 0
\(155\) 720881.i 2.41010i
\(156\) 181519. + 67249.6i 0.597188 + 0.221247i
\(157\) 316965.i 1.02627i −0.858307 0.513136i \(-0.828484\pi\)
0.858307 0.513136i \(-0.171516\pi\)
\(158\) 161330.i 0.514129i
\(159\) −54723.9 20274.2i −0.171666 0.0635992i
\(160\) 85182.7i 0.263058i
\(161\) 0 0
\(162\) −233488. + 35665.6i −0.698999 + 0.106773i
\(163\) 164384. 0.484608 0.242304 0.970200i \(-0.422097\pi\)
0.242304 + 0.970200i \(0.422097\pi\)
\(164\) 26135.1 0.0758778
\(165\) 639700. + 236997.i 1.82922 + 0.677694i
\(166\) 291211.i 0.820234i
\(167\) −628234. −1.74313 −0.871565 0.490279i \(-0.836895\pi\)
−0.871565 + 0.490279i \(0.836895\pi\)
\(168\) 0 0
\(169\) −231068. −0.622334
\(170\) 157379.i 0.417663i
\(171\) 313555. 365088.i 0.820018 0.954788i
\(172\) 19180.0 0.0494341
\(173\) 610184. 1.55005 0.775024 0.631931i \(-0.217738\pi\)
0.775024 + 0.631931i \(0.217738\pi\)
\(174\) 130867. 353235.i 0.327686 0.884484i
\(175\) 0 0
\(176\) 134676.i 0.327725i
\(177\) −35120.9 + 94797.8i −0.0842622 + 0.227439i
\(178\) 234227.i 0.554098i
\(179\) 765685.i 1.78615i −0.449909 0.893075i \(-0.648543\pi\)
0.449909 0.893075i \(-0.351457\pi\)
\(180\) −245358. 210725.i −0.564442 0.484770i
\(181\) 490433.i 1.11271i −0.830944 0.556356i \(-0.812199\pi\)
0.830944 0.556356i \(-0.187801\pi\)
\(182\) 0 0
\(183\) 650800. + 241110.i 1.43655 + 0.532215i
\(184\) −110534. −0.240686
\(185\) 250835. 0.538839
\(186\) −187721. + 506694.i −0.397861 + 1.07390i
\(187\) 248821.i 0.520335i
\(188\) 62002.3 0.127942
\(189\) 0 0
\(190\) 658992. 1.32433
\(191\) 340955.i 0.676260i −0.941099 0.338130i \(-0.890206\pi\)
0.941099 0.338130i \(-0.109794\pi\)
\(192\) −22182.0 + 59873.4i −0.0434258 + 0.117214i
\(193\) 217094. 0.419521 0.209761 0.977753i \(-0.432732\pi\)
0.209761 + 0.977753i \(0.432732\pi\)
\(194\) 4067.00 0.00775835
\(195\) 943743. + 349640.i 1.77733 + 0.658468i
\(196\) 0 0
\(197\) 7576.18i 0.0139086i −0.999976 0.00695432i \(-0.997786\pi\)
0.999976 0.00695432i \(-0.00221365\pi\)
\(198\) −387918. 333162.i −0.703197 0.603939i
\(199\) 732881.i 1.31190i 0.754804 + 0.655950i \(0.227732\pi\)
−0.754804 + 0.655950i \(0.772268\pi\)
\(200\) 242877.i 0.429350i
\(201\) 131961. 356187.i 0.230386 0.621853i
\(202\) 311595.i 0.537294i
\(203\) 0 0
\(204\) 40982.4 110619.i 0.0689481 0.186104i
\(205\) 135880. 0.225825
\(206\) 127198. 0.208839
\(207\) −273439. + 318379.i −0.443541 + 0.516438i
\(208\) 198687.i 0.318427i
\(209\) 1.04188e6 1.64988
\(210\) 0 0
\(211\) −438196. −0.677583 −0.338791 0.940862i \(-0.610018\pi\)
−0.338791 + 0.940862i \(0.610018\pi\)
\(212\) 59899.5i 0.0915342i
\(213\) 1.22068e6 + 452241.i 1.84354 + 0.683001i
\(214\) 75822.7 0.113179
\(215\) 99719.4 0.147124
\(216\) 117584. + 212008.i 0.171480 + 0.309184i
\(217\) 0 0
\(218\) 588726.i 0.839020i
\(219\) −187401. 69428.7i −0.264035 0.0978202i
\(220\) 700200.i 0.975361i
\(221\) 367084.i 0.505574i
\(222\) −176307. 65318.8i −0.240098 0.0889520i
\(223\) 650877.i 0.876470i 0.898860 + 0.438235i \(0.144396\pi\)
−0.898860 + 0.438235i \(0.855604\pi\)
\(224\) 0 0
\(225\) −699576. 600830.i −0.921253 0.791216i
\(226\) −624486. −0.813301
\(227\) −466588. −0.600993 −0.300496 0.953783i \(-0.597152\pi\)
−0.300496 + 0.953783i \(0.597152\pi\)
\(228\) −463193. 171605.i −0.590099 0.218621i
\(229\) 309518.i 0.390029i 0.980800 + 0.195015i \(0.0624754\pi\)
−0.980800 + 0.195015i \(0.937525\pi\)
\(230\) −574680. −0.716320
\(231\) 0 0
\(232\) −386642. −0.471617
\(233\) 1.26277e6i 1.52383i −0.647678 0.761914i \(-0.724260\pi\)
0.647678 0.761914i \(-0.275740\pi\)
\(234\) −572292. 491511.i −0.683247 0.586805i
\(235\) 322359. 0.380776
\(236\) 103763. 0.121273
\(237\) 218422. 589561.i 0.252595 0.681801i
\(238\) 0 0
\(239\) 110206.i 0.124799i −0.998051 0.0623997i \(-0.980125\pi\)
0.998051 0.0623997i \(-0.0198753\pi\)
\(240\) −115327. + 311290.i −0.129242 + 0.348849i
\(241\) 1.06110e6i 1.17682i 0.808561 + 0.588412i \(0.200247\pi\)
−0.808561 + 0.588412i \(0.799753\pi\)
\(242\) 462832.i 0.508024i
\(243\) 901540. + 185780.i 0.979421 + 0.201829i
\(244\) 712350.i 0.765983i
\(245\) 0 0
\(246\) −95507.7 35383.9i −0.100624 0.0372793i
\(247\) 1.53708e6 1.60308
\(248\) 554616. 0.572615
\(249\) −394266. + 1.06420e6i −0.402987 + 1.08774i
\(250\) 222923.i 0.225582i
\(251\) 982577. 0.984424 0.492212 0.870475i \(-0.336188\pi\)
0.492212 + 0.870475i \(0.336188\pi\)
\(252\) 0 0
\(253\) −908585. −0.892410
\(254\) 373973.i 0.363710i
\(255\) 213074. 575125.i 0.205201 0.553875i
\(256\) 65536.0 0.0625000
\(257\) 214464. 0.202545 0.101272 0.994859i \(-0.467709\pi\)
0.101272 + 0.994859i \(0.467709\pi\)
\(258\) −70090.9 25967.4i −0.0655560 0.0242873i
\(259\) 0 0
\(260\) 1.03300e6i 0.947691i
\(261\) −956477. + 1.11367e6i −0.869107 + 1.01195i
\(262\) 330814.i 0.297736i
\(263\) 941831.i 0.839622i 0.907612 + 0.419811i \(0.137904\pi\)
−0.907612 + 0.419811i \(0.862096\pi\)
\(264\) −182336. + 492158.i −0.161014 + 0.434605i
\(265\) 311426.i 0.272421i
\(266\) 0 0
\(267\) 317116. 855954.i 0.272232 0.734805i
\(268\) −389874. −0.331579
\(269\) −1.85642e6 −1.56421 −0.782104 0.623148i \(-0.785854\pi\)
−0.782104 + 0.623148i \(0.785854\pi\)
\(270\) 611334. + 1.10226e6i 0.510352 + 0.920181i
\(271\) 341161.i 0.282187i 0.989996 + 0.141093i \(0.0450618\pi\)
−0.989996 + 0.141093i \(0.954938\pi\)
\(272\) −121081. −0.0992326
\(273\) 0 0
\(274\) 311041. 0.250289
\(275\) 1.99644e6i 1.59193i
\(276\) 403932. + 149650.i 0.319180 + 0.118251i
\(277\) 594651. 0.465653 0.232827 0.972518i \(-0.425203\pi\)
0.232827 + 0.972518i \(0.425203\pi\)
\(278\) −151384. −0.117481
\(279\) 1.37201e6 1.59750e6i 1.05523 1.22866i
\(280\) 0 0
\(281\) 1.03881e6i 0.784819i 0.919791 + 0.392409i \(0.128358\pi\)
−0.919791 + 0.392409i \(0.871642\pi\)
\(282\) −226580. 83943.9i −0.169668 0.0628589i
\(283\) 2.51887e6i 1.86956i −0.355221 0.934782i \(-0.615594\pi\)
0.355221 0.934782i \(-0.384406\pi\)
\(284\) 1.33613e6i 0.982999i
\(285\) −2.40821e6 892198.i −1.75623 0.650653i
\(286\) 1.63320e6i 1.18066i
\(287\) 0 0
\(288\) 162123. 188768.i 0.115177 0.134106i
\(289\) −1.19615e6 −0.842446
\(290\) −2.01021e6 −1.40361
\(291\) −14862.4 5506.24i −0.0102886 0.00381174i
\(292\) 205124.i 0.140786i
\(293\) −2.51299e6 −1.71010 −0.855049 0.518547i \(-0.826473\pi\)
−0.855049 + 0.518547i \(0.826473\pi\)
\(294\) 0 0
\(295\) 539481. 0.360928
\(296\) 192982.i 0.128023i
\(297\) 966536. + 1.74270e6i 0.635809 + 1.14639i
\(298\) 124914. 0.0814833
\(299\) −1.34043e6 −0.867092
\(300\) −328827. + 887565.i −0.210943 + 0.569373i
\(301\) 0 0
\(302\) 1.42458e6i 0.898815i
\(303\) 421863. 1.13869e6i 0.263976 0.712521i
\(304\) 507001.i 0.314648i
\(305\) 3.70361e6i 2.27969i
\(306\) −299531. + 348759.i −0.182868 + 0.212923i
\(307\) 791101.i 0.479055i 0.970890 + 0.239528i \(0.0769926\pi\)
−0.970890 + 0.239528i \(0.923007\pi\)
\(308\) 0 0
\(309\) −464829. 172211.i −0.276947 0.102604i
\(310\) 2.88352e6 1.70420
\(311\) −167301. −0.0980841 −0.0490420 0.998797i \(-0.515617\pi\)
−0.0490420 + 0.998797i \(0.515617\pi\)
\(312\) −268998. + 726076.i −0.156446 + 0.422275i
\(313\) 1.26815e6i 0.731660i 0.930682 + 0.365830i \(0.119215\pi\)
−0.930682 + 0.365830i \(0.880785\pi\)
\(314\) 1.26786e6 0.725684
\(315\) 0 0
\(316\) −645319. −0.363544
\(317\) 3.00176e6i 1.67775i 0.544324 + 0.838875i \(0.316786\pi\)
−0.544324 + 0.838875i \(0.683214\pi\)
\(318\) 81096.9 218895.i 0.0449714 0.121386i
\(319\) −3.17819e6 −1.74865
\(320\) 340731. 0.186010
\(321\) −277085. 102655.i −0.150090 0.0556056i
\(322\) 0 0
\(323\) 936710.i 0.499573i
\(324\) −142662. 933951.i −0.0754999 0.494267i
\(325\) 2.94533e6i 1.54677i
\(326\) 657536.i 0.342670i
\(327\) −797067. + 2.15143e6i −0.412217 + 1.11265i
\(328\) 104540.i 0.0536537i
\(329\) 0 0
\(330\) −947990. + 2.55880e6i −0.479202 + 1.29345i
\(331\) −601993. −0.302010 −0.151005 0.988533i \(-0.548251\pi\)
−0.151005 + 0.988533i \(0.548251\pi\)
\(332\) 1.16484e6 0.579993
\(333\) 555860. + 477400.i 0.274698 + 0.235924i
\(334\) 2.51293e6i 1.23258i
\(335\) −2.02701e6 −0.986833
\(336\) 0 0
\(337\) −515158. −0.247096 −0.123548 0.992339i \(-0.539427\pi\)
−0.123548 + 0.992339i \(0.539427\pi\)
\(338\) 924272.i 0.440056i
\(339\) 2.28211e6 + 845481.i 1.07854 + 0.399581i
\(340\) −629518. −0.295332
\(341\) 4.55893e6 2.12313
\(342\) 1.46035e6 + 1.25422e6i 0.675137 + 0.579840i
\(343\) 0 0
\(344\) 76719.9i 0.0349552i
\(345\) 2.10010e6 + 778051.i 0.949932 + 0.351933i
\(346\) 2.44073e6i 1.09605i
\(347\) 2.23327e6i 0.995676i 0.867270 + 0.497838i \(0.165873\pi\)
−0.867270 + 0.497838i \(0.834127\pi\)
\(348\) 1.41294e6 + 523469.i 0.625425 + 0.231709i
\(349\) 2.51946e6i 1.10725i 0.832767 + 0.553623i \(0.186755\pi\)
−0.832767 + 0.553623i \(0.813245\pi\)
\(350\) 0 0
\(351\) 1.42592e6 + 2.57099e6i 0.617772 + 1.11386i
\(352\) 538705. 0.231736
\(353\) −1.77705e6 −0.759036 −0.379518 0.925184i \(-0.623910\pi\)
−0.379518 + 0.925184i \(0.623910\pi\)
\(354\) −379191. 140484.i −0.160824 0.0595824i
\(355\) 6.94673e6i 2.92556i
\(356\) −936907. −0.391806
\(357\) 0 0
\(358\) 3.06274e6 1.26300
\(359\) 4.53390e6i 1.85667i 0.371740 + 0.928337i \(0.378761\pi\)
−0.371740 + 0.928337i \(0.621239\pi\)
\(360\) 842901. 981432.i 0.342784 0.399121i
\(361\) −1.44617e6 −0.584051
\(362\) 1.96173e6 0.786806
\(363\) −626620. + 1.69136e6i −0.249596 + 0.673706i
\(364\) 0 0
\(365\) 1.06647e6i 0.419003i
\(366\) −964440. + 2.60320e6i −0.376333 + 1.01579i
\(367\) 1.36586e6i 0.529348i 0.964338 + 0.264674i \(0.0852643\pi\)
−0.964338 + 0.264674i \(0.914736\pi\)
\(368\) 442135.i 0.170191i
\(369\) 301116. + 258613.i 0.115124 + 0.0988744i
\(370\) 1.00334e6i 0.381017i
\(371\) 0 0
\(372\) −2.02678e6 750885.i −0.759361 0.281330i
\(373\) −2.88262e6 −1.07279 −0.536395 0.843967i \(-0.680214\pi\)
−0.536395 + 0.843967i \(0.680214\pi\)
\(374\) −995285. −0.367933
\(375\) −301812. + 814646.i −0.110830 + 0.299151i
\(376\) 248009.i 0.0904687i
\(377\) −4.68876e6 −1.69904
\(378\) 0 0
\(379\) 1.79197e6 0.640815 0.320408 0.947280i \(-0.396180\pi\)
0.320408 + 0.947280i \(0.396180\pi\)
\(380\) 2.63597e6i 0.936442i
\(381\) −506315. + 1.36664e6i −0.178693 + 0.482326i
\(382\) 1.36382e6 0.478188
\(383\) −1.62871e6 −0.567344 −0.283672 0.958921i \(-0.591553\pi\)
−0.283672 + 0.958921i \(0.591553\pi\)
\(384\) −239493. 88728.1i −0.0828830 0.0307067i
\(385\) 0 0
\(386\) 868375.i 0.296646i
\(387\) 220982. + 189790.i 0.0750031 + 0.0644163i
\(388\) 16268.0i 0.00548598i
\(389\) 4.77204e6i 1.59893i −0.600711 0.799466i \(-0.705116\pi\)
0.600711 0.799466i \(-0.294884\pi\)
\(390\) −1.39856e6 + 3.77497e6i −0.465607 + 1.25676i
\(391\) 816867.i 0.270215i
\(392\) 0 0
\(393\) −447884. + 1.20892e6i −0.146280 + 0.394836i
\(394\) 30304.7 0.00983490
\(395\) −3.35511e6 −1.08197
\(396\) 1.33265e6 1.55167e6i 0.427049 0.497235i
\(397\) 100650.i 0.0320507i 0.999872 + 0.0160254i \(0.00510125\pi\)
−0.999872 + 0.0160254i \(0.994899\pi\)
\(398\) −2.93152e6 −0.927653
\(399\) 0 0
\(400\) 971508. 0.303596
\(401\) 5.54688e6i 1.72261i −0.508085 0.861307i \(-0.669646\pi\)
0.508085 0.861307i \(-0.330354\pi\)
\(402\) 1.42475e6 + 527844.i 0.439716 + 0.162907i
\(403\) 6.72575e6 2.06290
\(404\) −1.24638e6 −0.379924
\(405\) −741721. 4.85574e6i −0.224700 1.47102i
\(406\) 0 0
\(407\) 1.58631e6i 0.474681i
\(408\) 442477. + 163930.i 0.131595 + 0.0487537i
\(409\) 727134.i 0.214935i −0.994209 0.107467i \(-0.965726\pi\)
0.994209 0.107467i \(-0.0342741\pi\)
\(410\) 543520.i 0.159682i
\(411\) −1.13666e6 421114.i −0.331915 0.122969i
\(412\) 508791.i 0.147671i
\(413\) 0 0
\(414\) −1.27351e6 1.09376e6i −0.365177 0.313631i
\(415\) 6.05619e6 1.72615
\(416\) 794746. 0.225162
\(417\) 553215. + 204957.i 0.155795 + 0.0577194i
\(418\) 4.16754e6i 1.16664i
\(419\) 1.32060e6 0.367482 0.183741 0.982975i \(-0.441179\pi\)
0.183741 + 0.982975i \(0.441179\pi\)
\(420\) 0 0
\(421\) 5.02517e6 1.38180 0.690901 0.722950i \(-0.257214\pi\)
0.690901 + 0.722950i \(0.257214\pi\)
\(422\) 1.75278e6i 0.479123i
\(423\) 714359. + 613526.i 0.194118 + 0.166718i
\(424\) −239598. −0.0647245
\(425\) −1.79491e6 −0.482026
\(426\) −1.80896e6 + 4.88273e6i −0.482954 + 1.30358i
\(427\) 0 0
\(428\) 303291.i 0.0800295i
\(429\) −2.21116e6 + 5.96833e6i −0.580066 + 1.56570i
\(430\) 398877.i 0.104032i
\(431\) 1.85803e6i 0.481791i −0.970551 0.240895i \(-0.922559\pi\)
0.970551 0.240895i \(-0.0774411\pi\)
\(432\) −848030. + 470335.i −0.218626 + 0.121255i
\(433\) 5.52697e6i 1.41667i −0.705878 0.708333i \(-0.749447\pi\)
0.705878 0.708333i \(-0.250553\pi\)
\(434\) 0 0
\(435\) 7.34606e6 + 2.72159e6i 1.86137 + 0.689603i
\(436\) 2.35491e6 0.593277
\(437\) 3.42045e6 0.856801
\(438\) 277715. 749603.i 0.0691693 0.186701i
\(439\) 5.70609e6i 1.41312i 0.707656 + 0.706558i \(0.249753\pi\)
−0.707656 + 0.706558i \(0.750247\pi\)
\(440\) 2.80080e6 0.689685
\(441\) 0 0
\(442\) −1.46833e6 −0.357494
\(443\) 5.13258e6i 1.24259i 0.783578 + 0.621293i \(0.213392\pi\)
−0.783578 + 0.621293i \(0.786608\pi\)
\(444\) 261275. 705230.i 0.0628986 0.169775i
\(445\) −4.87111e6 −1.16608
\(446\) −2.60351e6 −0.619758
\(447\) −456482. 169118.i −0.108057 0.0400334i
\(448\) 0 0
\(449\) 1.56362e6i 0.366030i −0.983110 0.183015i \(-0.941414\pi\)
0.983110 0.183015i \(-0.0585856\pi\)
\(450\) 2.40332e6 2.79831e6i 0.559474 0.651424i
\(451\) 859321.i 0.198936i
\(452\) 2.49794e6i 0.575091i
\(453\) 1.92872e6 5.20597e6i 0.441595 1.19194i
\(454\) 1.86635e6i 0.424966i
\(455\) 0 0
\(456\) 686420. 1.85277e6i 0.154589 0.417263i
\(457\) −6.30043e6 −1.41117 −0.705585 0.708625i \(-0.749316\pi\)
−0.705585 + 0.708625i \(0.749316\pi\)
\(458\) −1.23807e6 −0.275792
\(459\) 1.56678e6 868968.i 0.347117 0.192518i
\(460\) 2.29872e6i 0.506514i
\(461\) −162855. −0.0356901 −0.0178450 0.999841i \(-0.505681\pi\)
−0.0178450 + 0.999841i \(0.505681\pi\)
\(462\) 0 0
\(463\) −8.40996e6 −1.82323 −0.911615 0.411044i \(-0.865164\pi\)
−0.911615 + 0.411044i \(0.865164\pi\)
\(464\) 1.54657e6i 0.333484i
\(465\) −1.05375e7 3.90396e6i −2.25998 0.837284i
\(466\) 5.05110e6 1.07751
\(467\) −6.46157e6 −1.37103 −0.685513 0.728060i \(-0.740422\pi\)
−0.685513 + 0.728060i \(0.740422\pi\)
\(468\) 1.96605e6 2.28917e6i 0.414934 0.483129i
\(469\) 0 0
\(470\) 1.28943e6i 0.269249i
\(471\) −4.63325e6 1.71654e6i −0.962351 0.356534i
\(472\) 415054.i 0.0857530i
\(473\) 630636.i 0.129606i
\(474\) 2.35824e6 + 873688.i 0.482106 + 0.178612i
\(475\) 7.51579e6i 1.52841i
\(476\) 0 0
\(477\) −592718. + 690132.i −0.119276 + 0.138879i
\(478\) 440826. 0.0882464
\(479\) 5.31621e6 1.05868 0.529338 0.848411i \(-0.322440\pi\)
0.529338 + 0.848411i \(0.322440\pi\)
\(480\) −1.24516e6 461310.i −0.246673 0.0913881i
\(481\) 2.34027e6i 0.461214i
\(482\) −4.24438e6 −0.832141
\(483\) 0 0
\(484\) 1.85133e6 0.359227
\(485\) 84579.5i 0.0163272i
\(486\) −743119. + 3.60616e6i −0.142714 + 0.692555i
\(487\) −7.62773e6 −1.45738 −0.728690 0.684844i \(-0.759870\pi\)
−0.728690 + 0.684844i \(0.759870\pi\)
\(488\) 2.84940e6 0.541632
\(489\) 890228. 2.40289e6i 0.168356 0.454424i
\(490\) 0 0
\(491\) 2.32379e6i 0.435003i −0.976060 0.217502i \(-0.930209\pi\)
0.976060 0.217502i \(-0.0697908\pi\)
\(492\) 141536. 382031.i 0.0263605 0.0711517i
\(493\) 2.85737e6i 0.529479i
\(494\) 6.14833e6i 1.13355i
\(495\) 6.92863e6 8.06736e6i 1.27097 1.47985i
\(496\) 2.21846e6i 0.404900i
\(497\) 0 0
\(498\) −4.25679e6 1.57706e6i −0.769146 0.284955i
\(499\) −4.99775e6 −0.898510 −0.449255 0.893404i \(-0.648311\pi\)
−0.449255 + 0.893404i \(0.648311\pi\)
\(500\) 891692. 0.159511
\(501\) −3.40222e6 + 9.18322e6i −0.605575 + 1.63456i
\(502\) 3.93031e6i 0.696093i
\(503\) 3.01055e6 0.530549 0.265275 0.964173i \(-0.414537\pi\)
0.265275 + 0.964173i \(0.414537\pi\)
\(504\) 0 0
\(505\) −6.48010e6 −1.13072
\(506\) 3.63434e6i 0.631029i
\(507\) −1.25136e6 + 3.37764e6i −0.216203 + 0.583571i
\(508\) 1.49589e6 0.257182
\(509\) −899302. −0.153855 −0.0769274 0.997037i \(-0.524511\pi\)
−0.0769274 + 0.997037i \(0.524511\pi\)
\(510\) 2.30050e6 + 852294.i 0.391648 + 0.145099i
\(511\) 0 0
\(512\) 262144.i 0.0441942i
\(513\) −3.63861e6 6.56054e6i −0.610439 1.10064i
\(514\) 857854.i 0.143221i
\(515\) 2.64528e6i 0.439494i
\(516\) 103870. 280364.i 0.0171737 0.0463551i
\(517\) 2.03863e6i 0.335438i
\(518\) 0 0
\(519\) 3.30447e6 8.91937e6i 0.538497 1.45350i
\(520\) 4.13200e6 0.670118
\(521\) −718724. −0.116003 −0.0580013 0.998317i \(-0.518473\pi\)
−0.0580013 + 0.998317i \(0.518473\pi\)
\(522\) −4.45470e6 3.82591e6i −0.715553 0.614552i
\(523\) 5.78946e6i 0.925516i 0.886485 + 0.462758i \(0.153140\pi\)
−0.886485 + 0.462758i \(0.846860\pi\)
\(524\) 1.32326e6 0.210531
\(525\) 0 0
\(526\) −3.76733e6 −0.593702
\(527\) 4.09872e6i 0.642868i
\(528\) −1.96863e6 729344.i −0.307312 0.113854i
\(529\) 3.45350e6 0.536563
\(530\) −1.24570e6 −0.192630
\(531\) 1.19551e6 + 1.02676e6i 0.184000 + 0.158028i
\(532\) 0 0
\(533\) 1.26775e6i 0.193292i
\(534\) 3.42381e6 + 1.26846e6i 0.519586 + 0.192497i
\(535\) 1.57685e6i 0.238181i
\(536\) 1.55950e6i 0.234462i
\(537\) −1.11924e7 4.14660e6i −1.67490 0.620520i
\(538\) 7.42566e6i 1.10606i
\(539\) 0 0
\(540\) −4.40903e6 + 2.44534e6i −0.650666 + 0.360873i
\(541\) 6.53723e6 0.960285 0.480143 0.877190i \(-0.340585\pi\)
0.480143 + 0.877190i \(0.340585\pi\)
\(542\) −1.36465e6 −0.199536
\(543\) −7.16891e6 2.65595e6i −1.04341 0.386564i
\(544\) 484325.i 0.0701680i
\(545\) 1.22435e7 1.76569
\(546\) 0 0
\(547\) 3.31420e6 0.473598 0.236799 0.971559i \(-0.423902\pi\)
0.236799 + 0.971559i \(0.423902\pi\)
\(548\) 1.24417e6i 0.176981i
\(549\) 7.04886e6 8.20734e6i 0.998132 1.16218i
\(550\) 7.98577e6 1.12567
\(551\) 1.19646e7 1.67888
\(552\) −598599. + 1.61573e6i −0.0836158 + 0.225694i
\(553\) 0 0
\(554\) 2.37860e6i 0.329267i
\(555\) 1.35841e6 3.66659e6i 0.187196 0.505277i
\(556\) 605536.i 0.0830717i
\(557\) 7.79216e6i 1.06419i 0.846684 + 0.532096i \(0.178596\pi\)
−0.846684 + 0.532096i \(0.821404\pi\)
\(558\) 6.39000e6 + 5.48804e6i 0.868791 + 0.746160i
\(559\) 930371.i 0.125929i
\(560\) 0 0
\(561\) 3.63715e6 + 1.34750e6i 0.487926 + 0.180768i
\(562\) −4.15523e6 −0.554951
\(563\) 6.77326e6 0.900590 0.450295 0.892880i \(-0.351319\pi\)
0.450295 + 0.892880i \(0.351319\pi\)
\(564\) 335776. 906320.i 0.0444479 0.119973i
\(565\) 1.29872e7i 1.71156i
\(566\) 1.00755e7 1.32198
\(567\) 0 0
\(568\) 5.34452e6 0.695085
\(569\) 266649.i 0.0345271i −0.999851 0.0172635i \(-0.994505\pi\)
0.999851 0.0172635i \(-0.00549543\pi\)
\(570\) 3.56879e6 9.63283e6i 0.460081 1.24184i
\(571\) −1.20972e7 −1.55272 −0.776359 0.630290i \(-0.782936\pi\)
−0.776359 + 0.630290i \(0.782936\pi\)
\(572\) 6.53280e6 0.834851
\(573\) −4.98392e6 1.84645e6i −0.634138 0.234937i
\(574\) 0 0
\(575\) 6.55422e6i 0.826707i
\(576\) 755073. + 648493.i 0.0948271 + 0.0814421i
\(577\) 1.40252e7i 1.75375i −0.480715 0.876877i \(-0.659623\pi\)
0.480715 0.876877i \(-0.340377\pi\)
\(578\) 4.78461e6i 0.595700i
\(579\) 1.17568e6 3.17337e6i 0.145745 0.393391i
\(580\) 8.04083e6i 0.992501i
\(581\) 0 0
\(582\) 22025.0 59449.4i 0.00269530 0.00727512i
\(583\) −1.96949e6 −0.239984
\(584\) −820498. −0.0995509
\(585\) 1.02217e7 1.19017e7i 1.23491 1.43787i
\(586\) 1.00519e7i 1.20922i
\(587\) −689161. −0.0825516 −0.0412758 0.999148i \(-0.513142\pi\)
−0.0412758 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) −1.71625e7 −2.03841
\(590\) 2.15792e6i 0.255215i
\(591\) −110745. 41029.1i −0.0130423 0.00483196i
\(592\) −771928. −0.0905258
\(593\) −1.10854e7 −1.29453 −0.647267 0.762263i \(-0.724088\pi\)
−0.647267 + 0.762263i \(0.724088\pi\)
\(594\) −6.97079e6 + 3.86614e6i −0.810617 + 0.449585i
\(595\) 0 0
\(596\) 499654.i 0.0576174i
\(597\) 1.07129e7 + 3.96894e6i 1.23019 + 0.455763i
\(598\) 5.36171e6i 0.613127i
\(599\) 1.28348e7i 1.46158i 0.682603 + 0.730789i \(0.260848\pi\)
−0.682603 + 0.730789i \(0.739152\pi\)
\(600\) −3.55026e6 1.31531e6i −0.402608 0.149159i
\(601\) 1.35097e7i 1.52566i −0.646597 0.762832i \(-0.723808\pi\)
0.646597 0.762832i \(-0.276192\pi\)
\(602\) 0 0
\(603\) −4.49193e6 3.85788e6i −0.503083 0.432072i
\(604\) −5.69833e6 −0.635559
\(605\) 9.62530e6 1.06912
\(606\) 4.55474e6 + 1.68745e6i 0.503828 + 0.186659i
\(607\) 9.69249e6i 1.06774i 0.845568 + 0.533868i \(0.179262\pi\)
−0.845568 + 0.533868i \(0.820738\pi\)
\(608\) −2.02800e6 −0.222490
\(609\) 0 0
\(610\) 1.48144e7 1.61198
\(611\) 3.00757e6i 0.325922i
\(612\) −1.39504e6 1.19812e6i −0.150559 0.129307i
\(613\) 7.70902e6 0.828606 0.414303 0.910139i \(-0.364025\pi\)
0.414303 + 0.910139i \(0.364025\pi\)
\(614\) −3.16440e6 −0.338743
\(615\) 735864. 1.98623e6i 0.0784530 0.211759i
\(616\) 0 0
\(617\) 9.52706e6i 1.00750i −0.863849 0.503751i \(-0.831953\pi\)
0.863849 0.503751i \(-0.168047\pi\)
\(618\) 688844. 1.85932e6i 0.0725520 0.195831i
\(619\) 8.20362e6i 0.860556i 0.902696 + 0.430278i \(0.141584\pi\)
−0.902696 + 0.430278i \(0.858416\pi\)
\(620\) 1.15341e7i 1.20505i
\(621\) 3.17309e6 + 5.72119e6i 0.330182 + 0.595329i
\(622\) 669205.i 0.0693559i
\(623\) 0 0
\(624\) −2.90430e6 1.07599e6i −0.298594 0.110624i
\(625\) −7.22319e6 −0.739655
\(626\) −5.07260e6 −0.517362
\(627\) 5.64236e6 1.52298e7i 0.573181 1.54712i
\(628\) 5.07145e6i 0.513136i
\(629\) 1.42618e6 0.143730
\(630\) 0 0
\(631\) 8.59744e6 0.859599 0.429799 0.902924i \(-0.358584\pi\)
0.429799 + 0.902924i \(0.358584\pi\)
\(632\) 2.58128e6i 0.257064i
\(633\) −2.37307e6 + 6.40534e6i −0.235397 + 0.635379i
\(634\) −1.20070e7 −1.18635
\(635\) 7.77734e6 0.765415
\(636\) 875582. + 324388.i 0.0858329 + 0.0317996i
\(637\) 0 0
\(638\) 1.27128e7i 1.23648i
\(639\) 1.32213e7 1.53942e7i 1.28092 1.49144i
\(640\) 1.36292e6i 0.131529i
\(641\) 1.64435e7i 1.58070i 0.612655 + 0.790350i \(0.290101\pi\)
−0.612655 + 0.790350i \(0.709899\pi\)
\(642\) 410621. 1.10834e6i 0.0393191 0.106129i
\(643\) 5.31877e6i 0.507322i 0.967293 + 0.253661i \(0.0816348\pi\)
−0.967293 + 0.253661i \(0.918365\pi\)
\(644\) 0 0
\(645\) 540034. 1.45765e6i 0.0511118 0.137960i
\(646\) 3.74684e6 0.353251
\(647\) −2.65889e6 −0.249712 −0.124856 0.992175i \(-0.539847\pi\)
−0.124856 + 0.992175i \(0.539847\pi\)
\(648\) 3.73580e6 570649.i 0.349499 0.0533865i
\(649\) 3.41173e6i 0.317953i
\(650\) 1.17813e7 1.09373
\(651\) 0 0
\(652\) −2.63014e6 −0.242304
\(653\) 1.18728e6i 0.108961i 0.998515 + 0.0544805i \(0.0173503\pi\)
−0.998515 + 0.0544805i \(0.982650\pi\)
\(654\) −8.60572e6 3.18827e6i −0.786761 0.291481i
\(655\) 6.87980e6 0.626575
\(656\) −418162. −0.0379389
\(657\) −2.02975e6 + 2.36334e6i −0.183455 + 0.213606i
\(658\) 0 0
\(659\) 373152.i 0.0334713i 0.999860 + 0.0167356i \(0.00532737\pi\)
−0.999860 + 0.0167356i \(0.994673\pi\)
\(660\) −1.02352e7 3.79196e6i −0.914611 0.338847i
\(661\) 6.12595e6i 0.545343i 0.962107 + 0.272671i \(0.0879072\pi\)
−0.962107 + 0.272671i \(0.912093\pi\)
\(662\) 2.40797e6i 0.213553i
\(663\) 5.36585e6 + 1.98795e6i 0.474084 + 0.175640i
\(664\) 4.65938e6i 0.410117i
\(665\) 0 0
\(666\) −1.90960e6 + 2.22344e6i −0.166823 + 0.194241i
\(667\) −1.04338e7 −0.908092
\(668\) 1.00517e7 0.871565
\(669\) 9.51422e6 + 3.52485e6i 0.821879 + 0.304492i
\(670\) 8.10803e6i 0.697796i
\(671\) 2.34220e7 2.00825
\(672\) 0 0
\(673\) −2.06386e7 −1.75647 −0.878237 0.478226i \(-0.841280\pi\)
−0.878237 + 0.478226i \(0.841280\pi\)
\(674\) 2.06063e6i 0.174723i
\(675\) −1.25712e7 + 6.97226e6i −1.06198 + 0.588998i
\(676\) 3.69709e6 0.311167
\(677\) 7.12298e6 0.597297 0.298648 0.954363i \(-0.403464\pi\)
0.298648 + 0.954363i \(0.403464\pi\)
\(678\) −3.38192e6 + 9.12843e6i −0.282546 + 0.762644i
\(679\) 0 0
\(680\) 2.51807e6i 0.208831i
\(681\) −2.52683e6 + 6.82037e6i −0.208789 + 0.563560i
\(682\) 1.82357e7i 1.50128i
\(683\) 738961.i 0.0606135i −0.999541 0.0303068i \(-0.990352\pi\)
0.999541 0.0303068i \(-0.00964842\pi\)
\(684\) −5.01688e6 + 5.84141e6i −0.410009 + 0.477394i
\(685\) 6.46859e6i 0.526724i
\(686\) 0 0
\(687\) 4.52438e6 + 1.67620e6i 0.365736 + 0.135499i
\(688\) −306880. −0.0247171
\(689\) −2.90557e6 −0.233176
\(690\) −3.11220e6 + 8.40040e6i −0.248854 + 0.671703i
\(691\) 8.68466e6i 0.691923i 0.938249 + 0.345961i \(0.112447\pi\)
−0.938249 + 0.345961i \(0.887553\pi\)
\(692\) −9.76294e6 −0.775024
\(693\) 0 0
\(694\) −8.93309e6 −0.704050
\(695\) 3.14827e6i 0.247235i
\(696\) −2.09388e6 + 5.65175e6i −0.163843 + 0.442242i
\(697\) 772576. 0.0602364
\(698\) −1.00778e7 −0.782941
\(699\) −1.84586e7 6.83860e6i −1.42892 0.529388i
\(700\) 0 0
\(701\) 2.53605e7i 1.94923i 0.223887 + 0.974615i \(0.428125\pi\)
−0.223887 + 0.974615i \(0.571875\pi\)
\(702\) −1.02839e7 + 5.70369e6i −0.787620 + 0.436831i
\(703\) 5.97180e6i 0.455740i
\(704\) 2.15482e6i 0.163862i
\(705\) 1.74575e6 4.71209e6i 0.132284 0.357059i
\(706\) 7.10819e6i 0.536720i
\(707\) 0 0
\(708\) 561935. 1.51676e6i 0.0421311 0.113720i
\(709\) −1.90928e7 −1.42644 −0.713221 0.700940i \(-0.752764\pi\)
−0.713221 + 0.700940i \(0.752764\pi\)
\(710\) 2.77869e7 2.06869
\(711\) −7.43505e6 6.38557e6i −0.551581 0.473725i
\(712\) 3.74763e6i 0.277049i
\(713\) 1.49667e7 1.10256
\(714\) 0 0
\(715\) 3.39649e7 2.48465
\(716\) 1.22510e7i 0.893075i
\(717\) −1.61095e6 596827.i −0.117026 0.0433561i
\(718\) −1.81356e7 −1.31287
\(719\) −1.55122e7 −1.11905 −0.559526 0.828813i \(-0.689017\pi\)
−0.559526 + 0.828813i \(0.689017\pi\)
\(720\) 3.92573e6 + 3.37160e6i 0.282221 + 0.242385i
\(721\) 0 0
\(722\) 5.78467e6i 0.412986i
\(723\) 1.55106e7 + 5.74640e6i 1.10353 + 0.408837i
\(724\) 7.84692e6i 0.556356i
\(725\) 2.29264e7i 1.61991i
\(726\) −6.76545e6 2.50648e6i −0.476382 0.176491i
\(727\) 2.14536e7i 1.50544i 0.658338 + 0.752722i \(0.271260\pi\)
−0.658338 + 0.752722i \(0.728740\pi\)
\(728\) 0 0
\(729\) 7.59796e6 1.21722e7i 0.529515 0.848301i
\(730\) −4.26588e6 −0.296280
\(731\) 566976. 0.0392438
\(732\) −1.04128e7 3.85776e6i −0.718273 0.266108i
\(733\) 207814.i 0.0142861i 0.999974 + 0.00714306i \(0.00227372\pi\)
−0.999974 + 0.00714306i \(0.997726\pi\)
\(734\) −5.46344e6 −0.374305
\(735\) 0 0
\(736\) 1.76854e6 0.120343
\(737\) 1.28190e7i 0.869333i
\(738\) −1.03445e6 + 1.20446e6i −0.0699147 + 0.0814052i
\(739\) −1.05863e7 −0.713070 −0.356535 0.934282i \(-0.616042\pi\)
−0.356535 + 0.934282i \(0.616042\pi\)
\(740\) −4.01336e6 −0.269420
\(741\) 8.32412e6 2.24683e7i 0.556920 1.50323i
\(742\) 0 0
\(743\) 8.74779e6i 0.581335i 0.956824 + 0.290667i \(0.0938773\pi\)
−0.956824 + 0.290667i \(0.906123\pi\)
\(744\) 3.00354e6 8.10711e6i 0.198930 0.536950i
\(745\) 2.59777e6i 0.171479i
\(746\) 1.15305e7i 0.758577i
\(747\) 1.34208e7 + 1.15264e7i 0.879986 + 0.755774i
\(748\) 3.98114e6i 0.260168i
\(749\) 0 0
\(750\) −3.25858e6 1.20725e6i −0.211532 0.0783688i
\(751\) 1.58899e7 1.02807 0.514035 0.857769i \(-0.328150\pi\)
0.514035 + 0.857769i \(0.328150\pi\)
\(752\) −992037. −0.0639710
\(753\) 5.32118e6 1.43628e7i 0.341996 0.923109i
\(754\) 1.87550e7i 1.20141i
\(755\) −2.96264e7 −1.89152
\(756\) 0 0
\(757\) −1.26269e7 −0.800860 −0.400430 0.916327i \(-0.631139\pi\)
−0.400430 + 0.916327i \(0.631139\pi\)
\(758\) 7.16788e6i 0.453125i
\(759\) −4.92048e6 + 1.32813e7i −0.310029 + 0.836826i
\(760\) −1.05439e7 −0.662165
\(761\) −1.48886e7 −0.931949 −0.465974 0.884798i \(-0.654296\pi\)
−0.465974 + 0.884798i \(0.654296\pi\)
\(762\) −5.46655e6 2.02526e6i −0.341056 0.126355i
\(763\) 0 0
\(764\) 5.45528e6i 0.338130i
\(765\) −7.25299e6 6.22921e6i −0.448088 0.384840i
\(766\) 6.51484e6i 0.401173i
\(767\) 5.03330e6i 0.308933i
\(768\) 354913. 957974.i 0.0217129 0.0586072i
\(769\) 6.82644e6i 0.416273i 0.978100 + 0.208137i \(0.0667399\pi\)
−0.978100 + 0.208137i \(0.933260\pi\)
\(770\) 0 0
\(771\) 1.16143e6 3.13493e6i 0.0703653 0.189929i
\(772\) −3.47350e6 −0.209761
\(773\) 7.17027e6 0.431605 0.215803 0.976437i \(-0.430763\pi\)
0.215803 + 0.976437i \(0.430763\pi\)
\(774\) −759160. + 883928.i −0.0455492 + 0.0530352i
\(775\) 3.28866e7i 1.96682i
\(776\) −65071.9 −0.00387918
\(777\) 0 0
\(778\) 1.90882e7 1.13062
\(779\) 3.23499e6i 0.190998i
\(780\) −1.50999e7 5.59424e6i −0.888663 0.329234i
\(781\) 4.39319e7 2.57722
\(782\) −3.26747e6 −0.191071
\(783\) 1.10993e7 + 2.00125e7i 0.646982 + 1.16653i
\(784\) 0 0
\(785\) 2.63672e7i 1.52718i
\(786\) −4.83569e6 1.79154e6i −0.279191 0.103435i
\(787\) 1.19727e7i 0.689060i −0.938775 0.344530i \(-0.888038\pi\)
0.938775 0.344530i \(-0.111962\pi\)
\(788\) 121219.i 0.00695432i
\(789\) 1.37672e7 + 5.10052e6i 0.787326 + 0.291690i
\(790\) 1.34204e7i 0.765065i
\(791\) 0 0
\(792\) 6.20668e6 + 5.33060e6i 0.351598 + 0.301969i
\(793\) 3.45543e7 1.95128
\(794\) −402600. −0.0226633
\(795\) 4.55227e6 + 1.68654e6i 0.255453 + 0.0946407i
\(796\) 1.17261e7i 0.655950i
\(797\) −2.26127e7 −1.26097 −0.630487 0.776200i \(-0.717145\pi\)
−0.630487 + 0.776200i \(0.717145\pi\)
\(798\) 0 0
\(799\) 1.83284e6 0.101568
\(800\) 3.88603e6i 0.214675i
\(801\) −1.07946e7 9.27089e6i −0.594462 0.510552i
\(802\) 2.21875e7 1.21807
\(803\) −6.74448e6 −0.369113
\(804\) −2.11138e6 + 5.69899e6i −0.115193 + 0.310926i
\(805\) 0 0
\(806\) 2.69030e7i 1.45869i
\(807\) −1.00535e7 + 2.71362e7i −0.543416 + 1.46678i
\(808\) 4.98552e6i 0.268647i
\(809\) 3.20562e6i 0.172203i 0.996286 + 0.0861015i \(0.0274409\pi\)
−0.996286 + 0.0861015i \(0.972559\pi\)
\(810\) 1.94230e7 2.96688e6i 1.04017 0.158887i
\(811\) 1.69321e7i 0.903979i −0.892023 0.451989i \(-0.850715\pi\)
0.892023 0.451989i \(-0.149285\pi\)
\(812\) 0 0
\(813\) 4.98693e6 + 1.84757e6i 0.264611 + 0.0980335i
\(814\) −6.34523e6 −0.335650
\(815\) −1.36745e7 −0.721136
\(816\) −655719. + 1.76991e6i −0.0344741 + 0.0930518i
\(817\) 2.37409e6i 0.124435i
\(818\) 2.90854e6 0.151982
\(819\) 0 0
\(820\) −2.17408e6 −0.112912
\(821\) 2.26014e7i 1.17025i 0.810945 + 0.585123i \(0.198954\pi\)
−0.810945 + 0.585123i \(0.801046\pi\)
\(822\) 1.68446e6 4.54666e6i 0.0869521 0.234700i
\(823\) 1.72651e7 0.888522 0.444261 0.895897i \(-0.353466\pi\)
0.444261 + 0.895897i \(0.353466\pi\)
\(824\) −2.03516e6 −0.104419
\(825\) −2.91831e7 1.08118e7i −1.49278 0.553049i
\(826\) 0 0
\(827\) 1.66638e7i 0.847246i −0.905839 0.423623i \(-0.860758\pi\)
0.905839 0.423623i \(-0.139242\pi\)
\(828\) 4.37502e6 5.09406e6i 0.221771 0.258219i
\(829\) 9.19899e6i 0.464894i −0.972609 0.232447i \(-0.925327\pi\)
0.972609 0.232447i \(-0.0746732\pi\)
\(830\) 2.42248e7i 1.22057i
\(831\) 3.22035e6 8.69232e6i 0.161771 0.436650i
\(832\) 3.17898e6i 0.159214i
\(833\) 0 0
\(834\) −819826. + 2.21286e6i −0.0408138 + 0.110164i
\(835\) 5.22604e7 2.59392
\(836\) −1.66701e7 −0.824942
\(837\) −1.59213e7 2.87067e7i −0.785535 1.41635i
\(838\) 5.28240e6i 0.259849i
\(839\) −1.21622e7 −0.596495 −0.298248 0.954489i \(-0.596402\pi\)
−0.298248 + 0.954489i \(0.596402\pi\)
\(840\) 0 0
\(841\) −1.59860e7 −0.779381
\(842\) 2.01007e7i 0.977081i
\(843\) 1.51848e7 + 5.62570e6i 0.735936 + 0.272651i
\(844\) 7.01113e6 0.338791
\(845\) 1.92217e7 0.926083
\(846\) −2.45410e6 + 2.85744e6i −0.117887 + 0.137262i
\(847\) 0 0
\(848\) 958392.i 0.0457671i
\(849\) −3.68197e7 1.36411e7i −1.75312 0.649499i
\(850\) 7.17964e6i 0.340844i
\(851\) 5.20777e6i 0.246506i
\(852\) −1.95309e7 7.23586e6i −0.921772 0.341500i
\(853\) 2.68757e6i 0.126470i 0.997999 + 0.0632349i \(0.0201417\pi\)
−0.997999 + 0.0632349i \(0.979858\pi\)
\(854\) 0 0
\(855\) −2.60835e7 + 3.03703e7i −1.22025 + 1.42080i
\(856\) −1.21316e6 −0.0565894
\(857\) −32783.4 −0.00152476 −0.000762380 1.00000i \(-0.500243\pi\)
−0.000762380 1.00000i \(0.500243\pi\)
\(858\) −2.38733e7 8.84465e6i −1.10712 0.410169i
\(859\) 2.59428e7i 1.19959i −0.800153 0.599796i \(-0.795249\pi\)
0.800153 0.599796i \(-0.204751\pi\)
\(860\) −1.59551e6 −0.0735620
\(861\) 0 0
\(862\) 7.43210e6 0.340678
\(863\) 1.16439e7i 0.532197i 0.963946 + 0.266098i \(0.0857346\pi\)
−0.963946 + 0.266098i \(0.914265\pi\)
\(864\) −1.88134e6 3.39212e6i −0.0857399 0.154592i
\(865\) −5.07589e7 −2.30660
\(866\) 2.21079e7 1.00173
\(867\) −6.47781e6 + 1.74848e7i −0.292672 + 0.789974i
\(868\) 0 0
\(869\) 2.12181e7i 0.953139i
\(870\) −1.08864e7 + 2.93843e7i −0.487623 + 1.31618i
\(871\) 1.89118e7i 0.844670i
\(872\) 9.41962e6i 0.419510i
\(873\) −160975. + 187432.i −0.00714864 + 0.00832352i
\(874\) 1.36818e7i 0.605850i
\(875\) 0 0
\(876\) 2.99841e6 + 1.11086e6i 0.132017 + 0.0489101i
\(877\) 2.42775e7 1.06587 0.532936 0.846155i \(-0.321088\pi\)
0.532936 + 0.846155i \(0.321088\pi\)
\(878\) −2.28244e7 −0.999223
\(879\) −1.36092e7 + 3.67336e7i −0.594100 + 1.60358i
\(880\) 1.12032e7i 0.487681i
\(881\) −3.00774e7 −1.30557 −0.652787 0.757542i \(-0.726400\pi\)
−0.652787 + 0.757542i \(0.726400\pi\)
\(882\) 0 0
\(883\) 1.55262e6 0.0670139 0.0335069 0.999438i \(-0.489332\pi\)
0.0335069 + 0.999438i \(0.489332\pi\)
\(884\) 5.87334e6i 0.252787i
\(885\) 2.92158e6 7.88587e6i 0.125389 0.338448i
\(886\) −2.05303e7 −0.878641
\(887\) −1.31693e6 −0.0562022 −0.0281011 0.999605i \(-0.508946\pi\)
−0.0281011 + 0.999605i \(0.508946\pi\)
\(888\) 2.82092e6 + 1.04510e6i 0.120049 + 0.0444760i
\(889\) 0 0
\(890\) 1.94844e7i 0.824542i
\(891\) 3.07082e7 4.69072e6i 1.29587 0.197945i
\(892\) 1.04140e7i 0.438235i
\(893\) 7.67461e6i 0.322053i
\(894\) 676474. 1.82593e6i 0.0283079 0.0764081i
\(895\) 6.36945e7i 2.65793i
\(896\) 0 0
\(897\) −7.25913e6 + 1.95937e7i −0.301234 + 0.813085i
\(898\) 6.25449e6 0.258822
\(899\) 5.23530e7 2.16044
\(900\) 1.11932e7 + 9.61328e6i 0.460626 + 0.395608i
\(901\) 1.77068e6i 0.0726654i
\(902\) −3.43728e6 −0.140669
\(903\) 0 0
\(904\) 9.99177e6 0.406651
\(905\) 4.07972e7i 1.65581i
\(906\) 2.08239e7 + 7.71488e6i 0.842832 + 0.312255i
\(907\) −1.62513e7 −0.655948 −0.327974 0.944687i \(-0.606366\pi\)
−0.327974 + 0.944687i \(0.606366\pi\)
\(908\) 7.46542e6 0.300496
\(909\) −1.43602e7 1.23332e7i −0.576434 0.495069i
\(910\) 0 0
\(911\) 2.24793e7i 0.897402i 0.893682 + 0.448701i \(0.148113\pi\)
−0.893682 + 0.448701i \(0.851887\pi\)
\(912\) 7.41109e6 + 2.74568e6i 0.295050 + 0.109311i
\(913\) 3.83000e7i 1.52062i
\(914\) 2.52017e7i 0.997848i
\(915\) −5.41376e7 2.00570e7i −2.13770 0.791979i
\(916\) 4.95229e6i 0.195015i
\(917\) 0 0
\(918\) 3.47587e6 + 6.26712e6i 0.136131 + 0.245449i
\(919\) −1.12193e7 −0.438206 −0.219103 0.975702i \(-0.570313\pi\)
−0.219103 + 0.975702i \(0.570313\pi\)
\(920\) 9.19489e6 0.358160
\(921\) 1.15639e7 + 4.28423e6i 0.449217 + 0.166427i
\(922\) 651418.i 0.0252367i
\(923\) 6.48123e7 2.50411
\(924\) 0 0
\(925\) −1.14431e7 −0.439733
\(926\) 3.36399e7i 1.28922i
\(927\) −5.03460e6 + 5.86203e6i −0.192427 + 0.224052i
\(928\) 6.18628e6 0.235808
\(929\) −1.17114e6 −0.0445215 −0.0222607 0.999752i \(-0.507086\pi\)
−0.0222607 + 0.999752i \(0.507086\pi\)
\(930\) 1.56158e7 4.21500e7i 0.592049 1.59805i
\(931\) 0 0
\(932\) 2.02044e7i 0.761914i
\(933\) −906026. + 2.44553e6i −0.0340751 + 0.0919749i
\(934\) 2.58463e7i 0.969462i
\(935\) 2.06985e7i 0.774301i
\(936\) 9.15667e6 + 7.86418e6i 0.341623 + 0.293403i
\(937\) 2.95716e7i 1.10034i −0.835053 0.550169i \(-0.814563\pi\)
0.835053 0.550169i \(-0.185437\pi\)
\(938\) 0 0
\(939\) 1.85372e7 + 6.86771e6i 0.686089 + 0.254184i
\(940\) −5.15774e6 −0.190388
\(941\) −4.53304e7 −1.66884 −0.834421 0.551127i \(-0.814198\pi\)
−0.834421 + 0.551127i \(0.814198\pi\)
\(942\) 6.86615e6 1.85330e7i 0.252108 0.680485i
\(943\) 2.82111e6i 0.103309i
\(944\) −1.66022e6 −0.0606365
\(945\) 0 0
\(946\) −2.52254e6 −0.0916454
\(947\) 4.41168e7i 1.59856i −0.600959 0.799279i \(-0.705215\pi\)
0.600959 0.799279i \(-0.294785\pi\)
\(948\) −3.49475e6 + 9.43297e6i −0.126298 + 0.340901i
\(949\) −9.95006e6 −0.358641
\(950\) −3.00632e7 −1.08075
\(951\) 4.38783e7 + 1.62561e7i 1.57325 + 0.582862i
\(952\) 0 0
\(953\) 5.71596e6i 0.203872i 0.994791 + 0.101936i \(0.0325036\pi\)
−0.994791 + 0.101936i \(0.967496\pi\)
\(954\) −2.76053e6 2.37087e6i −0.0982022 0.0843407i
\(955\) 2.83628e7i 1.00633i
\(956\) 1.76330e6i 0.0623997i
\(957\) −1.72116e7 + 4.64573e7i −0.607494 + 1.63974i
\(958\) 2.12648e7i 0.748597i
\(959\) 0 0
\(960\) 1.84524e6 4.98064e6i 0.0646212 0.174424i
\(961\) −4.64681e7 −1.62311
\(962\) −9.36107e6 −0.326128
\(963\) −3.00113e6 + 3.49437e6i −0.104284 + 0.121423i
\(964\) 1.69775e7i 0.588412i
\(965\) −1.80592e7 −0.624282
\(966\) 0 0
\(967\) −1.87898e7 −0.646182 −0.323091 0.946368i \(-0.604722\pi\)
−0.323091 + 0.946368i \(0.604722\pi\)
\(968\) 7.40530e6i 0.254012i
\(969\) −1.36924e7 5.07279e6i −0.468457 0.173555i
\(970\) −338318. −0.0115451
\(971\) 6.27879e6 0.213711 0.106856 0.994275i \(-0.465922\pi\)
0.106856 + 0.994275i \(0.465922\pi\)
\(972\) −1.44246e7 2.97248e6i −0.489710 0.100914i
\(973\) 0 0
\(974\) 3.05109e7i 1.03052i
\(975\) −4.30535e7 1.59506e7i −1.45043 0.537359i
\(976\) 1.13976e7i 0.382991i
\(977\) 3.05843e7i 1.02509i 0.858660 + 0.512545i \(0.171297\pi\)
−0.858660 + 0.512545i \(0.828703\pi\)
\(978\) 9.61155e6 + 3.56091e6i 0.321326 + 0.119046i
\(979\) 3.08054e7i 1.02724i
\(980\) 0 0
\(981\) 2.71320e7 + 2.33023e7i 0.900140 + 0.773083i
\(982\) 9.29515e6 0.307594
\(983\) 187114. 0.00617621 0.00308811 0.999995i \(-0.499017\pi\)
0.00308811 + 0.999995i \(0.499017\pi\)
\(984\) 1.52812e6 + 566142.i 0.0503119 + 0.0186397i
\(985\) 630234.i 0.0206972i
\(986\) −1.14295e7 −0.374398
\(987\) 0 0
\(988\) −2.45933e7 −0.801539
\(989\) 2.07035e6i 0.0673057i
\(990\) 3.22694e7 + 2.77145e7i 1.04641 + 0.898710i
\(991\) 5.47127e7 1.76972 0.884860 0.465858i \(-0.154254\pi\)
0.884860 + 0.465858i \(0.154254\pi\)
\(992\) −8.87385e6 −0.286308
\(993\) −3.26012e6 + 8.79965e6i −0.104920 + 0.283199i
\(994\) 0 0
\(995\) 6.09656e7i 1.95221i
\(996\) 6.30826e6 1.70271e7i 0.201494 0.543868i
\(997\) 1.35567e7i 0.431931i −0.976401 0.215966i \(-0.930710\pi\)
0.976401 0.215966i \(-0.0692899\pi\)
\(998\) 1.99910e7i 0.635343i
\(999\) 9.98868e6 5.53993e6i 0.316661 0.175627i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.d.a.293.24 28
3.2 odd 2 inner 294.6.d.a.293.5 28
7.2 even 3 42.6.f.a.17.12 yes 28
7.3 odd 6 42.6.f.a.5.7 28
7.6 odd 2 inner 294.6.d.a.293.6 28
21.2 odd 6 42.6.f.a.17.7 yes 28
21.17 even 6 42.6.f.a.5.12 yes 28
21.20 even 2 inner 294.6.d.a.293.23 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.f.a.5.7 28 7.3 odd 6
42.6.f.a.5.12 yes 28 21.17 even 6
42.6.f.a.17.7 yes 28 21.2 odd 6
42.6.f.a.17.12 yes 28 7.2 even 3
294.6.d.a.293.5 28 3.2 odd 2 inner
294.6.d.a.293.6 28 7.6 odd 2 inner
294.6.d.a.293.23 28 21.20 even 2 inner
294.6.d.a.293.24 28 1.1 even 1 trivial